Lattice Calculation of Neutron and Proton EDMs

Sergey N. Syritsyn

Jefferson Lab,

Stony Brook University,

RIKEN / BNL Research Center

Symmetry Tests in Nuclei and Atoms Kavli Institute for Theoretical Physics, Santa Barbara, Sep 19-23, 2016

Outline

- Lattice basics
- igoplus nEDM induced by heta-term
- nEDM induced by quark chromo-EDM
- EDM in Background Electric Field

Neutron and Proton EDMs from quark-gluon CPv

$$\vec{d}_N = d_N \frac{\vec{S}}{S}$$

$$\mathcal{H} = -\vec{d}_N \cdot \vec{E}$$

Motivations to search for new CP-odd interactions

- Extensions of SM
- Required for baryogenesis
- Strong CP problem

Lattice QCD: connect quark/gluon-level effective operators to hadron/nuclei matrix elements and interactions

$$\mathcal{L}_{eff} = \sum_{n} \frac{c_n}{\Lambda^{d_n - 4}} \mathcal{O}_n^{(d_n)}$$

$$\begin{cases} \mathcal{L}^{(4)} &= \theta \frac{g^2}{32\pi^2} G \tilde{G} \\ \mathcal{L}^{(5)} &= \sum_{q} \left[d_q \, \bar{q} (F \cdot \sigma) \gamma_5 q + \tilde{d}_q \bar{q} (G \cdot \sigma) \gamma_5 q \right] \\ \dots \end{cases}$$

 $\begin{pmatrix} d_{n,p} \\ F_3^{n,p}(Q^2) \end{pmatrix}$

Hadron Structure in Lattice QCD

Lattice Field Theory ⇔ Numerical evaluation of the Path Integral

$$\langle q_x \bar{q}_y \ldots \rangle = \int \mathcal{D} \Big(Glue \Big) \int \mathcal{D} \Big(Quarks \Big) \ e^{-S_{Glue} - \bar{q} \Big(\not\!\!\!D + m \Big) q} \ \left[q_x \bar{q}_y \ldots \right]$$
 Grassmann integration
$$= \int \mathcal{D} \Big(Glue \Big) \ e^{-S_{Glue}} \ \mathrm{Det} \Big(\not\!\!\!D + m \Big) \ \left[\Big(\not\!\!\!D + m \Big)_{x,y}^{-1} \ldots \right]$$
 Hybrid Monte Carlo

Hadron Matrix Elements:

$$C_{\rm 3pt}^{\mathcal{O}}(T) = \langle N(T)\mathcal{O}(\tau)\bar{N}(0)\rangle = \sqrt[\bar{N}]{\sqrt{N}} \qquad \text{"connected"}$$

$$\langle N(T)\mathcal{O}(\tau)N(0)\rangle = \sum_{n,m} Z_m e^{-E_n(T-\tau)} \langle n|\mathcal{O}|m\rangle e^{-E_m\tau} Z_n^*$$

$$\xrightarrow{T\to\infty} Z_{00} e^{-M_N T} \left[\langle P'|\mathcal{O}|P\rangle + \mathcal{O}\left(\underbrace{e^{-\Delta E_{10}T}, e^{-\Delta E_{10}\tau}, e^{-\Delta E_{10}(T-\tau)}}_{\text{excited states}}\right) \right]$$

Ground state form factors

Each quark line = $(D + m)^{-1} \cdot \psi$

Excited states contribute to correlators and may (and do) bias results

CP-odd Interaction on a Lattice

• Linearizing in CP-odd interaction, e.g. with θ -term

$$e^{-S_{QCD}-i\theta Q} = e^{-S_{QCD}} \left[1 - i\theta Q + O(\theta^2) \right]$$
$$\langle \mathcal{O} \dots \rangle_{\mathcal{CP}} = \langle \mathcal{O} \dots \rangle_{CP-even} - i\theta \langle Q \cdot \mathcal{O} \dots \rangle_{CP-even} + O(\theta^2)$$

Simulating with CP-odd term(s)

$$\langle \mathcal{O} \dots \rangle_{\theta} \sim \int \mathcal{D}U \, e^{-S - \theta^I Q} \, (\mathcal{O} \dots)$$

continued to Imag. θ to avoid sign problem

[T.Izubuchi et al (2007); R.Horsley et al (2008); F.K.Guo et al (2015)]

- + better sampling of Q≠0
- linearity needs check
- need new ensemble

Reweighing with CP-odd term(s)

$$\bar{q} \left[D + m_q + i\epsilon (G \cdot \sigma) \gamma_5 \right] q$$

quark operator with cEDM [T.Bhattacharya et al(LANL)]

