On the effective string theory of confining flux tubes

Michael Teper (Oxford) - KITP, 2012

- Flux tubes and string theory :
effective string theories - recent progress
fundamental flux tubes in $\mathrm{D}=2+1$
fundamental flux tubes in $\mathrm{D}=3+1$
higher representation flux tubes
- Concluding remarks

gauge theory and string theory \leftrightarrow

A long history ...

- Veneziano amplitude
- 't Hooft large- N - genus diagram expansion
- Polyakov action
- Maldacena ... AdS/CFT/QCD ...
at large N, flux tubes and perhaps the whole gauge theory can be described by a weakly-coupled string theory
we calculate the spectrum of closed flux tubes:
- closed around a spatial torus of length l -
- flux localised in 'tubes'; long flux tubes, $l \sqrt{ } \sigma \gg 1$ look like 'thin strings'
- at $l=l_{c}=1 / T_{c}$ there is a 'deconfining' phase transition: 1st order for $N \geq 3$ in $D=4$ and for $N \geq 4$ in $D=3$
- so may have a simple string description of the closed string spectrum for all $l \geq l_{c}$
- most plausible at $N \rightarrow \infty$ where scattering, mixing and decay, e.g string \rightarrow string + glueball, go away
- in both $\mathrm{D}=2+1$ and $\mathrm{D}=3+1$

Note: the static potential $V(r)$ describes the transition in r between UV (Coulomb potential) and IF (flux tubes) physics; potentially of great interest as $N \rightarrow \infty$.
analytic work:

Luscher and Weisz, hep-th/0406205; Drummond, hep-th/0411017.
Aharony with Karzbrun, Field, Klinghoffer, Dodelson, arXiv:0903.1927; 1008.2636; 1008.2648; 1111.5757; 1111.5758
numerical work:
closed flux tubes:
Athenodorou, Bringoltz, MT, arXiv:1103.5854, 1007.4720, ... ,0802.1490, 0709.0693

Wilson loops and open flux tubes:
Caselle, Gliozzi, et al ..., arXiv:1202.1984, 1107.4356, ...
also
Brandt, arXiv:1010.3625; Lucini,..., 1101.5344;
historical aside:
QCD and String Theory, KITP 2004
Nair's analytic prediction in $\mathrm{D}=2+1$:

$$
\frac{\sqrt{ } \sigma}{g^{2} N}=\sqrt{\frac{1-1 / N^{2}}{8 \pi}} \stackrel{N \rightarrow \infty}{\rightarrow} 0.19947-\frac{0.0998}{N^{2}}
$$

versus my 1998 lattice calculation:

$$
\frac{\sqrt{ } \sigma}{g^{2} N} \stackrel{N \rightarrow \infty}{\rightarrow} 0.1975(10)-\frac{0.119(8)}{N^{2}}
$$

perhaps they actually agree?
\Longrightarrow
need better control systematic errors, in particular the l-dependence of the flux tube energy
continuum limits of $N \in[2,8]$ in $D=2+1$

fit: $\quad \lim _{N \rightarrow \infty} \frac{\sqrt{ } \sigma}{g^{2} N}=0.1975(\pm 2)(-5) \quad$ i.e. $\sim 1 \% \sim 8 \sigma \quad$ less than Nair,
'test' large N counting

$$
\begin{aligned}
& \Longrightarrow \\
& \frac{\sqrt{ } \sigma}{g^{2} N}=c_{0}+\frac{c_{1}}{N^{\gamma}} \quad \Rightarrow \quad \gamma=1.97 \pm 0.10 \\
& \frac{\sqrt{ } \sigma}{g^{2} N^{\alpha}}=c_{0}+\frac{c_{1}}{N^{2}} \quad \Rightarrow \quad \alpha=1.002 \pm 0.004 \\
& \frac{\sqrt{ } \sigma}{g^{2} N^{\alpha}}=c_{0}+\frac{c_{1}}{N^{\gamma}} \quad \Rightarrow \quad \alpha=1.008 \pm 0.015, \gamma=2.18 \pm 0.40 \\
& \Longrightarrow
\end{aligned}
$$

strong support for non-perturbative validity of usual large- N counting i.e.

