Gluonic Spin Structure of Hadrons and Nuclei

William Detmold, MIT

- The past 60+ years have provided detailed view of the quark structure of nucleons
- Gluonic structure (beyond gluon density) relatively unexplored

- Electron-Ion Collider

Cover image from EIC whitepaper arXiv:: I 2 I 2.1701

- High priority in 2015 long range plan
- Over-arching goal:"Understanding the glue that binds us all"'
- What can LQCD do to help?

- Previous 60+ years have provided detailed view of the quark structure of nucleons
- Gluonic structure (beyond gluon density) relatively unexplored

- Electron-Ion Collider

Cover image from EIC whitepaper arXiv:: 2 I 2.1701

- High priority in 2015 long range plan
- Over-arching goal:"Understanding the glue that binds us all"'
- What can LQCD do to help?

- Unpolarised gluon PDF $g(x)$
- extracted from scaling violations in DIS,
- dominant at small Bjorken x
- sharp rise due to QCD evolution

- Important input for LHC

- Small \times behaviour uncertain
- Large gluon density makes recombination important [Balitsky-Kovchegov, JIMWLK]

- "Color glass condensate'??
- Nuclear environment to enhance saturation

- Key motivation for EIC
- Gluon helicity much less well constrained
- Major focus of RHIC-spin program
- Asymmetries in polarised

$$
p p \rightarrow \pi X, D X, B X, j e t s
$$

- Orbital angular momentum of gluons even less understood

- GluonTMDs

- Further major motivation for EIC

- A natural question

What does a proton look like?

Boosted

Bag Model: Gluon field distribution is wider than the fast moving quarks. Gluon radius > Charge Radius

Constituent Quark Model: Gluons and sea quarks hide inside massive quarks. Gluon radius ~ Charge Radius

Lattice Gauge theory (with slow moving quarks), gluons more concentrated inside the quarks:
Gluon radius < Charge Radius

Gluonic Structure

- A natural question
- However not so simple....
- Experimentally challenging
- DIS probes are EW so sensitivity to gluons is poor
- Other processes less clean: heavy flavour production, ...
- The proton is a quantum system
- Quarks and gluons mix via evolution
- Nonsinglet quantities uniquely quarky
- Double helicity flip uniquely gluonic (this talk)
- EIC is a precision gluon structure machine
- Timescale is >2025
- What can lattice QCD do?
- Gluonic observables are challenging signal to noise
- Sparse so far
- Gluon momentum fraction [Meyer\&Negele; Gockeler et al.]
- Gluon contribution to helicity [Liu et al, Alexandru et al.]

$$
\frac{1}{2}=J=\frac{1}{2} \Delta \Sigma_{q}+L_{q}+J_{g}
$$

K.F. Liu, C. Lorce, arXiv:1508.00911

Gluonic transversity
William Detmold, Phiala Shanahan
PRD94 (2016), 014507, +++

NUCLEAR GLUONOMETRY ~

R.L. JAFFE and Aneesh MANOHAR

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 24 March 1989

We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized largets (such as nuclei) with spin $\geqslant 1$. The structure function measures a gluon distribution in the target and vanishes for a boun state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target

1. Introduction

The physical photon has four structure functions $[1,2]$. Three are familiar: $F_{1}^{\gamma}, F_{\mathrm{L}}^{\gamma}=F_{2}^{\gamma}-2 x F_{1}^{\gamma}$ and g_{1}^{γ}. The fourth, called F_{3}^{γ} by Ahmed and Ross [2] corresponds to the imaginary part of the double he licity flip Compton amplitude, $A_{+-,-+}$in the notation of ref. [3]. The other three are proportional to helicity conserving Compton amplitudes, $\left({ }_{g!}^{F}\right) \propto$ $\left(A_{++,++} \pm A_{-+,-+}\right), F_{\mathrm{L}} \propto A_{0+, 0+.}$. In parton models both F_{L} and F_{3} would be expected to vanish in the Bjorken limit since massless quarks do not couple to longitudinal photons, nor fip the photon helicity by two uns. In QCD $[1,2,4]$ hich ${ }^{3}$ get . fro the box graph $\{1,2,4\}$ wich perist in the sca-
 witt [5] pes paron model assumptions.
F^{γ} tten [S] pointed out that these contributions to F_{L} are associated whe operator (OPE) f ficient function have ben calculed from the fraph Recenty, one of us [G] idenifid he box photon Repators which [6] it is evident that there must be a tor rators in QCD with oefficient $Q_{5}{ }^{2}$) QCD

* This work is supported in part by funds provided by the US This work is supported in part by funds provided by the US
Department of Energy (DOE) under contract \#DE-AC02 76ER03069.

WANTIEID: well defined purely gluonic observables

- Gluonic transversity

NUCLEAR GLUONOMETRY *
R.L. JAFFE and Aneesh MANOHAR

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 24 March 1989

We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized targets (such as nuclei) with spin $\geqslant 1$. The structure function measures a gluon distribution in the target and vanishes for a bound state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target.