EDM from Spectrum vs. Form Factors

• Nucleon spectrum in the background electric field [S.Aoki et al '89; E.Shintani et al '06]

$$\begin{split} \langle N(t)\bar{N}(0)\rangle_{\theta,\vec{E}} \sim e^{-(E\pm\vec{d}_N\cdot\vec{E})t} \\ \frac{\langle N_{\uparrow}(t)\bar{N}_{\uparrow}(0)\rangle_{\theta,E_z}}{\langle N_{\downarrow}(t)\bar{N}_{\downarrow}(0)\rangle_{\theta,E_z}} \sim e^{2d_NE_zt} \approx 1 + 2d_NE_zt \end{split}$$
 Wick rotation: $\vec{E} \to i\vec{E}$

SU(3) g.f. link $U_z \to t_z$ $U_z e^{iE_z t} \sim e^{-E_z t}$

non-periodic with real(Minkowski) Ez

[E.Shintani et al, PRD75, 034507(2007)]

• P,T-odd Form Factor $d_N=F_3(0)/2m$

[E.Shintani et al '05, '15; F.Berruto et al '05; A.Shindler et al '15; C.Alexandrou et al'15]

$$\langle N|J^{\mu}|\bar{N}\rangle_{CP} = \bar{u}\Gamma^{\mu}_{CP-even}u + \bar{u}\Gamma^{\mu}_{CP-odd}u$$

$$F_{1}\gamma^{\mu} + F_{2}\frac{i\sigma^{\mu\nu}q_{\nu}}{2m} \quad \hat{F}_{3}\frac{\gamma_{5}\sigma^{\mu\nu}q_{\nu}}{2m}$$

Need either extrapolation $F_3(Q^2 \rightarrow 0)$, or smart tricks [C.Alexandrou's talk]

Nucleon spinors are parity-mixed

$$\langle N(t)\bar{N}(0)\rangle_{\mathcal{CP}} \sim \frac{-i\not p + me^{2i\alpha_N\gamma_5}}{2m_N}e^{-E_Nt}$$

CP-odd matrix elements require subtraction of $F_{1,2}$ contributions:

$$\langle Q \cdot N J^{\mu} \bar{N} \rangle \sim \mathcal{K}_3^{\mu} F_3 + \alpha (\mathcal{K}_1^{\mu} F_1 + \mathcal{K}_2^{\mu} F_2)$$

Calculation with Chirally-Symmetric Quarks

- 1/a = 1.73 GeV
- $V=(2.7 \text{ fm})^3$
- Mpi = 330, 400 MeV
- 750 configurations

- 1/a = 1.37 GeV
- $V=(4.6 \text{ fm})^3$
- Mpi = 170 MeV
- 39 configurations

Electric and Magnetic Form Factors

- $(4.6 \text{ fm})^3 x (9.2 \text{ fm}) \text{ box}$
- mπ=170 MeV

CP-odd Form Factors

- $(2.7 \text{ fm})^3 x (7.3 \text{ fm}) \text{ box}$
- mπ=330 MeV

$$F_3 = F_Q + F_\alpha$$
Lattice CP-mixing CP-odd f.f. correction

Q²-Dependence of F₃

- $(2.7 \text{ fm})^3 x (7.3 \text{ fm}) \text{ box}$
- mπ=330 MeV

$$S'_p = -11(21) \cdot 10^{-4} e \cdot \text{fm}^3$$

 $S'_n = 24(14) \cdot 10^{-4} e \cdot \text{fm}^3$

Schiff moments from linear fit

- $(4.6 \text{ fm})^3 x (9.2 \text{ fm}) \text{ box}$
- mπ=170 MeV

$$S'_p = -170(150) \cdot 10^{-4} e \cdot \text{fm}^3$$

 $S'_n = 87(94) \cdot 10^{-4} e \cdot \text{fm}^3$

$$\frac{1}{2m_N}F_3(Q^2) = d_N + S'Q^2 + O(Q^4)$$

EDM vs. Pion Mass

Substantial MC noise due to extensive nature of top.charge

Localized Sampling of Q=FF

$$\langle \tilde{F}F(x)\tilde{F}F(0)\rangle \sim e^{-m_{\eta'}|x|}$$

[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

Overcome noise from top.charge fluctuations:

sample FF locally

$$Q_{local}(\tau, l_Q) \sim \int_{\tau - l_Q/2}^{\tau + l_Q/2} dt \, dV \, \tilde{F} F$$

