GW170817 detection and characterization

Michał Wąs for the LIGO and Virgo collaborations

Michał Was (LAPP)

Need two ingredients: two test masses and a ruler

Need two ingredients: two test masses and a ruler

Test mass

"Free falling" objects that sense the gravitational wave

Need two ingredients: two test masses and a ruler

Test mass

"Free falling" objects that sense the gravitational wave

Ruler

⇒ laser light

 \rightarrow the wavelength is the ruler tick mark

Basics of interferometric gravitational wave detections Need two ingredients: two test masses and a ruler

- Longer arms → larger effect
- Sees only one gravitational wave polarization

Noise can spoil measurements in many different ways

Most noises don't increase with arm length

Advanced detectors time-line

Stephen Fairhurst will talk on Thursday about future observations

KAGRA/LIGO/Virgo arXiv:1304.0670

O2 vs O1 in LIGO

- Binary neutron star range:
 - Average horizon distance
 - Horizon \simeq 2.26 \times range
- Similar sensitivity
- Longer duration
 - ▶ O1: 16 weeks, ~50 days of coincident operations
 - O2: 37 weeks, ~120 days of coincident operations

advanced Virgo joined O2 for last month

- Only 3.5 weeks
- Sensitivity 2-3 times lower than LIGO
- Improves sky localization by factor 10

GW170817 / GRB 170817A

- combined signal to noise ratio = 32, loudest GW event so far
- More on GRB 170817A, next talk by Peter Veres

LIGO/Virgo/Fermi/Integral arXiv:1710.05834

Michał Wąs (LAPP)

GW170817 sky localization

Image credit : Arnaud, Greco, Branchesi, Vicere

- No clear signal in Virgo
- exclude regions of good sensitivity and very close to blind spot

GW170817 / GRB 170817A have a common origin

- 1.74 s time delay vs 0.12 SGRB per day \Rightarrow p-value 5 \times 10⁻⁶
- sky location overlap ⇒ p-value 0.01
- \Rightarrow p-value 5 \times 10⁻⁸ or 5.3 σ

LIGO/Virgo/Fermi/Integral arXiv:1710.05834

GW170817 / GRB 170817A - fundamental physics test

- 1.74 s delay over 130 million years of propagation
- Assuming gamma emission delayed by [0,10] s

$$-3 imes 10^{-15} \le rac{v_{GW} - v_{EM}}{v_{EM}} \le 7 imes 10^{-16}$$

- Shapiro effect: gravitational potential slows clocks down
- ⇒ Equivalence principle test, GW and EM clocks are affected the same, $\gamma_{\rm GW} = \gamma_{\rm EM} = 1$
 - Only using Milky Way potential at large distances (100 kpc)

$$-2.6 imes10^{-7} \leq \gamma_{GW} - \gamma_{EM} \leq 1.2 imes10^{-6}$$

• Many dark matter emulating GR modification are excluded

LIGO/Virgo/Fermi/Integral arXiv:1710.05834, Boran et al. arXiv:1710.06168

Michał Wąs (LAPP)

CRAPP 💓

Distance vs inclination degeneracy - quadrupolar approximation

Approximation: far field + slow moving source

• Dominant source: mass distribution quadrupolar moment

Distance vs inclination degeneracy - direct measurement

- LIGO Hanford and Livingston aligned
 - \Rightarrow sensitive to only one polarization
- A strong signal in 3 detectors
 - ⇒ measure polarization: circular vs linear
 - \Rightarrow direct measurement of system inclination only for inclination > 50 deg

There is an optical counter part

⇒ Redshift of host galaxy

LIGO/Virgo/EM partners arXiv:1710.05833

Distance vs inclination degeneracy - optical counter part

- Clear degeneracy $\Rightarrow \cos \iota \propto 1/D$
- Counterpart host galaxy redshift 0.01 \Rightarrow $D \propto 1/H_0 \sim 40$ Mpc
- Known values of H₀ break the distance vs inclination degeneracy

LIGO/Virgo arXiv:1710.05835

Inclination remains not well constrained

- GW data and host galaxy distance consistent with an aligned system
- Inclination < 28 (or 36) degrees depending on assumed H0 value

Binary system masses - one mass combination very well measured

- Both objects have mass sufficiently low to be a neutron star
- Assuming spins not larger than most extreme known system PSR J0737-3039A
 - \Rightarrow Masses are close to equal, in 1.17-1.60 M_{\odot} range

LIGO/Virgo arXiv:1710.05832

Michał Wąs (LAPP)

Single event \Rightarrow a measure of the BNS merger rate

LIGO/Virgo arXiv:1607.07456, LIGO/Virgo arXiv:1710.05832

CRAPP 💓

Single event \Rightarrow a measure of the BNS merger rate GW170817 02 01 Dominik et al. pop syn de Mink & Belczynski pop syn -Vangioni et al. r-process -Jin et al. kilonova · Petrillo et al. GRB -Coward et al. GRB · Siellez et al. GRB -Fong et al. GRB -Kim et al. pulsar aLIGO 2010 rate compendium - 10^{2} 103 10^{4} 10° 10^{1} BNS Rate (Gpc⁻³yr⁻¹)

- Measured merger rate: 300 5000 Gpc⁻³yr⁻¹
- compatible with O1 upper limit, and theoretical expectations

LIGO/Virgo arXiv:1607.07456, LIGO/Virgo arXiv:1710.05832

Michał Wąs (LAPP)

Tidal deformability

- NS tidal deformation speeds up binary coalescence
- Disfavors stiff equations of states that result in large neutron stars
- More on EOS on Wednesday in talk by Jocelyn Read

LIGO/Virgo arXiV:1710.05832

Post-merger scenarios

- prompt collapse to a BH
 - ▶ Small amplitude and high frequency signal \rightarrow not detectable
- hypermassive NS collapsing to a BH \lesssim 1 s
 - Numerical relativity simulations, short signal
- supramassive or stable NS with \gtrsim 10 s lifetime
 - Semi-analytical computation of unstable modes

LIGO/Virgo arXiv:1710.09320, Hotokezaka et al. arXiv:1307.5888

No direct information on post-merger signal

 $\bullet\,$ A detectable signal $\sim\,$ most of remnant evaporating in gravitational waves

LIGO/Virgo arXiv:1710.09320 Michał Was (LAPP)

Remnant stability

- Tidal effects disfavors MS1, SHT equations of state that support large masses
- Total mass above uniformly rotating maximum mass for most equations of state
- A supramassive or stable NS remnant is unlikely

LIGO/Virgo/Fermi/Integral arXiv:1710.05834

Conclusion

- BNS mergers happen in the local universe at \sim expected rate
- Inclusion of third GW detector allows useful sky localization
- LIGO/Virgo can measure inclination only when it is large
- Tidal effects constrain possible NS equation of states
- No direct information on post-merger remnant
- GRB association offers a precision fundamental physics test
 - Gravitational wave speed
 - Equivalence principle
 - Strong constraint on modified gravity theories