1. Introduction

The physical photon has four structure functions $[1,2]$. Three are familiar: $F_{1}^{\gamma}, F_{\mathrm{L}}^{\gamma}=F_{2}^{\gamma}-2 x F_{1}^{\gamma}$ and g_{1}^{γ}. The fourth, called F_{3}^{γ} by Ahmed and Ross [2] corresponds to the imaginary part of the double helicity flip Compton amplitude, $A_{+-,-+}$in the notation of ref. [3]. The other three are proportional to helicity conserving Compton amplitudes, $\left({ }_{g l}^{F}\right) \propto$ $\left(A_{++,++} \pm A_{-+,-+}\right), F_{\mathrm{L}} \propto A_{0+, 0+\text {. In parton model }}$ both F_{L} and F_{3} would be expected to vanish in the Bjorken limit since massless quarks do nol couple longitudinal photons, nor hp the phon helicity by from the bo QCD $[1,2,4]$ Nich ${ }^{3}$ Cen fro the box graph $\{1,2,4\}$ wich perist in the scal ing limit because the shori-distance behavior witaph volates paron model assumptions.
${ }^{\gamma}$ Witen $[S]$ pointed out that these contributions to $F_{\text {L }}$ are associated wh (OPE) of two ectrometic puren Thir ficient functions have ben calculted from box raph Recently one of us [6] identified the tower photon operators which contibute to F^{γ} By , it is evident that there must be a tower of gluon op rators in QCD with coefficient functions of order (Q^{2}) QCD ,

* This work is supported in part by funds provided by the US This work is supporied in part by funds provided by the 76ER03069.
a double helicity flip Compton amplitude on a had a doub resentations of the Lorentz group than the other operators which appear in the OPE and therefore do not mix under renormalization with quark operators and the other gluon operators. These operators have van shing matrix elements in any state with spin less than one and appear to have been overlooked in all QCD analyses in the past We name the hadronic structure function associated with this tower of operators $4(x$ Q^{2}) (to avoid confusion with the parity-violating structure function $F_{3}\left(x, Q^{2}\right)$ of neutrino scattering) $\Delta\left(x, Q^{2}\right)$ can be measured by scattering an unpolarized electron beam from a target aligned ((that is, polarized either along or against) perpendicular to the beam. [Actually any direction not exactly parallel to the beam will do, but perpendicular is best.] The only targets with $J \geqslant 1$ are nuclei. $\Delta\left(x, Q^{2}\right)$ vanishes identically for a nucleus made up of protons, neutrons and pions regardless of Fermi motion or binding corrections in the approximation in which the nucleons or pions scatter independently. It is therefore an unambiguous probe of the gluonic components of the nuclear wavefunction which cannot be identified with individual nucleons or pions.
If the scattering cross section is measured as a function of the usual variables, $x=Q^{2} / 2 \nu, y=\nu / M E$ and the azimuthal angle ϕ between the plane formed by the beam and the alignment axis and the plane formed by the beam and the scattered electron (fig 1), then in the scaling limit ($Q^{2}, \nu \rightarrow \infty, x$ fixed),
- WANTED: well defined purely gluonic observables

- Gluonic transversity

Exotic glue: gluons not associated with individual nucleons in nucleus

$$
\begin{gathered}
\langle p| \mathcal{O}|p\rangle=0 \\
\langle N, Z| \mathcal{O}|N, Z\rangle \neq 0
\end{gathered}
$$

NUCLEAR GLUONOMETRY ${ }^{\star}$
R.L. JAFFE and Aneesh MANOHAR

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology. Cambridge, MA 02139, USA

Received 24 March 1989

We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized targets (such as nuclei) with spin $\geqslant 1$. The structure function measures a gluon distribution in the target and vanishes for a bound state of protons and neutrons, thercby providing a clar signature for exotic gluonic components in the target

1. Introduction

The physical photon has four structure functions $[1,2]$. Three are familiar: $F_{1}^{\gamma}, F_{\mathrm{L}}^{\gamma}=F_{2}^{\gamma}-2 x F_{1}^{\gamma}$ and g_{1}^{γ}. The fourth, called F_{3}^{γ} by Ahmed and Ross [2] corresponds to the imaginary part of the double helicity flip Compton amplitude, $A_{+-,-+}$in the notation of ref. [3]. The other three are proportional to helicity conserving Compton amplitudes, $(g t) \propto$ $\left(A_{++,++} \pm A_{-+,-+}\right), F_{\mathrm{L}} \propto A_{0+, 0+\text {. }}$ In parton model both F_{L} and F_{3} would be expected to vanish in the Bjorken himit since massless quarks do nol couple longitudinal photons, nor fip the photon helicity by wo unis. In QCD b $1 \mathrm{~F}_{\mathrm{L}}$ and ${ }^{3}$ ger con folit bexaph $\{1,2,4\}$ wh ing limit because the shori-distance behavior witten [5] point part assumptions.
F^{γ} ten [Ss ciated with towers of photon opers to ${ }_{L} L$ are associated whers op phator (OPE) of two eletromagnetic curents. Thir ficient functions have been calculated from the box braph Recently, on of [6] identifid the tow photon operators which contibute to F^{γ} By andof it is evident that there must be a tower of glon op rators in QCD with coefficient functions of order (Q^{2}) QCD ,

