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Effective field theory: why?

Systematic expansion of observables in powers of ratios
of low-energy scales Q (momenta, mπ, . . . ∼ 200 MeV)
to scales of underlying physics Λ0 (mρ, MN , 4πFπ, . . . & 700 MeV?)

• no model assumptions – just low-energy degrees of freedom and
symmetries
• estimates of errors (and theory will tell you if it breaks down)
• consistency of effective operators and interactions
→ links between different low-energy phenomena
→ bridges between low-energy observables and underlying theory
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How?

Lagrangian/Hamiltonian built out of local interactions

• interactions with ranges ∼ 1/Λ0 not resolved at scales Q
→ replaced by contact interactions
• iterations (loop diagrams) generally infinite
• need to renormalise: cut off or subtract integrals at some scale Λ,

adjust coupling constants to keep observables independent of Λ
• in general need all possible terms in theory
• but only finite number needed to calculate observables up to

some order in Q , provided we have a consistent expansion
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Examples

Chiral perturbation theory for purely pionic and πN (A = 1) systems

• Goldstone bosons interact weakly at low energies
• organise by naive dimensional analysis

(simply counts powers of low-energy scales: momenta and mπ)
• governs expansion of both theory and observables calculated

from it [Weinberg, 1979] (“Weinberg power counting”)

Nuclear EFTs (A≥ 2): problem

• nucleons interact strongly at low-energies:
bound states exist (nuclei!)

→ need to treat some interactions nonperturbatively
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Two approaches to nuclear EFT

(a) find a nonperturbative power counting and follow strictly rules of
resulting perturbation theory

• treat leading-order interactions nonperturbatively
• subleading interactions as perturbations
• renormalise order-by-order in this counting

(with any cutoff or subtraction scale)
• example: “KSW counting” for pionless EFT or perturbative pions

[Kaplan, Savage and Wise, 1998]
→ counting governs expansion of both potential and observables
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(b) expand potential to some order in some counting, then solve
Schrödinger equation nonperturbatively

• matches with standard approaches to nuclear physics
• usually based on naive dimensional analysis for potential

[Weinberg, 1990]
• but resulting expansion of observables not clear

Often described as “inconsistent” since parameters not explicitly
renormalised order-by-order

• but in practice implicitly renormalised at a scale close to that of
underlying physics, Λ0 [Epelbaum and Gegelia, 2009]
• coupling constants up to some order fitted, remainder set to zero
→ errors in observables of the expected order in some counting
(if we know what that expansion is . . . )
• in fact implicit renormalisation procedure could be applied to any

counting scheme – differences only in observables
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Renormalisation group

General framework for analysing scale dependence of systems

Procedure

• identify all relevant low-energy scales Q
eg: p, mπ, 1/a, αEMMN , λNN = 16πF 2

π/(g2
A MN), M∆−MN , . . .

• cut off or subtract loops at arbitrary scale Λ between Q and Λ0

(assumes good separation of scales)
• “integrate out” degrees of freedom by lowering Λ
• demand that physics be independent of Λ (eg T matrix)
• express all dimensioned quantities in units of Λ
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Follow flow of rescaled effective potential as Λ→ 0

→ look for fixed points
• rescaled theories independent of Λ
• correspond to scale-free systems
• starting points for expansions in powers of low-energy scales

Examples in pionless EFT, S waves

• trivial V = 0: no scattering, T = 0
→ Born expansion in powers of energy (Weinberg counting)
• unitary: infinite scattering length, T ∝ 1/(ip)
→ effective-range expansion (KSW counting)
• many others, all with multiple fine-tunings

[Birse, Epelbaum and Gegelia, 2015]
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Pion exchange

• strength of OPE set by scale

λNN =
16πF 2

π

g2
A MN

' 290 MeV

built out of high-energy scales (4πFπ, MN) but ∼ 2mπ

→ high- or low-energy scale?

High-energy

• pion exchange perturbative (KSW counting)

Low-energy

• OPE part of fixed point: nonperturbative
→ modified (distorted-wave) effective-range expansion
• higher-order contact interactions can be enhanced by

short-distance behaviour of DWs→ new counting
• higher-order long-range interactions (TPE) not renormalised
→ still naive-dimensional analysis
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Power counting with iterated OPE

Central OPE (spin-singlet waves)

• 1/r singularity – not enough to alter power-law forms of wave
functions at small r
• 1S0: similar to expansion around unitary fixed point
→ KSW-like power counting

Tensor OPE (spin-triplet waves)

• 1/r3 singularity, resolved by waves above critical momentum
→ OPE not perturbative
• wave functions ψ(r) ∝ r−1/4 multiplied by sine of 1/

√
λNNr

→ leading contact interaction of order Q−1/2

• 3S1− 3D1, 3P0: pc . 2mπ → new counting needed
• L≥ 3: pc & 2 GeV→ OPE perturbative

Three-body systems

• forms of short-distance wave functions unknown (work needed!)
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3P0 Lepage-style plot: “deconstructed” Nijmegen PWA amplitudes
ln(VS) against ln(Tlab), for regulator R = 0.1 fm

Removed:
O(Q−1) OPE
O(Q−1/2) +constant
O(Q1) iterated
O(Q3/2) +linear
O(Q2) +LO TPE
O(Q3) +NLO TPE
not shown:
O(Q7/2) +quadratic

counting as in
nucl-th/0507077
(NDA only one
contact term)
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Modified/DW effective range expansion

Schematic form

k cot[δ(k)−δL(k)] = |ψI
L(k ,R)|2 F(k2)−Re[GL(R,R;k)]

• F(k2) effective-range function (meromorphic in k2)
• δL(k) phase shift for long-range VL

• ψI
L(k ,R) irregular DW solution for VL (dressed vertex)

• GL(R,R;k) DW Green’s function (loop integral dressed with VL)
• waves evaluated at nonzero R if VL singular

(powers of R, k , numerical factors omitted)

Contribution of F(k2) to observables enhanced by DWs at small r
Expansion of F(k2) (short-range physics) not tied to expansion of GL

etc (long-range forces)

12 / 12


