

• Past, Present & Future of neutron EDM

B. Filippone Symmetry Tests in Nuclei & Atoms KITP 9/20/2016

Neutron EDM & New Physics

2

• Small EDM in standard model provides negligible "background" signal

 $d_n^{SM} < 10^{-31} \,\mathrm{e} \,\mathrm{cm}$ $d_n^{\exp} < 3 \cdot 10^{-26} \,\mathrm{e} \,\mathrm{cm}$

• New CP violation "natural" in new physics

e.g. $d_n \sim 10^{-25}$ e-cm x sin ϕ_{CP} (1 TeV/M_{BSM})²

But ... Theory Remains Essential

- How to interpret measured EDM in terms of new physics/elementary EDMs
 - Extraction from p, n, atom EDMs
 - E.g. Lattice QCD (This workshop & program!)
 - Calculation of enhancement factors for certain species
 - Model constraints based on EDM limits/observations
 - Identify source of EDM

$$\mathcal{L}_{eff} = \frac{g_s^2}{32\pi^2} \bar{\theta} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + \frac{1}{3} w f^{abc} G^a_{\mu\nu} \tilde{G}^{\nu\beta,b} G_{\beta}^{\mu,c} - \frac{i}{2} \sum_{i=e,u,d,s} d_i \,\overline{\psi}_i (F\sigma) \gamma_5 \psi - \frac{i}{2} \sum_{i=u,d,s} \tilde{d}_i \,\overline{\psi}_i g_s (G\sigma) \gamma_5 \psi + \cdots$$

Searching for a Neutron EDM

E. M. Purcell N. F. Ramsey

- E.M. Purcell and N.F. Ramsey, Phys. Rev. 78, 807 (1950)
 - Looking for Parity Violation in Neutron Scattering
 - Pioneered Neutron Beam Magnetic Resonance

A Publication by and for the ORNL Employees of Carbide and Carbon Chemicals Division, Union Carbide and Carbon Corporation

PHYSICAL REVIEW

Vol. 3-No. 13

OAK RIDGE, TENNESSEE

Friday, September 29, 1950

HARVARD UNIVERSITY SPONSORS PROGRAM HERE — James H. Smith, Harvard University graduate student in physics, is shown as he adjusts a neutron beam apparatus at the south face of the Oak Ridge Pile. Using the Pile as a source of neutrons, Mr. Smith is engaged in a project jointly sponsored by Harvard University and Oak Ridge National Laboratory for the purpose of determining if neutrons have permanent electric dipole moments.

Harvard University Conducts Important Research at ORNL

The growing importance of Oak Ridge National Laboratory as a research center is manifested particularly in its assistance to universities and technical schools on various projects in which nuclear research is involved. An example of such relationship is its present collaboration with Harvard University in an investigation to determine if neutrons have permanent electric dipole moments.

The work of the project is under the direction of Professors E. M. Purcell and Norman F. Ramsey of the Harvard University Physics Department and is being conducted on the Laboratory area by James H. Smith, a VOLUME 108, NUMBER 1 OCTOBER 1, 1957

Experimental Limit to the Electric Dipole Moment of the Neutron

J. H. SMITH,* E. M. PURCELL, AND N. F. RAMSEY Oak Ridge National Laboratory, Oak Ridge, Tennessee, and Harvard University, Cambridge, Massachusetts (Received May 17, 1957)

An experimental measurement of the electric dipole moment of the neutron by a neutron-beam magnetic resonance method is described. The result of the experiment is that the electric dipole moment of the neutron equals the charge of the electron multiplied by a distance $D = (-0.1 \pm 2.4) \times 10^{-20}$ cm. Consequently, if an electric dipole moment of the neutron exists and is associated with the spin angular momentum, its magnitude almost certainly corresponds to a value of D less than 5×10^{-20} cm.

sensitive neutron-beam resonance experiment for the detection of an electric dipole moment.

This experiment was successfully completed several years ago. However, the negative results of the experiment were in accordance with the then widely accepted views on parity so the detailed description⁴ of the experiment was not published. The upper limit to the electric dipole moment determined in this experiment has occasionally been quoted in other publications.^{5,6}

Lee and Yang⁶ have analyzed the effects of parity nonconservation on the angular distributions of beta

^{*} Now at the University of Illinois, Urbana, Illinois.