- $(2.7 \text{ fm})^3 x (7.3 \text{ fm}) \text{ box}$
- mπ=330 MeV

Quark Chromo-EDM

$$\mathcal{L}^{(5)} = \sum_{q} \tilde{d}_{q} \, \bar{q}(G \cdot \sigma) \gamma_{5} q \qquad \qquad \qquad \langle N(y) \, \bar{N}(0) \, \int d^{4}x (\tilde{G} \cdot \sigma) \rangle$$

$$\langle N(y) \, [\bar{q}\gamma^{\mu}q](z) \, \bar{N}(0) \, \int d^{4}x (\tilde{G} \cdot \sigma) \rangle$$

Quark-Gluon EDM: Insertions of dim-5 Operators

$$\langle N(y) \, \bar{N}(0) \, \int d^4 x (\tilde{G} \cdot \sigma) \rangle$$

$$\langle N(y) \, [\bar{q} \gamma^{\mu} q](z) \, \bar{N}(0) \, \int d^4 x (\tilde{G} \cdot \sigma) \rangle$$

Now: Only quark-connected insertions

Quark-Gluon EDM: Insertions of dim-5 Operators

$$\mathcal{L}^{(5)} = \sum_{q} \tilde{d}_{q} \, \bar{q}(G \cdot \sigma) \gamma_{5} q \qquad \qquad \qquad \langle N(y) \, \bar{N}(0) \, \int d^{4}x (\tilde{G} \cdot \sigma) \rangle$$

$$\langle N(y) \, [\bar{q} \gamma^{\mu} q](z) \, \bar{N}(0) \, \int d^{4}x (\tilde{G} \cdot \sigma) \rangle$$

Now: Only quark-connected insertions

Some day: Single- and double-disconnected diagrams (contribute to isosinglet cEDM, mix with θ -term)

Parity Mixing (Proton)

Proton & Neutron EDFF Form Factors

Proton & Neutron EDFF Form Factors

Background Electric Field

Accessing magnetic and electric moments at Q²=0 Imag.Minkowski/Real Euc. electric field on a lattice [W.Detmold et al (2009)] : calculation of hadron polarizabilities

Full flux through the = side of the periodic box

$$=q\Phi=2\pi$$

$$\mathcal{E}_{\min} = \frac{1}{|q_d|} \frac{2\pi}{L_x L_t}$$

$$U_{\mu} \to e^{iqA_{\mu}} U_{\mu}$$

$$A_z(z,t) = n \,\mathcal{E}_{\min} \cdot t$$

$$A_t(z, t = L_t - 1) = -n \mathcal{E}_{\min} \cdot L_t z$$

CP-odd Neutron Energy Shift

$$\langle N(t)\bar{N}(0) \mathcal{O}_{\overline{CP}}\rangle_{\mathcal{E}} \sim e^{-E_N t} [A - d_N \mathcal{E}_z \Sigma_z t]$$

$$f(t,\mathcal{E}) = \frac{\operatorname{ReTr}\left[\Sigma_z \cdot \langle N(t)\bar{N}(0) \mathcal{O}_{\overline{CP}}\rangle_{\mathcal{E}}\right]}{\operatorname{ReTr}\left[\langle N(t)\bar{N}(0)\rangle_{\mathcal{E}}\right]} \sim A + d_N \mathcal{E}t$$

- $(1.9 \text{ fm})^3 \times (3.8 \text{ fm})$
- mπ=400 MeV
- \mathcal{E}_{min} =0.0966 GeV²=490 MeV/fm

- Linearity in \tilde{d}_q/d_N , t, and \mathcal{E}
- No renormalization yet

Electric field on 16³x32 lattice

$$\mathcal{E} = \frac{6\pi}{L_x L_t} \approx 0.1 \text{ GeV}^2$$
$$\approx 500 \text{ M(e)V/fm}$$

Summary

- lacktriangle Calculations of heta-induced NEDM are very noisy close to the physical pion mass
- Additional techniques may be necessary local sampling of topology?
- Initial results for quark-connected cEDM-induced EDFF look promising
- Preliminary study with background field methods shows expected qualitative behavior
- Challenges in computing NEDM from cEDM subtraction of lower-dimension operators disconnected diagrams mixing with θ-term in the isoscalar channel

F3 Plateaus (16c32, 400 MeV)

2

4

 τ

-6

8

6

F3 Plateaus (32c64, 170 MeV)