* This work is supported in part by funds provided by the US Department of Energy (DOE) under contract \#DE-AC02 76ER03069.
a double helicity flip Compton amplitude on a had ronic target. These operators belong to different rep resentations of the Lorentz group than the other op erators which appear in the OPE and therefore do not mix under renormalization with quark operators an the other gluon operators. These operators have va shing matrix elements in any state with spin less than one and appear to have been overlooked in all QCD analyses in the past. We name the hadronic structur function associated with this tower of operators $\Delta(x$, Q^{2}) (to avoid confusion with the parity-violating structure function $F_{3}\left(x, Q^{2}\right)$ of neutrino scattering $)$ $\Delta\left(x, Q^{2}\right)$ can be measured by scattering an unpolarized electron beam from a target aligned ((that is, polarized either along or against) perpendicular to the beam. [Actually any direction not exactly parallel to targets with $J \geqslant 1$ are nuclei. $\Delta\left(x, Q^{2}\right)$ vanishes identically for a nucleus made up of protons, neutrons and pions regardless of Fermi motion or binding corrections in the approximation in which the nucleons or pions scatter independently. It is therefore an unambiguous probe of the gluonic components of the nuclear wavefunction which cannot be identified with individual nucleons or pions.
If the scattering cross section is measured as a function of the usual variables, $x=Q^{2} / 2 \nu, y=\nu / M E$ and the azimuthal angle ϕ between the plane formed by the beam and the alignment axis and the plane ormed by the beam and the scattered electron (fig. 1), then in the scaling limit ($Q^{2}, \nu \rightarrow \infty, x$ fixed),
- WANTEDD: well defined purely gluonic observables
- Gluonic transversity
- Exotic glue: gluons not associated with individual nucleons in nucleus

$$
\begin{gathered}
\langle p| \mathcal{O}|p\rangle=0 \\
\langle N, Z| \mathcal{O}|N, Z\rangle \neq 0
\end{gathered}
$$

NUCLEAR GLUONOMETRY ~
R.L. JAFFE and Aneesh MANOHAR

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 24 March 1989 We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized
targets (such as nuclei) with spin $\geqslant 1$. The structure function measures a gluon distribution in the target and vanishes for a bound
state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target. state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target.

Gluonic transversity

- WANTEDD: well defined purely gluonic observables
- Gluonic transversity
- Exotic glue: gluons not associated with individual nucleons in nucleus

$$
\begin{gathered}
\langle p| \mathcal{O}|p\rangle=0 \\
\langle N, Z| \mathcal{O}|N, Z\rangle \neq 0
\end{gathered}
$$

NUCLEAR GLUONOMETRY ท
R.L. JAFFE and Aneesh MANOHAR

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology Cambridge, MA 02139, USA

Received 24 March 1989

We identify a new leading twist structure function in QCD which can be measured in deep elastic scattering from polarized targets (such as nuclei) with spin $\geqslant 1$. The structure function measures a gluon distribution in the target and vanishes for a bound

- Targets with $\mathrm{J} \geq \mathrm{I}$ have an additional leading twist gluon parton distribution $\Delta\left(\mathrm{x}, \mathrm{Q}^{2}\right)$: double helicity flip [affe \& Manohar 1989]
- Unambiguously gluonic: no analogous quark PDF at twist-2
- Vanishes in nucleon: nonzero value in nucleus probes nuclear effects directly
- Experimentally measurable
- NH_{3} : JLab Lol 2015 [PI:James Maxwell]
- Polarised nuclei at EIC under serious consideration [R. Milner]
- Moments calculable in LQCD

