

Theorist's view on the EDM at storage rings

What is the JEDI record 10^{-10} spin tune precision good for the EDM?

<u>Kolya Nikolaev, Artem Saleev & Frank Rathmann</u> Landau ITP, Chernogolovka, Samara Aerospace U. & IKP FZJ, Juelich

For the JEDI Collaboration

Symmetry test in Nuclei and Atoms, KITP, Santa Barbara September 19-23, 2016

I simply extend Frank Rathman's talk:

- EDM signal = precession of spin in the E-field.
- Identical to the all to familiar MDM caused precession in the B-fieltd
- The electrically neutral neutrons can readily be stored in bottles and their spins be subjected to strong Efields
- The charged protons & deuterons shall promptly fly away from the E-field
- Make the E-field a companion to a B-field as a confining force in a storage ring

- A challenge: how to disentangle a tiny EDM torque on spin from the much stronger background from the MDM in imperfection magnetic fields?
- Prime motivation for the JEDI-2014 run at COSY: Yannis Semertzidis' idea of the RF Wien filter approach to EDM at all-magnetic rings
- Imperfections fields as a show stopper?
- Ultra high precision spin tune as a unique probe of spin dynamics
- The first in situ measurement of the stable spin axis to μrad precision
- Outlook

COSY as a testing ground for the EDM searches

Tr was percer component and an other states.	

• Frenkel-Thomas-BMT eqn. $\frac{d\vec{s}}{dt} = \left(\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}\right) \times \vec{S}$ $\vec{\Omega}_{MDM} = -\frac{q}{m} \left(G\vec{B} - \left(G - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} - \frac{G\gamma}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right)$ $\vec{\Omega}_{EDM} = -\frac{q}{m} \eta (\vec{E} + \vec{\beta} \times \vec{B}) \qquad \eta = \text{EDM/MDM}$ $\frac{d\vec{p}}{dt} = q (\vec{E} + \vec{\beta} \times \vec{B})$

$$\hat{R} = \exp(-i\pi\nu_s\vec{\sigma}\cdot\vec{c}) = \cos\pi\nu_s - i(\vec{\sigma}\cdot\vec{c})\sin\pi\nu_s$$
$$\vec{c} = \left(\vec{e}_x\sin\xi + \vec{e}_y\cos\xi\right)$$
$$\tan\xi = -\frac{\eta}{G}\beta$$
$$\nu_s^0 = G\gamma$$

$$v_s = \frac{G\gamma}{\cos\xi_{edm}}$$

EDM vs. MDM (learnt from Lev Okun in 60's)

- MDM μ_N is allowed by all symmetries
- A scale is set by a nuclear magneton
- Buy CPT
- EDM is P and CP =T forbidden
- Pay price for the parity violation: 10^{-7}
- Pay price for the CP and Time reversal violation
- $d_N = \mu_N \times 10^{-7} \times 10^{-3} \sim 10^{-24} e \cdot cm$
- The SM: CP violation linked to the flavor change. Pay 10^{-7} more to compensate for the flavor change
 - $d_{N,SM} \sim \mu_N \times 10^{-7} \times 10^{-3} \times 10^{-7} \sim 10^{-31} e \cdot cm$

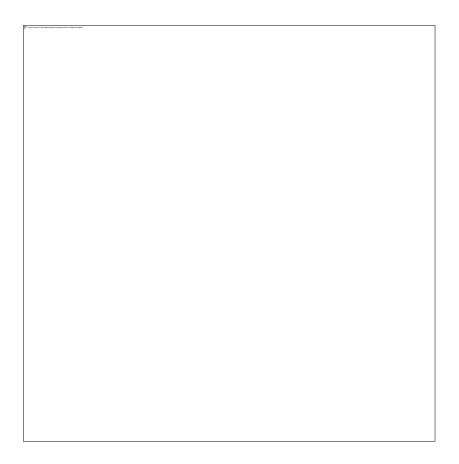
RF WF locked to the spin tune: EDM driven vertical spin from the horizontal one

$$S_y(t) = \frac{\psi}{2}\sin\xi_{edm} \cdot t$$

• The resonance strength is:

$$\epsilon = \frac{1}{2}\chi_{wf}|\vec{c} \times \vec{w}| = \frac{1}{2}\chi_{wf}\sin\xi_{edm}$$