¹ E. M. Purcell and N. F. Ramsey, Phys. Rev. 78, 807 (1950).

² Havens, Rabi, and Rainwater, Phys. Rev. 72, 634 (1947).

³ E. Fermi and L. Marshall, Phys. Rev. 72, 1139 (1947).

Moore's Law for Neutron EDM Searches

Simplified Measurement of EDM

"...always measure a

How to measure a small frequency?

 Ramsey Separated Oscillatory Fields (SOF)

frequency" E-field ► Hold (Hz) $v = \frac{2\vec{\mu}\cdot\vec{B}\pm 2\vec{d}\cdot\vec{E}}{2\vec{d}\cdot\vec{E}}$

How to measure a small frequency?

 Observation of free precession

with $\sigma_{\downarrow\uparrow}$ >> $\sigma_{\uparrow\uparrow}$

What is the precision for an EDM measurement?

$$\mathbf{E} = \hbar \boldsymbol{\omega} = 2 \vec{\mathbf{d}} \cdot \vec{\mathbf{E}}$$
 \longrightarrow Uncertainty in d: $\sigma_d \sim \frac{\Delta \mathbf{E}}{2 |\vec{E}|}$

 $\Delta E \Delta t \sim \hbar$

Precise energy measurement requires long coherence/ measurement time, giving

$$\sigma_d \sim \frac{\Delta E}{2 |\vec{E}|} \sim \frac{h}{2 |\vec{E}| T_m}$$

е

Plus shot noise = counting statistics $\propto \frac{1}{\sqrt{N}}$

Sensitivity:
$$\sigma_d^{tot} \sim \frac{\hbar}{2 |\vec{E}| T_m \sqrt{mN}}$$

E – Electric Field **T**_m – Time for single measurement m - total # of measurements 8 N – Total # of counts/meas.

Best Present Limit on nEDM

Baker et al. Phys. Rev. Lett. <u>97</u>, 131801 (2006) Pendlebury et al. Phys. Rev. D <u>92</u>, 9092003 (2015) d_n < 3.0 x 10⁻²⁶ e-cm @ 90% Confidence Limit

→ Ramsey SOF & trapped Ultra-Cold Neutrons from ILL Reactor

	EDM @
	ILL
N (detected n/cycle)	1.3 × 10 ⁴
Ē	10 kV/cm
T _m	130 s
m (cycles/day)	270
σ_d (e-cm)/day	3 x 10 ⁻²⁵

Neutron EDM Experiments Worldwide

Neutron EDM Searches

Experiment	UCN source	cell	Measurement techniques	<mark>σ_d Goal</mark> (10 ⁻²⁸ e-cm)	
Present neutron EDM limit < 300					
ILL-PNPI	ILL turbine PNPI/Solid D ₂	Vac.	Ramsey technique for ω E=0 cell for magnetometer	Phase1<100 < 10	
ILL Crystal	Cold n Beam	solid	Crystal Diffraction Non-Centrosymmetric crystal	< 100	
PSI EDM	Solid D ₂	Vac.	Ramsey for ω , external Cs & Hg comag.	Phase1 ~ 50	
			Xe or Hg comagnetometer	Phase 2 < 5	
Munich FRMII	Solid D ₂	Vac.	Room Temp. , Hg Co-mag., also external 3He & Cs mag.	< 5	
RCNP/TRIUMF	Superfluid ⁴ He	Vac.	Small vol., Xe co-mag. @ RCNP Then move to TRIUMF	< 50 < 5	
SNS nEDM	Superfluid ⁴ He	⁴ He	Cryo-HV, ³ He capture for ω , ³ He co-mag. with SQUIDS & dressed spins, supercond.	< 5	
JPARC	Solid D ₂	Vac.	Under Development	< 5	
JPARC	Solid D ₂	Solid	Crystal Diffraction Non-Centrosymmetric crystal	< 10?	
LANL	Solid D ₂	Vac.	R & D, Ramsey SOF, Hg co-mag.	~ 30	
= sensitivity < 5 x 10^{-28} e-cm					

LANL nEDM

Concept for nEDM experiment at LANL

- A neutron EDM experiment with a sensitivity of $\delta d_n \sim O(10^{-27})$ e-cm based on already proven room temperature Ramsey's separated oscillatory field method could take advantage of the existing LANL SD₂ UCN source
 - nEDM measurement technology for $\delta d_n \sim O(10^{-27})$ e-cm exists. What is holding up the progress is the lack of UCN density.
 - The LANL UCN source currently provides a UCN density of \sim 60 UCN/cc at the exit of the biological shield
 - A 5-10 fold improvement in the delivered UCN density is required for an nEDM experiment with $\delta d_n \sim O(10^{-27})$ e-cm
- Such an experiment could provide a venue for the US nEDM community to obtain physics results, albeit less sensitive, in a shorter time scale with much less cost while development for the SNS nEDM experiment continues.