Deep Inelastic Scattering

- Deep inelastic scattering on J=| target [Hoodbhoy, Jaffe, Manohar 1989]

$$
\begin{aligned}
& W_{\mu \nu}\left(p, q, E^{\prime}, E\right)=\frac{1}{4 \pi} \int d^{4} x e^{i q \cdot x}\left\langle p^{\prime}, E^{\prime}\right|\left[j_{\mu}(x), j_{\nu}(0)\right]|p, E\rangle \\
& W_{\mu \nu}^{\lambda_{f} \lambda_{i}}=-F_{1} \hat{g}_{\mu \nu}+\frac{F_{2}}{M \nu} \hat{p}_{\mu} \hat{p}_{\nu}-b_{1} r_{\mu \nu} \\
& +\frac{1}{6} b_{2}\left(s_{\mu \nu}+t_{\mu \nu}+u_{\mu \nu}\right)+\frac{1}{2} b_{3}\left(s_{\mu \nu}-u_{\mu \nu}\right)+\frac{1}{2} b_{4}\left(s_{\mu \nu}-t_{\mu \nu}\right) \\
& +\frac{i g_{1}}{\nu} \epsilon_{\mu \nu \lambda \sigma} q^{\lambda} s^{\sigma}+\frac{i g_{2}}{M \nu^{2}} \epsilon_{\mu \nu \lambda \sigma} q^{\lambda}\left(p \cdot q s^{\sigma}-s \cdot q p^{\sigma}\right)+W_{\mu \nu}^{\Delta=2}
\end{aligned}
$$

Where $\{s, t, u\}_{\mu \nu}=\{s, t, u\}_{\mu \nu}\left(E, E^{\prime}, p, q\right)$

- Contains double helicity flip [Jaffe, Manohar 1989]

- Double helicity flip structure function

$$
\begin{aligned}
W_{\mu \nu}^{\Delta=2}=\frac{1}{2}\{ & {\left[\left(E_{\mu}^{\prime *}-\frac{q \cdot E^{\prime *}}{\kappa \nu}\left(p_{\mu}-\frac{M^{2}}{\nu} q_{\mu}\right)\right)\left(E_{\nu}-\frac{q \cdot E}{\kappa \nu}\left(p_{\nu}-\frac{M^{2}}{\nu} q_{\nu}\right)\right)+(\mu \leftrightarrow \nu)\right] } \\
& \left.-\left[g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}+\frac{q^{2}}{\kappa \nu^{2}}\left(p_{\mu}-\frac{\nu}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{\nu}{q^{2}} q_{\nu}\right)\right]\left[E^{\prime *} \cdot E+\frac{M^{2}}{\kappa \nu^{2}} q \cdot E^{\prime *} q \cdot E\right]\right\} \Delta\left(x, Q^{2}\right)
\end{aligned}
$$

- Express in helicity amplitude basis

$$
W_{\mu \nu}\left(p, q, E, E^{\prime}\right)=E^{\prime * \alpha} E^{\beta} W_{\mu \nu, \alpha \beta}(p, q)
$$

$$
W_{\mu \nu, \alpha \beta}(p, q)=\sum_{h H, h^{\prime} H^{\prime}} P\left(h H, h^{\prime} H^{\prime}\right)_{\mu \nu, \alpha \beta} A_{h H, h^{\prime} H^{\prime}}(p, q) .
$$

- Changes both photon and target helicity by 2 units

$$
\Delta\left(x, Q^{2}\right)=A_{\| \#, \# \#}
$$

- Measurable in unpolarised electron DIS on transversely polarised target as azimuthal variation

$$
\begin{aligned}
& \lim _{Q^{2} \rightarrow \infty} \frac{d \sigma}{d x d y d \phi}=\frac{e^{4} M E}{4 \pi^{2} Q^{4}}\left[x y^{2} F_{1}\left(x, Q^{2}\right)+(1-y) F_{2}\left(x, Q^{2}\right)\right. \\
&\left.\quad-\frac{x(1-y)}{2} \Delta\left(x, Q^{2}\right) \cos 2 \phi\right]
\end{aligned}
$$

- Parton model interpretation

$$
\Delta\left(x, Q^{2}\right)=-\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \operatorname{Tr} \mathcal{Q}^{2} x^{2} \int_{x}^{1} \frac{d y}{y^{3}}\left[g_{\hat{x}}\left(y, Q^{2}\right)-g_{\hat{y}}\left(x, Q^{2}\right)\right]
$$

where $g_{\hat{x}, \hat{y}}\left(x, \mu^{2}\right)$ is probability of finding a gluon with momentum fraction x linearly polarised in x, y direction

- Moments

$$
\int_{0}^{1} d x x^{n-1} \Delta\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{3 \pi(n+2)} A_{n}\left(Q^{2}\right) \quad n=2,4, \ldots
$$

- Determined by matrix elements of local gluonic operators

$$
\begin{aligned}
&\left\langle p, E^{\prime}\right| \mathcal{S}\left[G_{\mu \mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{3}} \ldots \stackrel{\leftrightarrow}{D}_{\mu_{n}} G_{\nu \mu_{2}}\right]|p, E\rangle \\
&=(-2 i)^{n-2} \mathcal{S}\left[\left\{\left(p_{\mu} E_{\mu_{1}}^{\prime *}-p_{\mu_{1}} E_{\mu}^{\prime *}\right)\left(p_{\nu} E_{\mu_{2}}^{\prime *}-p_{\mu_{2}} E_{\nu}^{\prime *}\right)\right.\right. \\
&\left.+(\mu \leftrightarrow \nu)\} p_{\mu_{3}} \ldots p_{\mu_{n}}\right] A_{n}\left(Q^{2}\right)
\end{aligned}
$$