- The MDM spin kick χ_{wf} in the **EDM-transparent** WF conspires with the EDM driven tilt of the stable spin aixs (Yannis Semertzides et al.)
- How to determine the stable spin axis? Add tunable Artificial Magnetic Imperfection (AI)


$$\hat{t}_{a} = \cos\frac{1}{2}\chi_{a} - i\left(\vec{\sigma}\cdot\vec{k}\right)\sin\frac{1}{2}\chi_{a}$$
$$\cos\pi(\nu_{s} + \Delta\nu_{s}) = \frac{1}{2}Tr\hat{T}$$
$$= \cos\pi\nu_{s}\cos\frac{1}{2}\chi_{a} - \left(\vec{c}\cdot\vec{k}\right)\sin\pi\nu_{s}\sin\frac{1}{2}\chi_{a}$$

Measure stable spin axis by mapping the spin tune vs AI: dual to the RF WF approach

Magnetic imperfection as a show stopper to RF WF?

- COSY has never been meant to be a precision spin ring (a design of 80's)
- Rolls and off-sets of magnetic elements generate radial and longitudinal imperfection B-fields
- MDM in a radial imperfection B-field is a direct background to the EDM in a radial motional E-field
- The AI approach: the radial AI B-field would disturb the beam orbit --- a no go!
- Longitudinal fields do not disturb the orbit.

• In the experiment with two solenoids, the beam is prepared for spin tune measurement (a). When the solenoids were switched on, the spin tune jumps by Δv_s , as determined in the spin tune analysis (b):

Poor man's solution: solenoids of two coolers at COSY at makeshift Al's

"Transport" the 2nd AI next to the 1st one

$$\hat{T} = \hat{R}_2 \hat{t}_2 \hat{R}_1 \hat{t}_1 = \hat{R}_2 \hat{R}_1 \hat{R}_1^{-1} \hat{t}_2 \hat{R}_1 \hat{t}_1$$

$$\vec{n}_R \approx \cos \pi v_1 \, \vec{e}_z - \sin \pi v_1 \, \vec{e}_x$$

We furnished an effective orbit-distortion free radial B-field


$$\cos(\pi\nu_{s}) - \cos(\pi[\nu_{s} + \Delta\nu_{s}(\chi_{1}, \chi_{2})]) =$$

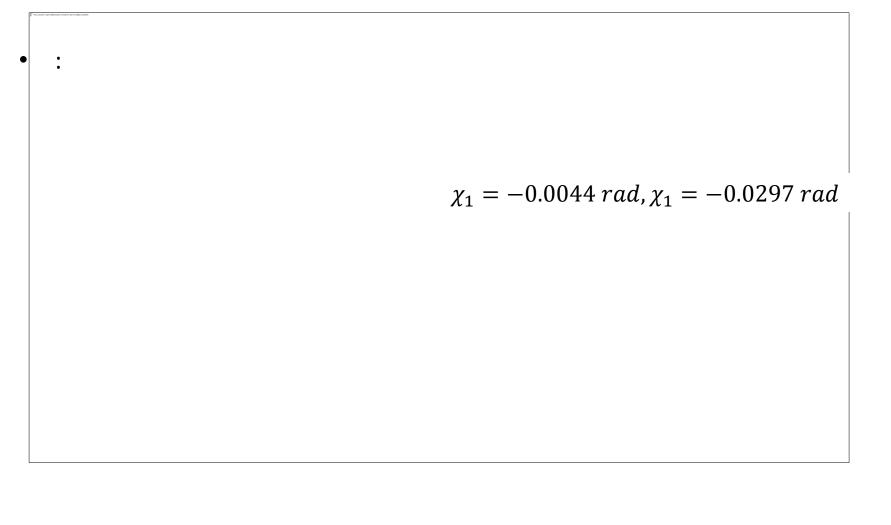
$$= (1 + \cos \pi\nu_{s})\sin^{2}\left(\frac{1}{2}\chi_{+}\right) - \frac{1}{2}a_{+}\sin(\pi\nu_{s})\sin\chi_{+}$$