S. Clayton, S. Currie, T. Ito, M. Makela, C. Morris, R. Pattie Jr. J. Ramsey, A. Saunders, Z.Tang *Los Alamos National Laboratory*

> C.-Y. Liu, J. Long, W. Snow Indiana University

B. Plaster University of Kentucky

> S. K. Lamoreaux Yale University

E. Sharapov Joint Institute of Nuclear Research

Based on LANL UCN Source in Area B Area B layout with the proposed nEDM Experiment New nEDM experiment UCNT experiment UCNA/B experiment Slide thanks to T. Ito

Expected achievable statistical sensitivity with the current LANL UCN source without the upgrade

Parameters	Values
E (kV/cm)	12.0
N (per cell)	14,700
T _{free} (s)	180
T _{duty} (s)	300
a	0.80
σ/day/cell (10 ⁻²⁵ e-cm)	0.93
σ/year/cell (10 ⁻²⁷ e-cm)	4.8
σ/year* (10 ⁻²⁷ e-cm) (for double cell)	3.4
90% C.L./year* (10 ⁻²⁷ e-cm) (for double cell)	5.6

This estimate is based on the following:

- The estimate for N is based on the results of the UCN storage test performed in January 2016 and is not assuming the source upgrade.
- The estimate for E, T_{free}, T_{duty}, and α is based on what has been achieved by other experiments.

Schedule

* "year" = 365 live days. In practice it will take 3+ years to achieve this

Slides thanks to T. Ito

- Present August 2016: Installation of the new UCN source and guides
- September 2016-January 2017: Commissioning and operation of the new UCN source

Ultracold Neutrons at TRIUMF T. Adachi¹, E. Altiere², T. Andalib^{3,4}, C. Bidinosti^{3,8}, J. Birchall⁴, M. Chin⁵, C. Davis⁵, F. Doresty⁴, M. Gericke⁴, S. Hansen-Romu^{3,4}, K. Hatanaka⁶, T. Hayamizu², B. Jamieson³, S. Jeong¹, D. Jones²,
K. Katsika⁵, S. Kawasaki¹, T Kikawa^{5,6,1}, A. Konaka^{5,8}, E. Korkmaz⁷, M. Lang³, T. Lindner⁵, L. Lee^{4,5},
K. Madison², J. Mammei⁴, R. Mammei³, J.W. Martin³, Y. Masuda¹, R. Matsumiya⁶, K. Matsuta⁸, M. Mihara⁸,
E. Miller², T. Momose², S. Page⁴, R. Picker⁵, E. Pierre^{6,5}, W.D. Ramsay⁵, L. Rebenitsch^{3,4},
J. Sonier⁹, I. Tanihata⁶, W.T.H. van Oers^{4,5}, Y. Watanabe¹, and J. Weinands²

¹KEK, Tsukuba, Ibaraki, Japan
²The University of British Columbia, Vancouver, BC, Canada
³The University of Winnipeg, Winnipeg, MB, Canada
⁴The University of Manitoba, Winnipeg, MB, Canada
⁵TRIUMF, Vancouver, BC, Canada
⁶RCNP, Osaka, Japan (Osaka University, Osaka, Japan)
⁷The University of Northern BC, Prince George, BC, Canada
⁸Osaka University, Osaka, Japan
⁹Simon Fraser University, Burnaby, BC, Canada

Slide thanks to J. Martin

TRIUMF

Slide thanks to J. Martin

"Phase 1" – what will exist in 2017

- use existing EDM Ramsey apparatus from RCNP, Osaka
- exploit higher UCN density at TRIUMF (also more beamtime available)
- room temperature, **1 small cell**, vertical loading, spherical B₀ coil
- small incremental improvements until replaced by Phase 2
 - Active magnetic compensation system
 - high voltage
 - comagnetometer
 - high-flux detector

Slide thanks to J. Martin

EDM Phase 1 schematic

EDM Phase 1 at RCNP

"Phase 2" - to implement by 2020

Phase 2 sensitivity $\delta d_n \sim 10^{-27}$ e-cm

- LD₂ moderator, to increase cold flux entering the superfluid
- New high-quality guides.
- World-competitive nEDM experiment apparatus

CFI Innovation Fund application in progress, in Canada. Scale \$16M.