$$
\frac{\sqrt{ } \sigma}{g^{2} N}=c_{0}+\frac{c_{1}}{N^{2}}+\cdots
$$

calculate the energy spectrum of a confining flux tube winding around a spatial torus of length l, using correlators of Polyakov loops (Wilson lines):

$$
\left\langle l_{p}^{\dagger}(\tau) l_{p}(0)\right\rangle=\sum_{n, p_{\perp}} c_{n}\left(p_{\perp}, l\right) e^{-E_{n}\left(p_{\perp}, l\right) \tau} \stackrel{\tau \rightarrow \infty}{\propto} \exp \left\{-E_{0}(l) \tau\right\}
$$

in pictures

a flux tube sweeps out a cylindrical $l \times \tau$ surface $S \cdots$ integrate over these world sheets with an effective string action $\propto \int_{c y l=l \times \tau} d S e^{-S_{\text {eff }}[S]}$
also a flux tube attached to the static sources propagating in the x-direction:

$$
\left\langle l_{p}^{\dagger}(\tau) l_{p}(0)\right\rangle=\sum_{n} e^{-\hat{E}_{n}(\tau) l} \stackrel{l \rightarrow \infty}{\propto} \exp \left\{-\hat{E}_{0}(\tau) l\right\}
$$

in pictures

this is an example of an 'open-closed string duality'
\Rightarrow
$\left\langle l_{p}^{\dagger}(\tau) l_{p}(0)\right\rangle=\sum_{n, p_{\perp}} c_{n}\left(p_{\perp}, l\right) e^{-E_{n}\left(p_{\perp}, l\right) \tau}=\sum_{n} e^{-\hat{E}_{n}(\tau) l}=\int_{c y l=l \times \tau} d S e^{-S_{e f f}[S]}$
where $S_{\text {eff }}[S]$ is the effective string action for the surface S
\Rightarrow
the string partition function will predict the spectrum $\hat{E}_{n}(\tau)$ - just a Laplace transform - but will be constrained by the Lorentz invariance encoded in $E_{n}\left(p_{\perp}, l\right)$
Luscher and Weisz; Meyer
this can be extended from a cylinder to a torus (Aharony)

$$
Z_{\text {torus }}^{w=1}(l, \tau)=\sum_{n, p} e^{-E_{n}(p, l) \tau}=\sum_{n, p} e^{-E_{n}(p, \tau) l}=\int_{T^{2}=l \times \tau} d S e^{-S_{e f f}[S]}
$$

where p now includes both transverse and longitudinal momenta \leftrightarrow
'closed-closed string duality'

Parameterising S (static gauge):

- $h(x, t)$ is transverse displacement (vector in $D=3+1$) from minimal surface $x \in[0, l]$ and $t \in[0, \tau]$, i.e.

$$
S_{e f f}[S] \longrightarrow S_{e f f}[h]
$$

and we integrate over the field $h(x, t)$

- translation invariance $\Rightarrow S_{e f f}[h]$ cannot depend on position but only on $\partial_{\alpha} h$, with $\alpha=x, t, \Rightarrow$ we can do a derivative expansion (schematic):

$$
S_{e f f} \sim \sigma l \tau+\int_{0}^{\tau} d t \int_{0}^{l} d x \frac{1}{2} \partial h \partial h+\sum c_{n, i} \int_{0}^{\tau} d t \int_{0}^{l} d x \partial^{n+i} h^{n}
$$

$\Rightarrow \quad$ an expansion of $E_{n}(l)$ in powers of $1 / \sigma l^{2}$

- open-closed duality constrains some of these coefficients \Rightarrow some correction terms in $E(l)=\sigma l+\frac{c_{1}}{l}+\frac{c_{2}}{\sigma l^{3}}+\cdots$ are 'universal' e.g. $c_{1}=\pi(D-2) / 6-$ the famous Luscher correction