- Symmetrised and trace subtracted in $\mu_{\mid} \ldots \mu_{n}$
- Local operators suitable for calculation in lattice QCD
- Lattice symmetries significantly reduced from O(4) by discretisation and boundary conditions
- $H(4)$: finite group of rotations by $\pi / 2$ and reflections

$$
H(4)=\left\{(a, \pi) \mid a \in \mathbb{Z}_{2}^{4}, \pi \in S_{4}\right\}
$$

- 20 irreducible representations

$$
4 \cdot \mathbf{1} \oplus 2 \cdot \mathbf{2} \oplus 4 \cdot \mathbf{3} \oplus 4 \cdot \mathbf{4} \oplus 4 \cdot \mathbf{6} \oplus 2 \cdot \mathbf{8}
$$

- Continuum operator $\mathcal{O}_{\mu \nu}=\bar{q} \gamma_{\{\mu} D_{\nu\}} q$ belongs to

$$
\left(\frac{1}{2}, \frac{1}{2}\right) \otimes\left(\frac{1}{2}, \frac{1}{2}\right)=(0,0) \oplus[(1,0) \oplus(0,1)] \oplus(1,1)
$$

- Hypercubic decomposition

$$
\mathbf{4}_{1} \otimes \mathbf{4}_{1}=\mathbf{1}_{1} \oplus \mathbf{3}_{1} \oplus \mathbf{6}_{1} \oplus \mathbf{6}_{3}
$$

- Lattice operators (symmetric traceless):

$$
\mathcal{O}_{14}+\mathcal{O}_{41}, \quad \mathcal{O}_{44}-\frac{1}{3}\left(\mathcal{O}_{11}+\mathcal{O}_{22}+\mathcal{O}_{33}\right)
$$

- Have same continuum limit (63 requires $\mathbf{p} \neq 0$)
- No operators of lower dimension
- Continuum operator $\mathcal{O}_{\{\mu \nu \rho\}}=\bar{q} \gamma_{\{\mu} D_{\nu} D_{\rho\}} q$ lives in $\left(\frac{1}{2}, \frac{1}{2}\right) \otimes\left(\frac{1}{2}, \frac{1}{2}\right) \otimes\left(\frac{1}{2}, \frac{1}{2}\right)=4 \cdot\left(\frac{1}{2}, \frac{1}{2}\right) \oplus 2 \cdot\left(\frac{3}{2}, \frac{1}{2}\right) \oplus 2 \cdot\left(\frac{1}{2}, \frac{3}{2}\right) \oplus\left(\frac{3}{2}, \frac{3}{2}\right)$
- Hypercubic decomposition

$$
\mathbf{4}_{1} \otimes \mathbf{4}_{1} \otimes \mathbf{4}_{1}=4 \cdot \mathbf{4}_{1} \oplus \mathbf{4}_{2} \oplus \mathbf{4}_{4} \oplus 3 \cdot \mathbf{8}_{1} \oplus 2 \cdot \mathbf{8}_{2}
$$

- Lattice operators:

$$
\mathcal{O}_{111}, \quad \mathcal{O}_{\{123\}}, \quad \mathcal{O}_{\{441\}}-\frac{1}{2}\left(\mathcal{O}_{\{221\}}+\mathcal{O}_{\{331\}}\right)
$$

- Same continuum limit but \mathcal{O}_{111} mixes with $\bar{q} \gamma_{1} q \in \mathbf{4}_{\mathbf{1}}$ and the coefficient absorbs the missing dimensions
- Always the case for all $n>4$ quark operators
- Focus on n=2 operator $\mathcal{O}_{\mu \nu \mu_{1} \mu_{2}}=S\left[G_{\mu \mu_{1}} G_{\nu \mu_{2}}\right]$
- Construct in the clean $\mathrm{H}(4)$ irreps

$$
4 \tau_{1}^{(1)} \oplus 3 \tau_{1}^{(2)} \oplus 7 \tau_{1}^{(3)} \oplus 10 \tau_{1}^{(6)} \oplus \tau_{2}^{(1)} \oplus 2 \tau_{2}^{(2)} \oplus 3 \tau_{2}^{(3)} \oplus 6 \tau_{2}^{(6)} \oplus 3 \tau_{3}^{(3)} \oplus 10 \tau_{3}^{(6)} \oplus \tau_{4}^{(1)} \oplus 3 \tau_{4}^{(3)} \oplus 6 \tau_{4}^{(6)}
$$