Slide thanks to J. Martin

TUM nEDM

@PTB Berlin

M. Burghoff, A. Schnabel, J. Voigt

@Forschungneutronenquelle Heinz Meier-Leibnitz

A. Frei, T. Lauer, P. Link, A. Pichlmaier, T. Zechlau

@Technische Universität München

I. Altarev, V. Andreev, S. Chesnevskaya, M. Daimer, W. Feldmeier, P. Fierlinger, E. Gutsmiedl, F. Kaspar, F. Kuchler, T. Lins, M. Marino, J. McAndrew, B. Niessen, S. Paul, G. Petzoldt, J. Rothe, C. Schneider, R. Schönberger, S. Seidel, R. Stoepler, T. Stolz, S. Stuiber, M. Sturm, B. Taubenheim, R. Thiele, J. Weber, D. Wurm,

@University of California at Berkeley

D. Budker, B. Patton

@University of Illinois at Urbana-Champaign

D. H. Beck, S. Sharma

@University of Michigan

T. Chupp, S. Degenkolb

Optimistic (but in principle possible) plan towards a physics result

Options

(i) Assembly of Inner and Outer shield with RT chamber
(ii) Cryogenic chambers with Inner Shield
(iii) Cryogenic chambers with Outer and Inner Shield
(before ~ 2022 no UCN at FRM-II EDM position)

P. Fierlinger – MSU 4/6/2016

Slide thanks to P. Fierlinger

Sensitivity potential of nEDM at Super-SUN at ILL

SuperSun stage I SuperSun stage II UCN density 333 1/cm3 1670 1/cm3 Diluted density 80 1/cm3 400,8 1/cm3 Transfer loss factor 1,5 3 Source saturation loss factor 2 Polarization loss factor 2 1 6,7 1/cm3 133,6 1/cm3 Density in cells 2 EDM chamber volume 33,2 I 33,2 I Neutrons per chamber 110556 2217760 EDM sensitivity 2,00E+04 V/cm Е 2,00E+04 V/cm alpha 0,85 0,85 т 250 s 250 s N after time T (1/e) 794000 398000 Number of EDM cells 2 2 Sensitivity (1 Sigma, 1 cell) 3,9E-25 ecm 8,7E-26 ecm Sensitivity (1 Sigma, 2 cells) 2,7E-25 ecm 6,1E-26 ecm Preparation time 150 s 150 s Measurements per day 216 216 Sensitivity (1 Sigma, 2 cells) per day 1,9E-26 ecm 4,2E-27 ecm Sensitivity 100 days 1,9E-27 ecm 4,2E-28 ecm Limit 90% 100 days 3,00E-27 ecm 7,00E-28 ecm

Slide thanks to P. Fierlinger

P. Fierlinger – MSU 4/6/2016

The next version: Super-SUN (funded + under construction at ILL)

Slide thanks to P. Fierlinger

Slides thanks to K. Kirch

M. Burghoff, A. Schnabel, J. Voigt¹ **PTB:** *Physikalisch Technische Bundesanstalt, Berlin, Germany*

C. Abel¹, N. Ayres¹, W.C. Griffith, P. Harris, M. Musgrave, J.M. Pendlebury[†], J. Thorne¹ **UoS:** University of Sussex, Brighton, United Kingdom

G. Ban², B. Dechenaux, T. Lefort, Y. Lemière,
O. Naviliat-Cuncic³, G. Quéméner
LPC: Laboratoire de Physique Corpusculaire, Caen, France