So what do we know?
any $S_{\text {eff }} \quad \Rightarrow$
$E_{0}(l) \stackrel{l \rightarrow \infty}{=} \sigma l-\frac{\pi(D-2)}{6 l}-\frac{\{\pi(D-2)\}^{2}}{72} \frac{1}{\sigma l^{3}}-\frac{\{\pi(D-2)\}^{3}}{432} \frac{1}{\sigma^{2} l^{5}}+O\left(\frac{1}{l^{7}}\right)$
universal terms:

- $O\left(\frac{1}{l}\right)$

Luscher correction, ~ 1980

- $O\left(\frac{1}{l^{3}}\right)$

Luscher, Weisz; Drummond, ~ 2004

- $O\left(\frac{1}{l^{5}}\right)$

Aharony et al, $\sim 2009-10$
and similar results for $E_{n}(l)$, but only to $O\left(1 / l^{3}\right)$ in $D=3+1$
just like the simple free string theory
: Nambu-Goto in flat space-time up to explicit $O\left(1 / l^{7}\right)$ corrections

So what does one find numerically?
results here are from:

- $D=2+1$ Athenodorou, Bringoltz, MT, arXiv:1103.5854
- $D=3+1$ Athenodorou, Bringoltz, MT, arXiv:1007.4720
- higher rep Athenodorou, MT, in progress
and we start with:

$$
D=2+1, S U(6), a \sqrt{ } \sigma \simeq 0.086 \quad \text { i.e } \quad N \sim \infty, a \sim 0
$$

lightest 8 states with $p=0$

$$
P=+(\bullet), P=-(\circ)
$$

solid lines: Nambu-Goto
ground state $\rightarrow \sigma$: only parameter
lightest levels with $p=2 \pi q / l, 4 \pi q / l$

Nambu-Goto : solid lines

Nambu-Goto free string theory

$$
\int \mathcal{D} S e^{-\kappa A[S]}
$$

spectrum (Arvis 1983, Luscher-Weisz 2004):

$$
E^{2}(l)=(\sigma l)^{2}+8 \pi \sigma\left(\frac{N_{L}+N_{R}}{2}-\frac{D-2}{24}\right)+\left(\frac{2 \pi q}{l}\right)^{2} .
$$

$p=2 \pi q / l=$ total momentum along string;
$N_{L}, N_{R}=$ sum left and right 'phonon' momentum:

$$
N_{L}=\sum_{k>0} n_{L}(k) k, \quad N_{R}=\sum_{k>0} n_{R}(k) k, \quad N_{L}-N_{R}=q
$$

where

$$
\text { state }=\prod_{k>0} a_{k}^{n_{L}(k)} a_{-k}^{n_{R}(k)}|0\rangle \quad, \quad P=(-1)^{\text {number phonons }}
$$

lightest $p=0$ states:
$|0\rangle$
$a_{1} a_{-1}|0\rangle$
$a_{2} a_{-2}|0\rangle, a_{2} a_{-1} a_{-1}|0\rangle, a_{1} a_{1} a_{-2}|0\rangle, a_{1} a_{1} a_{-1} a_{-1}|0\rangle$
...
lightest $p \neq 0$ states:

$$
\begin{aligned}
& a_{1}|0\rangle \\
& a_{2}|0\rangle \\
& a_{1} a_{1}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& P=-, p=2 \pi / l \\
& P=-, p=4 \pi / l \\
& P=+, p=4 \pi / l
\end{aligned}
$$

$$
\Rightarrow
$$

observe Nambu-Goto degeneracies and quantum numbers

Since when Nambu-Goto is expanded the first few terms are universal e.g.

$$
\begin{aligned}
E_{0}(l) & =\sigma l\left(1-\frac{\pi(D-2)}{3 \sigma l^{2}}\right)^{\frac{1}{2}} \\
& \stackrel{l>l_{0}}{=} \sigma l-\frac{\pi(D-2)}{6 l}-\frac{\{\pi(D-2)\}^{2}}{72} \frac{1}{\sigma l^{3}}-\frac{\{\pi(D-2)\}^{3}}{432} \frac{1}{\sigma^{2} l^{5}}+O\left(\frac{1}{l^{7}}\right)
\end{aligned}
$$

and also for excited states, e.g.

$$
E_{n}(l)=\sigma l\left(1+\frac{8 \pi}{\sigma l^{2}}\left(n-\frac{D-2}{24}\right)\right)^{\frac{1}{2}} \stackrel{l>l_{n}}{=} \sigma l+\sum_{n=0} \frac{c_{n}}{\sigma^{n} l^{2 n+1}}
$$

where $l_{0} \sqrt{ } \sigma=\sqrt{3 / \pi(D-2)}$ and $l_{n} \sqrt{ } \sigma \sim \sqrt{8 \pi n}$
\Rightarrow
is the agreement with Nambu-Goto no more than agreement with the sum of the known universal terms?

