

Renormalising nuclear forces yet again

Mike Birse
The University of Manchester

Thanks to E. Epelbaum and J. Gegelia for exhaustive/-ing discussions

Oldish review and further references:

M. C. Birse, Phil Trans Roy Soc A **369** (2011) 2662 [arXiv:1012.4914]

Effective field theory: why?

Systematic expansion of observables in powers of ratios of low-energy scales Q (momenta, m_{π} , ... \sim 200 MeV) to scales of underlying physics Λ_0 ($m_{\rm p}$, $M_{\rm N}$, $4\pi F_{\pi}$, ... \gtrsim 700 MeV?)

- no model assumptions just low-energy degrees of freedom and symmetries
- estimates of errors (and theory will tell you if it breaks down)
- consistency of effective operators and interactions
- → links between different low-energy phenomena
- ightarrow bridges between low-energy observables and underlying theory

How?

Lagrangian/Hamiltonian built out of local interactions

- interactions with ranges ~ 1/Λ₀ not resolved at scales Q
 → replaced by contact interactions
- iterations (loop diagrams) generally infinite
- need to renormalise: cut off or subtract integrals at some scale Λ, adjust coupling constants to keep observables independent of Λ
- in general need all possible terms in theory
- but only finite number needed to calculate observables up to some order in Q, provided we have a consistent expansion

Examples

Chiral perturbation theory for purely pionic and πN (A = 1) systems

- Goldstone bosons interact weakly at low energies
- organise by naive dimensional analysis (simply counts powers of low-energy scales: momenta and m_π)
- governs expansion of both theory and observables calculated from it [Weinberg, 1979] ("Weinberg power counting")

Nuclear EFTs ($A \ge 2$): problem

- nucleons interact strongly at low-energies: bound states exist (nuclei!)
- → need to treat some interactions nonperturbatively

Two approaches to nuclear EFT

- (a) find a nonperturbative power counting and follow strictly rules of resulting perturbation theory
 - treat leading-order interactions nonperturbatively
 - subleading interactions as perturbations
 - renormalise order-by-order in this counting (with any cutoff or subtraction scale)
 - example: "KSW counting" for pionless EFT or perturbative pions [Kaplan, Savage and Wise, 1998]
 - ightarrow counting governs expansion of both potential and observables

(b) expand potential to some order in some counting, then solve Schrödinger equation nonperturbatively

- matches with standard approaches to nuclear physics
- usually based on naive dimensional analysis for potential [Weinberg, 1990]
- · but resulting expansion of observables not clear

- (b) expand potential to some order in some counting, then solve Schrödinger equation nonperturbatively
 - matches with standard approaches to nuclear physics
 - usually based on naive dimensional analysis for potential [Weinberg, 1990]
 - · but resulting expansion of observables not clear

Often described as "inconsistent" since parameters not explicitly renormalised order-by-order

- but in practice implicitly renormalised at a scale close to that of underlying physics, Λ₀ [Epelbaum and Gegelia, 2009]
- coupling constants up to some order fitted, remainder set to zero
 → errors in observables of the expected order in some counting
 (if we know what that expansion is . . .)
- in fact implicit renormalisation procedure could be applied to any counting scheme – differences only in observables

Renormalisation group

General framework for analysing scale dependence of systems

Procedure

- identify all relevant low-energy scales Q eg: ρ , m_{π} , 1/a, $\alpha_{\rm EM} M_{\rm N}$, $\lambda_{\rm NN} = 16\pi F_{\pi}^2/(g_{\rm A}^2 M_{\rm N})$, $M_{\Delta} M_{\rm N}$, ...
- cut off or subtract loops at arbitrary scale Λ between Q and Λ₀
 (assumes good separation of scales)
- "integrate out" degrees of freedom by lowering Λ
- demand that physics be independent of Λ (eg T matrix)
- express all dimensioned quantities in units of Λ

Follow flow of rescaled effective potential as $\Lambda \to 0$

- → look for fixed points
 - rescaled theories independent of Λ
 - correspond to scale-free systems
 - starting points for expansions in powers of low-energy scales

Examples in pionless EFT, S waves

- trivial V = 0: no scattering, T = 0
 - → Born expansion in powers of energy (Weinberg counting)
- unitary: infinite scattering length, $T \propto 1/(ip)$
 - → effective-range expansion (KSW counting)
- many others, all with multiple fine-tunings [Birse, Epelbaum and Gegelia, 2015]

Pion exchange

• strength of OPE set by scale

$$\lambda_{\scriptscriptstyle NN} = rac{16\pi F_\pi^2}{g_{\scriptscriptstyle A}^2 M_{\scriptscriptstyle N}} \simeq$$
 290 MeV

built out of high-energy scales $(4\pi F_{\pi}, M_{N})$ but $\sim 2m_{\pi}$

ightarrow high- or low-energy scale?

High-energy

pion exchange perturbative (KSW counting)

Low-energy

- OPE part of fixed point: nonperturbative
- → modified (distorted-wave) effective-range expansion
 - higher-order contact interactions can be enhanced by short-distance behaviour of DWs → new counting
 - higher-order long-range interactions (TPE) not renormalised
 → still naive-dimensional analysis

Power counting with iterated OPE

Central OPE (spin-singlet waves)

- 1/r singularity not enough to alter power-law forms of wave functions at small r
- ¹S₀: similar to expansion around unitary fixed point
- → KSW-like power counting

Tensor OPE (spin-triplet waves)

- 1/r³ singularity, resolved by waves above critical momentum
 → OPE not perturbative
- wave functions $\psi(r) \propto r^{-1/4}$ multiplied by sine of $1/\sqrt{\lambda_{NN}r}$
- \rightarrow leading contact interaction of order $Q^{-1/2}$
 - ${}^3S_1 {}^3D_1$, 3P_0 : $p_c \lesssim 2m_\pi \to \text{new counting needed}$
 - $L \ge 3$: $p_c \ge 2 \text{ GeV} \rightarrow \text{OPE perturbative}$

Three-body systems

• forms of short-distance wave functions unknown (work needed!)

 3P_0 Lepage-style plot: "deconstructed" Nijmegen PWA amplitudes $\ln(V_S)$ against $\ln(T_{\rm lab})$, for regulator R=0.1 fm

Removed: $O(Q^{-1})$ OPE $O(Q^{-1/2})$ +constant $O(Q^1)$ iterated $O(Q^{3/2})$ +linear $O(Q^2)$ +LO TPE $O(Q^3)$ +NLO TPE not shown: $O(Q^{7/2})$ +quadratic counting as in nucl-th/0507077

nucl-th/050707 (NDA only one contact term)

Modified/DW effective range expansion

Schematic form

$$k \cot[\delta(k) - \delta_L(k)] = |\psi_L^I(k, R)|^2 F(k^2) - \operatorname{Re}[G_L(R, R; k)]$$

- $F(k^2)$ effective-range function (meromorphic in k^2)
- $\delta_L(k)$ phase shift for long-range V_L
- $\psi_L^I(k,R)$ irregular DW solution for V_L (dressed vertex)
- $G_L(R,R;k)$ DW Green's function (loop integral dressed with V_L)
- waves evaluated at nonzero R if V_L singular (powers of R, k, numerical factors omitted)

Contribution of $F(k^2)$ to observables enhanced by DWs at small r Expansion of $F(k^2)$ (short-range physics) not tied to expansion of G_L etc (long-range forces)