K. Bodek, D. Rozpedzik, J. Zejma JUC: Jagellonian University, Cracow, Poland

A. Kozela HNI: Henryk Niedwodniczański Institute for Nuclear Physics, Cracow, Poland

> Z.D. Grujić, A. Weis FRAP: University of Fribourg, Switzerland

Y. Kermaidic¹, G. Pignol, D. Rebreyend LPSC: Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France

L. Dekeukeleere¹, M. Kasprzak, P. Koss¹, P. N. Prashanth^{1,4},
 R. Seutin^{1,4}, N. Severijns, E. Wursten¹
 KUL: Katholieke Universiteit, Leuven, Belgium

C. Crawford UKY: University of Kentucky, Lexington, United States of America

W. Heil, H. C. Koch^{1,4,5} **GUM:** Institut für Physik, Johannes-Gutenberg-Universität, Mainz, Germany

S. Roccia CSNSM: Centre de Sciences Nucléaire et de Sciences de la matière, Orsay, France

G. Bison, V. Bondar, M. Daum, S. Komposch^{1,6}, B. Lauss⁷, E. Merki^{1,6}, P. Mohan Murthy^{1,6}, D. Ries^{1,6}, P. Schmidt-Wellenburg⁷, G. Zsigmond **PSI:** Paul Scherrer Institut, Villigen, Switzerland

N. Hild^{1,4}, K. Kirch^{2,4}, J. Krempel, F. Piegsa, M. Rawlik¹, U. Soler¹ **ETHZ:** *ETH Zürich, Switzerland*

The nEDM spectrometer

Slide thanks to K. Kirch

UK ----

nEL

(pc

PB

- Status/Prospects:
- Taking data at δd_n ~ 1x10⁻²⁶ e-cm/yr
- n2EDM hopes to reach $\delta d_n \sim 4 \times 10^{-27} \text{ e-cm/yr}$

- Two UCN precession chambers with opposite electric field directions
- Improved magnetometry Hg laser read out of Hg-FID to avoid light shift
 - Cs vectorial
 - **3He** free from geometrical phase shift

nEDM Experiment at Oak Ridge Spallation Neutron Source - SNS

ullet

Concept: R. Golub & S. K. Lamoreaux, Phys. Rep. 237, 1 (1994)

- High trapped neutron densities
- Cold neutrons from spallation source cooled to "Ultra-cold" neutrons via phonon scattering in superfluid He
- LHe as a high voltage insulator
 high electric fields
- Use of a ³He co-magnetometer and superconducting shield
 - Control and measure magnetic field systematics
- Precession frequency measurement via two techniques:
 - free precession
 - *"dressed spin" techniques*
- Sensitivity reach: d_n ~ 2 x 10⁻²⁸ e-cm (in 3 calendar yrs)

"Most ambitious nEDM experiment that is currently underway"

SNS Target Station

SNS-nEDM Experiment

R. Alarcon, R. Dipert Arizona State University G. Seidel Brown University D. Budker UC Berkeley M. Blatnik, R. Carr, B. Filippone, C. Osthelder, S. Slutsky, X. Sun, C. Swank California Institute of Technology M. Ahmed, M. Busch, P. -H. Chu, H. Gao *Duke University* I. Silvera *Harvard University* M. Karcz, C.-Y. Liu, J. Long, H.O. Meyer, M. Snow *Indiana University*

L. Bartoszek, D. Beck, C. Daurer, J.-C. Peng, T. Rao, S. Williamson, L. Yang University of Illinois Urbana-Champaign

Plaster University of Kentucky S. Clayton, S. Currie, T. Ito, Y, Kim, M. Makela, J. Ramsey, W.Sondheim. Z, Tang, W. Wei Los Alamos National Lab K. Dow, D. Hasell, E. Ihloff, J. Kelsey, J. Maxwell, R. Milner, R. Redwine, E. Tsentalovich, C. Vidal Massachusetts Institute of Technology D. Dutta, E. Leggett Mississippi State University R. Golub, C. Gould, D. Haase, A. Hawari, P. Huffman, E. Korobkina, K. Leung, A. Reid, A. Young North Carolina State University R. Allen, V. Cianciolo, Y. Efremenko, P. Mueller, S. Penttila, W. Yao Oak Ridge National Lab M. Hayden Simon Fraser University G. Greene, N. Fomin University of Tennessee S. Stanislaus Valparaiso University S. Baeßler University of Virginia S. Lamoreaux Yale University