NO!

universal terms: dashed lines
Nambu-Goto : solid lines

\Longrightarrow

- NG very good down to $l \sqrt{ } \sigma \sim 2$, i.e energy

$$
\text { fat short flux 'tube' } \sim \text { ideal thin string }
$$

- NG very good far below value of $l \sqrt{ } \sigma$ where the power series expansion diverges, i.e. where all orders are important \Rightarrow universal terms not enough to explain this agreeement ...
- no sign of any non-stringy modes, e.g.

$$
E(l) \simeq E_{0}(l)+\mu \quad \text { where e.g. } \quad \mu \sim M_{G} / 2 \sim 2 \sqrt{ } \sigma
$$

\Longrightarrow
... in more detail ...
but first an 'algorithmic' aside - calculating energies

- deform Polyakov loops to allow non-trivial quantum numbers
- block or smear links to improve projection on physical excitations
- variational calculation of best operator for each energy eigenstate
- huge basis of loops for good overlap on a large number of states
- i.e. $C(t) \simeq c_{n} e^{-E_{n}(l) t}$ already for small t
for example:

abs gs $l=16,24,32,64 a(\circ)$; es $\mathrm{p}=0 \mathrm{P}=+(\bullet)$; gs $p=2 \pi / l, P=-(\star)$; gs, es $p=0, P=-(\diamond)$

Operators in $\mathrm{D}=2+1$:

lightest $P=-$ states with $p=2 \pi q / l: q=0,1,2,3,4,5$

Nambu-Goto : solid lines

$$
(a p)^{2} \rightarrow 2-2 \cos (a p): \text { dashed lines }
$$

ground state deviation from various 'models'

$$
D=2+1
$$

model $=$ Nambu-Goto, \bullet, universal to $1 / l^{5}$, ○, to $1 / l^{3}, \star$, to $1 / l,+$, just $\sigma l, \times$ lines $=$ plus $O\left(1 / l^{7}\right)$ correction
\Longrightarrow

- for $l \sqrt{ } \sigma \gtrsim 2$ agreement with NG to $\lesssim 1 / 1000$
moreover
- for $l \sqrt{ } \sigma \sim 2$ contribution of NG to deviation from σl is $\gtrsim 99 \%$
despite flux tube being short and fat
- and leading correction to NG consistent with $\propto 1 / l^{7}$ as expected from current universality results

χ^{2} per degree of freedom for the best fit

$$
E_{0}(l)=E_{0}^{N G}(l)+\frac{c}{l \gamma}
$$

operators in expansion of $S_{N G}[h]$ are universal to all orders (Aharony: ECT talk, 2010) and so can be resummed at smaller l to square root \Rightarrow
we assume same is true of the corrections to NG which begin with a leading $O\left(1 / l^{7}\right)$ term and resums at smaller l, i.e

$$
\frac{E(l)}{\sqrt{ } \sigma}=\frac{E_{N G}(l)}{\sqrt{ } \sigma}+\frac{c}{(l \sqrt{ } \sigma)^{7}}\left(1+\frac{c^{\prime}}{l^{2} \sigma}\right)^{\gamma}
$$

first excited $q=0, P=+$ state

$$
D=2+1
$$

fits:
$\frac{c}{(l \sqrt{ } \sigma)^{7}} \quad$ - dotted curve; $\quad \frac{c}{(l \sqrt{ } \sigma)^{7}}\left(1+\frac{25.0}{l^{2} \sigma}\right)^{-2.75}$ - solid curve
$\Longrightarrow \quad$ if we write