$$-(1 - \cos \pi\nu_{s})\sin^{2}\left(\frac{1}{2}\chi_{-}\right) + \frac{1}{2}a_{-}\sin(\pi\nu_{s})\sin\chi_{-}$$

$$\chi_{\pm} = \frac{1}{2}(\chi_{1} \pm \chi_{2})$$

$$a_{\pm} = (\vec{c} \cdot \vec{n}_{R}) \pm (\vec{c} \cdot \vec{n}_{1})$$

• Saddle point prediction is OK, but 10σ residual discrpepancy (1 per cent of the observed spin tune jump)


 $v_{res} = \Delta v_s^{fit} - \Delta v_s^{data}$ Δv_s

The culprit: orbit excursions from misaligned cooler solenoids ?

:

۰

Count rate jumps from the orbit excursions

Orbit excursions vs. the initial orbit setting: linear optics as expected

Impact of the orbit excursions on the spin transfer in the ring: COSY Infinity simulations

٠

$$\delta_y \nu_s(\xi, \chi) = A_y \xi \chi(\chi_{arc} + \chi_0) + B_y \xi \chi^2$$

$$\cos \pi (\nu_s + \Delta \nu_s)$$

= $\cos \pi (\nu_s + \delta \nu) \cos \frac{1}{2} \chi_a - ((\vec{c} + \delta \vec{c}) \cdot \vec{e}_z) \sin \pi (\nu_s + \delta \nu) \sin \frac{1}{2} \chi_a$

$$\Delta_y v_{res} = \delta_s v + \frac{1}{2\pi} Y_z \xi \chi^2$$

$$c_{z} = \frac{1}{2}(A_{+} - A_{-})$$

$$c_{x} = -\frac{1}{2}(\tan \pi \nu_{s} A_{+} + \cot \pi \nu_{s} A_{-})$$

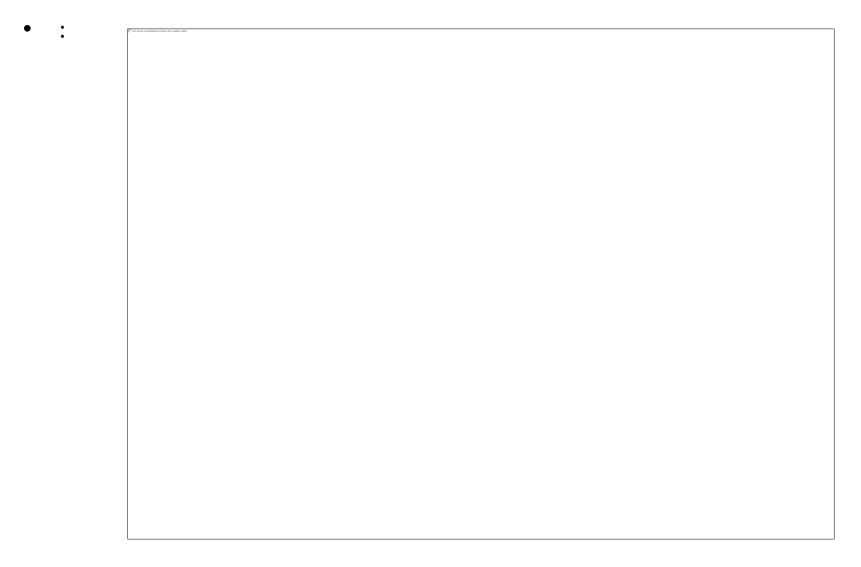
Spin tune mapping: superficial rescaling of the spin kick in Al's (don't blame power supplies!)