- Build from clover field strength tensor

$$
\begin{aligned}
& G_{\mu \nu}(x)=\frac{1}{4} \frac{1}{2}\left(P_{\mu \nu}(x)-P_{\mu \nu}^{\dagger}(x)\right) \\
P_{\mu \nu}(x)= & U_{\mu}(x) U_{\nu}(x+\mu) U_{\mu}^{\dagger}(x+\nu) U_{\nu}^{\dagger}(x) \\
& +U_{\nu}(x) U_{\mu}^{\dagger}(x-\mu+\nu) U_{\nu}^{\dagger}(x-\mu) U_{\mu}(x-\mu) \\
+ & U_{\mu}^{\dagger}(x-\mu) U_{\nu}^{\dagger}(x-\mu-\nu) U_{\mu}(x-\mu-\nu) U_{\nu}(x-\nu) \\
& +U_{\nu}^{\dagger}(x-\nu) U_{\mu}(x-\nu) U_{\nu}(x-\nu+\mu) U_{\mu}^{\dagger}(x) .
\end{aligned}
$$

- Focus in bare operator and ignore renormalisation

$$
\mathcal{O}_{m, n}^{(E)}=Z_{2}^{m} \mathcal{O}_{m, n}^{\text {latt. }}
$$

- Focus on n=2 operator $\mathcal{O}_{\mu \nu \mu_{1} \mu_{2}}=S\left[G_{\mu \mu_{1}} G_{\nu \mu_{2}}\right]$
- Construct in the clean $\mathrm{H}(4)$ irreps

$$
4 \tau_{1}^{(1)} \oplus 3 \tau_{1}^{(2)} \oplus 7 \tau_{1}^{(3)} \oplus 10 \tau_{1}^{(6)} \oplus \tau_{2}^{(1)} \oplus 2 \tau_{2}^{(2)} \oplus 3 \tau_{2}^{(3)} \oplus 6 \tau_{2}^{(6)} \oplus 3 \tau_{3}^{(3)} \oplus 10 \tau_{3}^{(6)} \oplus \tau_{4}^{(1)} \oplus 3 \tau_{4}^{(3)} \oplus 6 \tau_{4}^{(6)}
$$

- Build from clover field strength tensor

$$
\begin{aligned}
& G_{\mu \nu}(x)=\frac{1}{4} \frac{1}{2}\left(P_{\mu \nu}(x)-P_{\mu \nu}^{\dagger}(x)\right) \\
P_{\mu \nu}(x)= & U_{\mu}(x) U_{\nu}(x+\mu) U_{\mu}^{\dagger}(x+\nu) U_{\nu}^{\dagger}(x) \\
& +U_{\nu}(x) U_{\mu}^{\dagger}(x-\mu+\nu) U_{\nu}^{\dagger}(x-\mu) U_{\mu}(x-\mu) \\
+ & U_{\mu}^{\dagger}(x-\mu) U_{\nu}^{\dagger}(x-\mu-\nu) U_{\mu}(x-\mu-\nu) U_{\nu}(x-\nu) \\
& +U_{\nu}^{\dagger}(x-\nu) U_{\mu}(x-\nu) U_{\nu}(x-\nu+\mu) U_{\mu}^{\dagger}(x) .
\end{aligned}
$$

- Focus in bare operator and ignore renormalisation

$$
\mathcal{O}_{m, n}^{(E)}=Z_{2}^{m} \mathcal{O}_{m, n}^{\text {latt. }}
$$

- First LQCD calculation [WD \& P Shanahan PRD 94 (2016), 01 4507]
- First moment in φ meson (simplest spin-I system, nuclei eventually)
- Lattice details: clover fermions, Lüscher-Weisz gauge action

L / a	T / a	β	$a m_{l}$	$a m_{s}$
24	64	6.1	-0.2800	-0.2450
$a(\mathrm{fm})$	$L(\mathrm{fm})$	$T(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	$m_{K}(\mathrm{MeV})$
$0.1167(16)$	$2.801(29)$	$7.469(77)$	$450(5)$	$596(6)$
$m_{\phi}(\mathrm{MeV})$	$m_{\pi} L$	$m_{\pi} T$	N_{cfg}	N_{src}
$1040(3)$	6.390	17.04	1042	10^{5}

- Many systematics not addressed!: a $\rightarrow 0, L \rightarrow \infty$, mphys
- Extremely high statistics: $O(100,000)$ measurements