$$
\begin{align*}
\frac{1}{\sqrt{ } \sigma} E_{n}(l) & =\frac{1}{\sqrt{ } \sigma} E_{n}^{N G}(l)+\frac{1}{\sqrt{ } \sigma} \Delta E_{n}(l) \tag{1}\\
& \stackrel{\rightarrow \infty}{=} \frac{1}{\sqrt{ } \sigma} E_{n}^{N G}(l)+\frac{c}{(l \sqrt{ } \sigma)^{7}}\left\{1+\frac{c_{1}}{l^{2} \sigma}+\frac{c_{2}}{\left(l^{2} \sigma\right)^{2}}+\cdots\right\}
\end{align*}
$$

then correction to NG resums, just like NG,

$$
\frac{1}{\sqrt{ } \sigma} \Delta E_{n}(l)=\frac{c}{(l \sqrt{ } \sigma)^{7}}\left(1+\frac{c^{\prime}}{l^{2} \sigma}\right)^{-\gamma} \simeq \begin{cases}\frac{c}{(l \sqrt{ } \sigma)^{7}} & l \gg l_{d} \\ \frac{c c^{\prime \prime \gamma}}{(l \sqrt{ } \sigma)^{7-2 \gamma}} & l \ll l_{d}\end{cases}
$$

and with our fit we find $c \sim 0.6 \times c_{7}^{N G}$
for most but not all light excited states:
$q=1, P=-$ ground state
$S U(6), D=2+1$

fits:
$\frac{c}{(l \sqrt{ } \sigma)^{7}} \quad$ solid curve; $\quad \frac{c}{(l \sqrt{ } \sigma)^{7}}\left(1+\frac{25.0}{l^{2} \sigma}\right)^{-2.75}$: dashed curve

$$
D=2+1 \quad \longrightarrow \quad D=3+1
$$

- additional rotational quantum number: phonon carries spin 1
- Nambu-Goto again remarkably good for most states
- BUT now there are some candidates for non-stringy (massive?) mode excitations ...
however in general results are considerably less accurate
$p=2 \pi q / l$ for $q=0,1,2$
$D=3+1, S U(3), l_{c} \sqrt{ } \sigma \sim 1.5$

The four $q=2$ states are: $J^{P_{t}}=0^{+}(\star), 1^{ \pm}(\circ), 2^{+}(\square), 2^{-}(\bullet)$.
Lines are Nambu-Goto predictions.
for a precise comparison with Nambu-Goto, define:

$$
\Delta E^{2}(q, l)=E^{2}(q ; l)-E_{0}^{2}(l)-\left(\frac{2 \pi q}{l}\right)^{2} \stackrel{N G}{=} 4 \pi \sigma\left(N_{L}+N_{R}\right)
$$

$\Longrightarrow \quad$ lightest $q=1,2$ states:

lightest few $p=0$ states

$\Longrightarrow \quad$ anomalous 0^{--}state
and also for $p=2 \pi / l$ states

states: $J^{P_{t}}=0^{+}(\circ), 0^{-}(\bullet), 2^{+}(*), 2^{-}(+)$
$\Longrightarrow \quad$ anomalous 0^{-}state
$p=0,0^{--}$: is this an extra state - is there also a stringy state?

ansatz: $E(l)=E_{0}(l)+m \quad ; m=1.85 \sqrt{ } \sigma \sim m_{G} / 2$
similarly for $p=1,0^{-}$:

$$
\mathrm{SU}(3), \bullet ; \mathrm{SU}(5), \circ
$$

ansatz: $E(l)=E_{0}(l)+\left(m^{2}+p^{2}\right)^{1 / 2} \quad ; m=1.85 \sqrt{ } \sigma \sim m_{G} / 2$

BUT

Aharony, Klinghoffer arXiv:1008.2648
\Rightarrow
leading correction to Nambu-Goto in $D=3+1$ is at $O\left(1 / l^{5}\right)$ to excited states but not ground state
\sim a 'spin-spin' interaction between right and left movers

Aharony, Komargodski, Schwimmer - in progress
\Rightarrow
the value of the coefficient is universal

$$
c_{4}=\frac{(D-26)}{192 \pi \sigma^{2}}
$$

from Polchinski-Strominger rather than static-gauge

Aharony, Klinghoffer arXiv:1008.2648

The discrete points are the lattice results, the solid lines are the corresponding Nambu-Goto energy levels, and other lines include the shifts we calculated from using the specific value $c_{4}=(D-26) / 192 \pi^{2} T^{2}$. The vertical line is the expected radius of convergence for each level, we expect a matching only for points that are well to the right of this line.