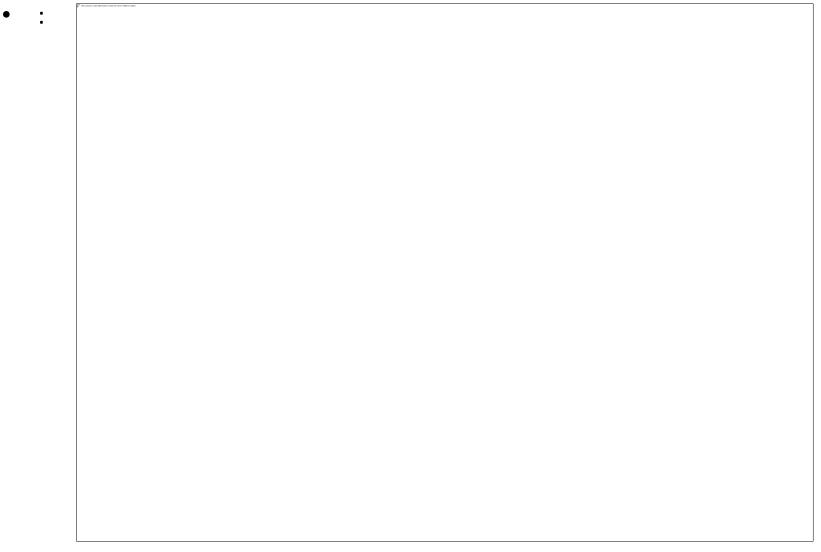
$$k_{-} - 1 = -0.0097 \pm 5 * 10^{-4}$$

$$k_{+} - 1 = -0.004677 \pm 3.5 * 10^{-5}$$

$$c_{+} = 0.0024703 \pm 5.1 * 10^{-7}$$

$$c_{-} = -0.0002263 \pm 5 * 10^{-7}$$

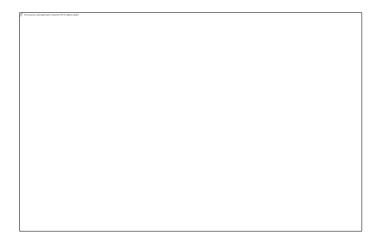

$$B_{+-} = -(16.6 \pm 1.7) * 10^{-5}$$


$$|d_D| < \frac{e}{m_D} \cdot \frac{G}{\beta} |\delta \vec{c}| \sim 10^{-20} e \cdot cm$$

Conclusions and Outlook

- A reinterpretation of the JEDI-2014 result: the AIs can compensate for the ring imperfection to a µrad accuracy
- Only the EDM+MDM signal is constrained
- The RF WF approach is only capable of a tentative upper bound on the EDM barring strong cancellations
- JEDI is looking forward to a more sofisticated EDM rotators to disentangle the pure EDM signal
- The spin tune mapping may find novel applications for the ring diagnostics and feedback systems to stabilize the ring

Thank you for the attention!



Compensate for the imperfection magnetic fields in a ring by fine tuning the combined AI

$$\tan\frac{1}{2}\chi_a\left[\cos\pi\nu_s\,\vec{k}+c_y\sin\pi\nu_s\,\vec{e}_y\times\vec{k}\right]=-\sin\pi\nu_s\cos\frac{1}{2}\chi_a\vec{c}_{\parallel}$$

• When the solenoids were switched on, the spin tune was shifted by Δv_s , as determined in the spin tune analysis:

Summary

- The record 10⁻¹⁰ precision converts a spin tune variations into unprecedented tool for diagnostics of the spin dynamics in the ring.
- A good theoretical understanding: a saddle point prediction has been fully confirmed
- A proof of principle: the residual spin tune mismatches are orders in magnitude smaller than the spin tune shifts itself
- JEDI looks forward to successful conduction of the precursor EDM experiment with RF Wien filter

Thank you for attention!

.

•

: