Numerical Modeling of Binary Neutron Star Mergers

David Radice^{1,2}

¹ Research Associate, Princeton University
 ² Taplin Member, Institute for Advanced Study

GW170817: The First Double Neutron Star Merger — KITP — Dec. 6, 2017

Credit: NASA/NICER

Neutron star equation of state

From Lattimer 2012

EOS constraints from GWs

From LIGO/Virgo collaboration, PRL 119, 161101 (2017)

EOS constraints from GW+EM

From Margalit & Metzger 2017

Assumption: no prompt BH formation —> EOS must be stiff enough

Assumption: no stable remnant —> EOS must soft enough

See also Bauswein+, Rezzolla+, Shibata+, Ruiz+ (2017)

Combine EM+GW data with simulations

WhiskyTHC

http://www.astro.princeton.edu/~dradice/whiskythc.html

- Full-GR, dynamical spacetime*
- Nuclear EOS
- Effective neutrino treatment
- High-order hydrodynamics
- Open source!

* using the Einstein Toolkit metric solvers

THC: Templated Hydrodynamics Code

Neutron rich outflows

Dynamic ejecta: role of neutrinos

Perego, **DR**, Bernuzzi, arXiv:1711.03982

Dynamic ejecta: role of neutrinos

SFHo: $(1.4 + 1.2) M_{\odot}$; ν cooling and heating 10^{-1} $\sin^2(\theta)$ Mass fraction 10^{-2} 10^{-3} 10^{-2} 0.4 Electron fraction 0.3 0.2 0.1 20 40 60 80 0 Polar angle

Perego, **DR**, Bernuzzi, arXiv:1711.03982

Neutron rich outflows: model

Kilonova modeling (I)

See also: Chornock et al. 2017; Cowperthwaite et al. 2017; Drout et al. 2017; Nicholl et al. 2017; Rosswog et al. 2017; Tanaka et al. 2017; Tanvir et al. 2017; Villar et al. 2017

Kilonova modeling (II)

See also: Chornock et al. 2017; Cowperthwaite et al. 2017; Drout et al. 2017; Nicholl et al. 2017; Rosswog et al. 2017; Tanaka et al. 2017; Tanvir et al. 2017; Villar et al. 2017

Kilonova modeling (II)

See also: Chornock et al. 2017; Cowperthwaite et al. 2017; Drout et al. 2017; Nicholl et al. 2017; Rosswog et al. 2017; Tanaka et al. 2017; Tanvir et al. 2017; Villar et al. 2017

Simulation results

NS EOS constraints

Extreme-density physics

- Same EOS at low density; softening at high density
- Typical binaries have the same $\Lambda!$
- Different compactness, collapse time of remnant
- Can we tell them apart?
 Yes with the postmerger!

Effect on the evolution

Hyperons

No Hyperons

DR, Bernuzzi, Del Pozzo+, ApJL 842:L10 (2017)

Binding energy

High-density EOS encoded in the binding energy

Gravitational waveform

DR, Bernuzzi, Del Pozzo+, ApJL 842:L10 (2017)

Detectability

Detectability

Conclusions & outlook

- Simulations can bridge GW and EM observations
- First results: constraints on the NS EOS
- Going forward: better neutrino transport, MHD, and longer simulations are needed
- Hope for the future: detection of the postmerger signal