- k-strings: $f \otimes f \otimes \ldots k$ times, e.g.

$$
\phi_{k=2 A, S}=\frac{1}{2}\left(\left\{\operatorname{Tr}_{f} \phi\right\}^{2} \pm \operatorname{Tr}_{f}\left\{\phi^{2}\right\}\right)
$$

lightest flux tube for each $k \leq N / 2$ is absolutely stable if $\sigma_{k}<k \sigma_{f}$ etc.

- binding energy \Rightarrow mass scale \Rightarrow massive modes?
- higher reps at fixed k, e.g. for $k=1$ in $\operatorname{SU}(6)$

$$
f \otimes f \otimes \bar{f} \rightarrow f \oplus f \oplus \underline{84} \oplus \underline{120}
$$

- $N \rightarrow \infty$ is not the 'ideal' limit that it is for fundamental flux:
- most 'ground states' are not stable (for larger l)
- typically become stable as $N \rightarrow \infty$, but
$-\sigma_{k} \rightarrow k \sigma_{f}$: states unbind?
\longrightarrow some $D=2+1, \mathrm{SU}(6)$ calculations \ldots
$\mathrm{k}=2 \mathrm{~A}$
lightest $p=2 \pi q / l$ states with $\mathrm{q}=0,1,2$

lines are NG

$$
\mathrm{P}=-(\bullet), \mathrm{P}=+(\circ)
$$

$\mathrm{k}=2 \mathrm{~A}$ ground state versus: Nambu-Goto (•), linear+Luscher (O)

$\Rightarrow \quad$ only sensitive to leading $1 / l$ correction - but linear
$\mathrm{k}=2 \mathrm{~A}$: versus Nambu-Goto, lightest $p=2 \pi / l, 4 \pi / l$ states

$\Rightarrow \quad$ here very good evidence for NG
$\mathrm{k}=2 \mathrm{~A}$:
lightest $\mathrm{p}=0, \mathrm{P}=+$ states

$\Rightarrow \quad$ large deviations from Nambu-Goto for excited states
$\mathrm{k}=2 \mathrm{~A}$:
first excited $\mathrm{p}=0, \mathrm{P}=+$ state
$\Rightarrow \quad$ deviations large $\left(\sim 10 c_{N G}\right)$, but of 'typical' form:

$$
\propto \frac{1}{l^{7}}\left(1+\frac{25}{l^{2} \sigma_{2 a}}\right)^{-\gamma}, \quad \gamma=2.75,3.75
$$

$\mathrm{k}=1, \mathrm{R}=\underline{84}:$
lightest $p=0,2 \pi / l$ states

$\Rightarrow \quad$ all reps come with Nambu-Goto towers of states

Some conclusions on confining flux tubes and strings

- flux tubes are very like free Nambu-Goto strings, even when they are not much longer than they are wide
- this is so for all light states in $D=2+1$ and most in $D=3+1$
- ground state and states with one 'phonon' show corrections to NG only at very small l, consistent with $O\left(1 / l^{7}\right)$
- most other excited states show small corrections to NG consistent with a resummed series starting with $O\left(1 / l^{7}\right)$ and reasonable parameters
- in $D=3+1$ we appear to see extra states consistent with the excitation of massive modes
- in $D=2+1$, despite the much greater accuracy, we see no extra states
- we also find 'towers' of Nambu-Goto-like states for flux in other representations, even where flux tubes are not stable, but with much larger corrections - reflecting binding mass scale?
- theoretical analysis is complementary (in l) but moving forward rapidly, with possibility of resummation of universal terms and of identifying universal terms not seen in 'static gauge'
there is indeed a great deal of simplicity in the behaviour of confining flux tubes and in their effective string description - much more than one would have imagined ten years ago ...