C. Crawford, T. Gorringe, W. Korsch, E. Martin, N. Nouri, B.

Project Manager: V. Cianciolo Spokesperson: BWF 29

Technical Challenges for nEDM@SNS

- 1200 L of superfluid Helium @ T = 0.5K
 - Must minimize heat sources
 - Eddy-current heating from AC B-fields ightarrow minimal conducting material
 - Large cooling plant required
- Highly sensitive to magnetic field variations and gradients
 - Significant magnetic shielding required
 - B-field uniformity of ppm/cm over measurement volume
 - Low-field operation: B = 3 μ T
- High electric fields: E = 75 kV/cm
 - Producing and maintaining V > 600 kV in cryogenic environment

Status of the nEDM@SNS Experiment

- Demonstration of Critical Components is Underway (2014-2017)
 - Construction of most technically challenging pieces:
 - HV @ LANL and light detection system @ ORNL
 - Polarized ³He system @ Illinois
 - Magnet system @ Caltech
 - Polarized UCN & ³He test bed at NCSU PULSTAR reactor
- Large Subsystem Integration and Acquisition of Critical Components (2018-2020)
 - Begin commissioning components at Oak Ridge National Laboratory in 2019

Farther Future nEDM

- Systematics can produce "surprises", but if these are controlled then sensitivity is limited by counting statistics → need more neutrons
 - 2nd Target station at SNS could give ~ 25x more cold neutrons
 - ESS (European Spallation Source) also promises high flux of cold neutrons for high density UCN
 - Cryogenic experiment being discussed

Summary

- A number of novel technologies are being developed to extend neutron EDM sensitivities by two ordersof-magnitude
- Anticipate:
 - A new best sensitivity within 1-2 year
 - Factor of 10 improvement within 3-4 yrs
 - Factor of 100 improvement within 7-9 yrs
 - TBD > 10 years

Extra Slides

New External Building will House the Experiment

T/CP Violation

With
$$\vec{\mu} = \mu \frac{\vec{J}}{J}$$
 and $\vec{d} = d \frac{\vec{J}}{J}$

	Ρ	Т
tµ	Ŧ	l
D.	+	1
Ê	-	+
₿	+	-
Ĵ	+	-

$$H = \underbrace{\vec{\mu} \cdot \vec{B}}_{\text{P-even}} + \underbrace{\vec{d} \cdot \vec{E}}_{\text{P-odd}}$$

T-even T-odd

Non-zero d violates T and CP (via CPT)

How to measure an EDM?

Recall magnetic moment in B field:

$$\hat{\mathbf{H}} = \vec{\mu} \cdot \vec{\mathbf{B}}; \quad \vec{\mu} = 2 \left(\frac{\mu_{\mathrm{N}}}{\hbar} \right) \vec{\mathbf{S}} ; \text{for spin} \frac{1}{2}$$

$$\vec{\tau} = \frac{d\vec{S}}{dt} = \vec{\mu} \times \vec{B} \implies 2\left(\frac{\mu_{N}}{\hbar}\right) \vec{S} \|\vec{B}\|; \text{ if } \vec{S} \perp \vec{B}$$

Classical Picture:

• If the spin is not aligned with B there will be a precession due to the torque

• Precession frequency ${}_{m \Omega}$ given by

Gyromagnetic Ratio

$$\omega = \frac{d\varphi}{dt} = \frac{1}{S}\frac{dS}{dt} = \frac{2\mu_{N}B}{\hbar} = \frac{1}{2\mu_{N}B}$$

$$d\vec{S} = \frac{\vec{S}_{f}}{\vec{S}_{i}} \qquad or \quad \frac{2d_{N}E}{\hbar} \quad for \ a \ \vec{d}_{N} \ in \ \vec{E}$$

But some molecules have HUGE EDMs!

H₂0: $d = 0.4 \times 10^{-8} \text{ e-cm}$ NaCl: $d = 1.8 \times 10^{-8} \text{ e-cm}$ NH₃: $d = 0.3 \times 10^{-8} \text{ e-cm}$

But NH₃ EDM is not T-odd

 $\vec{d} \neq d\frac{\vec{J}}{J}$ $\left(both \vec{d} = +d\frac{\vec{J}}{J} \quad and \quad \vec{d} = -d\frac{\vec{J}}{J} \quad exist!\right)$

If neutron/electron had a degenerate state, then their EDM would not violate T or CP. But they don't!

Ground state is actually a superposition