Double Helicity Flip Gluon Structure

- Extract matrix element from ratio of correlators

$$
\propto A_{2}, \quad 0 \ll \tau \ll t
$$

- More specifically

$$
\begin{aligned}
C_{j k}^{3 \mathrm{pt}}(t, \tau, \vec{p}) & =\sum_{\vec{x}} \sum_{\vec{y}} e^{i \vec{p} \cdot \vec{x}}\left\langle\eta_{j}(t, \vec{p}) \mathcal{O}(\tau, \vec{y}) \eta_{k}^{\dagger}(0, \overrightarrow{0})\right\rangle \\
& =Z_{\phi} e^{-E t} \sum_{\lambda \lambda^{\prime}} \epsilon_{j}^{(E)}(\vec{p}, \lambda) \epsilon_{k}^{(E) *}\left(\vec{p}, \lambda^{\prime}\right)\langle\vec{p}, \lambda| \mathcal{O}\left|\vec{p}, \lambda^{\prime}\right\rangle \\
C_{j k}^{2 \mathrm{pt}}(t, \vec{p}) & =\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}}\left\langle\eta_{j}(t, \vec{x}) \eta_{k}^{\dagger}(0, \overrightarrow{0})\right\rangle \\
& =Z_{\phi}\left(e^{-E t}+e^{-E(T-t)}\right) \sum_{\lambda \lambda^{\prime}} \epsilon_{j}^{(E)}(\vec{p}, \lambda) \epsilon_{k}^{(E) *}\left(\vec{p}, \lambda^{\prime}\right) \\
R_{j k}(t, \tau, \vec{p}) & =\frac{C_{j k}^{3 \mathrm{pt}}(t, \tau, \vec{p})+C_{j k}^{3 \mathrm{pt}}(T-t, T-\tau, \vec{p})}{C_{j k}^{2 \mathrm{pt}}(t, \vec{p})}
\end{aligned}
$$

- Use appropriate combinations of polarisations
- Study for boost momenta up to (I, I, I)
- Examine all elements of each lattice irrep

$$
\begin{aligned}
\epsilon^{\mu}(\vec{p}, \lambda) & =\left(\frac{\vec{p} \cdot \vec{e}_{\lambda}}{m}, \vec{e}_{\lambda}+\frac{\vec{p} \cdot \vec{e}_{\lambda}}{m(m+E)} \vec{p}\right) \\
\vec{e}_{ \pm} & =\mp \frac{m}{\sqrt{2}}(0,1, \pm i), \\
\vec{e}_{0} & =m(1,0,0) .
\end{aligned}
$$

Double Helicity Flip Gluon Structure

- Example: $p=(0,0,0)$

$$
\begin{aligned}
& \rho_{0} \\
& \rho_{+} \\
& \rho_{-} \\
& \left.\begin{array}{ccc}
\rho_{0} & \rho_{+} & \rho_{-} \\
\frac{2 m^{2} A_{2}}{\sqrt{3}} & 0 & 0 \\
0 & -\frac{m^{2} A_{2}}{\sqrt{3}} & 0 \\
0 & 0 & -\frac{m^{2} A_{2}}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

- Example $p=p(I, I, I)$

Double Helicity Flip Gluon Structure

Double Helicity Flip Gluon Structure

Double Helicity Flip Gluon Structure

Gluonic Soffer bound

- Soffer bound on quark transversity

$$
|\delta q(x)| \leq \frac{1}{2}(q(x)+\Delta q(x))
$$

- Moment space

$$
\left\langle x^{2}\right\rangle_{\delta q} \leq \frac{1}{2}\left(\left\langle x^{2}\right\rangle_{q}+\left\langle x^{2}\right\rangle_{\Delta q}\right)
$$

- Saturated at $\sim 80 \%$ from LQCD [Diehl et al. 2005 @ heavy quark mass]
- Gluonic analogue

Gluonic Soffer bound

Gluonic Soffer bound

- Gluonic bound satisfied similarly

- CAUTION: bare matrix elements!!
- All for φ meson: next step is deuteron!!

Gluonic radii

- Published results on forward matrix elements
- Currently studying off-forward MEs which are significantly more complicated
- Eg: spin-I Δ form factors

$$
\begin{aligned}
\left\langle p^{\prime} E^{\prime}\right| S\left[G_{\mu \mu_{1}} G_{\nu \mu_{2}}\right]|p E\rangle= & A_{2,1}^{g} S\left[\left(P_{\mu} E_{\mu_{1}}-E_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} P_{\mu_{2}}\right)\right] \\
& +A_{2,2}^{g} S\left[\left(\Delta_{\mu} E_{\mu_{1}}-E_{\mu} \Delta_{\mu_{1}}\right)\left(\Delta_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} \Delta_{\mu_{2}}\right)\right] \\
& +A_{2,3}^{g} S\left[\left(\Delta_{\mu} E_{\mu_{1}}-E_{\mu} \Delta_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} P_{\mu_{2}}\right)\right. \\
& \left.\quad-\left(\Delta_{\mu} E_{\mu_{1}}^{\prime *}-E_{\mu}^{\prime *} \Delta_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}-E_{\nu} P_{\mu_{2}}\right)\right] \\
& +\frac{A_{2,4}^{g}}{M^{2}}\left((E \cdot P) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(\Delta_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} \Delta_{\mu_{2}}\right)\right]\right. \\
& \left.\quad+\left(E^{\prime *} \cdot P\right) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(\Delta_{\nu} E_{\mu_{2}}-E_{\nu} \Delta_{\mu_{2}}\right)\right]\right) \\
& +\frac{A_{2,5}^{g}}{M^{2}}\left((E \cdot P) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}^{\prime *}-E_{\nu}^{\prime *} P_{\mu_{2}}\right)\right]\right. \\
& \left.\quad-\left(E^{\prime *} \cdot P\right) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} E_{\mu_{2}}-E_{\nu} P_{\mu_{2}}\right)\right]\right) \\
& +\frac{A_{2,6}^{g}}{M^{2}}\left(E^{\prime *} \cdot E\right) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} \Delta_{\mu_{2}}-\Delta_{\nu} P_{\mu_{2}}\right)\right] \\
& +\frac{A_{2,7}^{g}}{M^{4}}(E \cdot P)\left(E^{\prime *} \cdot P\right) S\left[\left(P_{\mu} \Delta_{\mu_{1}}-\Delta_{\mu} P_{\mu_{1}}\right)\left(P_{\nu} \Delta_{\mu_{2}}-\Delta_{\nu} P_{\mu_{2}}\right)\right]
\end{aligned}
$$

