Radio and X-rays from GW170817: the show is still on

Sources of X-rays/Radio

Credit: NASA's Goddard Space Flight Center/CI Lab

Sources of X-rays/Radio

Cocoon

Central Engine

Credit: NASA's Goddard Space Flight Center/Cl Lab

Merger + Environment

KN ejecta + Engine @ t<40 days

Sources of X-rays/Radio

Relativistic Jets Radio-to-Xrays

Credit W. Fong

Cocoon
(mildy relativistic,
not strongly collimated)

Credit W. Fong

Credit: NASA's Goddard Space Flight Center/Cl Lab

Structured jets models need to be given a chance

Radio-to-Xrays SED

This is NOT unique to a particular model

Science with ZERO photons

Timeline of our EM follow-up: The first 72 hours

What we did NOT see:

Look closer...

optical position

Detection???

host galaxy

Alexander+ 2017

Timeline of our EM follow-up: The first 72 hours

Timeline of our EM follow-up: The first 72 hours

Timeline of our EM follow-up: The first few weeks

T=15 days

1.5 arcsec

GW170817

Timeline of our EM follow-up: The first two weeks

The FUTURE of our EM follow-up:

GW170817 is still ON in X-rays and radio!

Deep non-detection followed by a detection on t~10 days

Radio and X-rays RISING with time!

Properties to explain (X-rays):

Radio-to-Xray SED also implies beta~0.5

Properties to explain (Radio):

data from Alexander+2017; Hallinan+2017; Mooley+2017

Sources of X-rays/Radio

Credit: NASA's Goddard Space Flight Center/Cl Lab

Keyword: DECELERATION

Rising) X-ray/Radio emission

Onset of the (cocoon?) afterglow (on-axis/spherical)

Off-axis Afterglow (beamed)

Onset of the afterglow (on-axis/spherical)

Mildly Relativistic shock —-> Cocoon afterglow emission?

Nakar+2016; Lazzati+2016; Lazzati+2017a; 2017b; Margutti+2017; Hallinan+2017

Onset of the afterglow (on-axis/spherical)

With NEW DATA does not work

Single Gamma fireball does NOT work

Introduce STRUCTURE in the ejecta

E(GammaBeta)~(GammaBeta)^-alpha

 $\Gamma(t_{pk}) \sim 1/\theta_{obs}$

DECELERATION

2

Parameter Range of Values Grid Pace $3 \times 10^{49} - 3 \times 10^{52}$ 0.5 dec Jet Isotropic Energy $E_{k,iso}$ (erg) $10^{-4} - 1$ Circum-merger density n (cm⁻³) 0.5 dec Observer angle θ_{obs} (deg) $(\theta_i + 2.5) - 90$ 2.5 $10^{-4} - 10^{-1}$ 1 dec ϵ_B 0.01 - 0.11 dec 2.1 - 2.20.1

Zhang & MacFadyen (2009).

2

x (10^18 cm)

3

Note. — Simulations were run at two fixed values of jet opening angles $\theta_j = 5^{\circ}$ and $\theta_j = 15^{\circ}$, propagating in a constant density medium.

Margutti, et al., 2017; Alexander et al., 2017 Guidorzi, Margutti et al., 2017

We identified a **FAMILY** of solutions

Ek~10^49-10^50 erg

n~0.0001-0.01

theta_obs~20-40 deg

(+micro-physics)

This is the **SIMPLEST** version of a relativistic jet

This is a fit limited to the **EARLY** t<40 days data

One out of a **FAMILY** of solutions for **EARLY** data

 10^{-8}

Theta_obs=15-50 deg

Guidorzi, RM+2017

Time since Merger (days)

100

This is the **SIMPLEST** version of a relativistic jet

New Method for Hubble Constant Measurement (Schutz 1986)

Improving the constraints on H0 with GW + EM

Guidorzi, Margutti.. Fong et al., 2017

Structured jets models need to be given a chance to fail

The new X-rays are unlikely to solve the debate (models predict similar spectrum)