- Many radii defined from slopes at zero

Gluonic radii

- Preliminary calculations of dominant FF radius

- Compare with (quarky) radii derived from eg EM form factors
- EIC will dramatically alter our knowledge of the gluonic structure of nucleons and nuclei
- Eventually have a complete 3D picture of parton structure (PDFs, GPDs, TMDs)
- $\Delta G\left(x, Q^{2}\right)$ has an interesting role
- Purely gluonic
- Non-nucleonic

- Address similarities and differences in distributions of quark and gluons in hadrons and nuclei
- Lattice calculations in light nuclei will be a strong motivator for pursuing experimental signals
- Spin I decomposition

$$
\begin{aligned}
& W_{\mu \nu}^{\lambda_{f} \lambda_{i}}=-F_{1} \hat{g}_{\mu \nu}+\frac{F_{2}}{M \nu} \hat{p}_{\mu} \hat{p}_{\nu}-b_{1} r_{\mu \nu} \\
& +\frac{1}{6} b_{2}\left(s_{\mu \nu}+t_{\mu \nu}+u_{\mu \nu}\right)+\frac{1}{2} b_{3}\left(s_{\mu \nu}-u_{\mu \nu}\right)+\frac{1}{2} b_{4}\left(s_{\mu \nu}-t_{\mu \nu}\right) \\
& +\frac{i g_{1}}{\nu} \epsilon_{\mu \nu \lambda \sigma} q^{\lambda} s^{\sigma}+\frac{i g_{2}}{M \nu^{2}} \epsilon_{\mu \nu \lambda \sigma} q^{\lambda}\left(p \cdot q s^{\sigma}-s \cdot q p^{\sigma}\right),+W_{\overrightarrow{2 \nu}}^{\left(\hat{A}^{2}\right)}=2
\end{aligned}
$$

$$
\begin{aligned}
r_{\mu \nu}= & \frac{1}{\nu^{2}}\left[q \cdot E^{*}\left(\lambda_{f}\right) q \cdot E\left(\lambda_{i}\right)-\frac{1}{3} \nu^{2} \kappa\right] \hat{g}_{\mu \nu}, \\
s_{\mu \nu}= & \frac{2}{\nu^{2}}\left[q \cdot E^{*}\left(\lambda_{f}\right) q \cdot E\left(\lambda_{i}\right)-\frac{1}{3} \nu^{2} \kappa\right] \frac{\hat{p}_{\mu} \hat{p}_{\nu}}{M \nu}, \\
t_{\mu \nu}= & \frac{1}{2 \nu^{2}}\left[q \cdot E^{*}\left(\lambda_{f}\right)\left\{\hat{p}_{\mu} \hat{E}_{\nu}\left(\lambda_{i}\right)+\hat{p}_{\nu} \hat{E}_{\mu}\left(\lambda_{i}\right)\right\}\right. \\
& \left.+\left\{\hat{p}_{\mu} \hat{E}_{\nu}^{*}\left(\lambda_{f}\right)+\hat{p}_{\nu} \hat{E}_{\mu}^{*}\left(\lambda_{f}\right)\right\} q \cdot E\left(\lambda_{i}\right)-\frac{4 \nu}{3 M} \hat{p}_{\mu} \hat{p}_{\nu}\right], \\
u_{\mu \nu}= & \frac{M}{\nu}\left[\hat{E}_{\mu}^{*}\left(\lambda_{f}\right) \hat{E}_{\nu}\left(\lambda_{i}\right)+\hat{E}_{\nu}^{*}\left(\lambda_{f}\right) \hat{E}_{\mu}\left(\lambda_{i}\right)+\frac{2}{3} \hat{g}_{\mu \nu}-\frac{2}{3 M^{2}} \hat{p}_{\mu} \hat{p}_{\nu}\right]
\end{aligned}
$$

