Towards a data-driven analysis of hadronic light-by-light scattering in the anomalous magnetic moment of the muon

Martin Hoferichter

INSTITUTE for NUCLEAR THEORY Institute for Nuclear Theory University of Washington

KITP program on

Frontiers in Nuclear Physics

Santa Barbara, October 21, 2016

G. Colangelo, MH, M. Procura, P. Stoffer, JHEP 09 (2014) 091, JHEP 09 (2015) 074

G. Colangelo, MH, B. Kubis, M. Procura, P. Stoffer, PLB 738 (2014) 6

MH, B. Kubis, S. Leupold, F. Niecknig, S. Schneider, EPJC 74 (2014) 3180

lots of work in progress

Anomalous magnetic moments a_ℓ
 → prime low-energy precision observables

$$oldsymbol{a}_{oldsymbol{\ell}} = rac{g_{oldsymbol{\ell}}-2}{2} \qquad \mu = -grac{e}{2m}oldsymbol{S} \qquad \mathcal{H} = -\mu\cdotoldsymbol{B}$$

• Experimental precision 0.5 ppm BNL E821 2006

 $a_{\mu}^{\exp} = (116\,592\,089\pm63) \times 10^{-11}$

- Theory error of similar size
- Deviation from SM prediction around 3σ

• Experimental precision 0.5 ppm BNL E821 2006

 $a_{\mu}^{\exp} = (116592089 \pm 63) \times 10^{-11}$

- New experiment at **FNAL** (E989) aiming at 0.14 ppm, data taking to start in 2017 $\Rightarrow \Delta a_{\mu}^{exp} = 15 \times 10^{-11}$ as reference point
- J-PARC E821 statistics goal, new approach with ultra-cold muons, R&D in progress, EDM
- Comparison in review on "Precision muon physics" Gorringe, Hertzog 2015
 - \Rightarrow Need to improve theory accordingly

1= nac

	$\frac{a_{\mu}}{2}$ [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(\alpha)$	116 140 973.21	0.03
QED $\mathcal{O}(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

Schwinger 1948

= 200

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $\mathcal{O}(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
QED $\mathcal{O}(\alpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

Sommerfield, Petermann 1957

-

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $O(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

Kinoshita et al. 2012

M. Hoferichter (Institute for Nuclear Theory)

-

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $O(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

1-loop: Jackiw, Weinberg and others 1972 2-loop: Kukhto et al. 1992, Czarnecki, Krause, Marciano 1995, Degrassi, Giudice 1998, Knecht, Peris, Perrottet, de Rafael 2002, Vainshtein 2003, Heinemeyer, Stöckinger, Weiglein 2004, Gribouk, Czarnecki 2005 Update after Higgs discovery: Gnendiger et al. 2013

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $\mathcal{O}(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
QED $\mathcal{O}(\alpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

Hagiwara et al. 2011

ъ

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $O(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
QED $\mathcal{O}(\alpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

Calmet et al. 1976, Hagiwara et al. 2011

-

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $\mathcal{O}(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

Hayakawa, Kinoshita, Sanda 1995 Bijnens, Pallante, Prades 1995 Knecht, Nyffeler 2001 Jegerlehner, Nyffeler 2009

M. Hoferichter (Institute for Nuclear Theory)

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $O(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
QED $\mathcal{O}(\alpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

Kurz, Liu, Marquard, Steinhauser 2014

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $\mathcal{O}(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

Colangelo, MH, Nyffeler, Passera, Stoffer 2014

4

	a_{μ} [10 ⁻¹¹]	$\Delta a_{\mu} [10^{-11}]$
experiment	116 592 089.	63.
$QED\ \mathcal{O}(lpha)$	116 140 973.21	0.03
QED $\mathcal{O}(\alpha^2)$	413 217.63	0.01
QED $\mathcal{O}(\alpha^3)$	30 141.90	0.00
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02
QED $\mathcal{O}(\alpha^5)$	5.09	0.01
QED total	116 584 718.85	0.04
electroweak, total	153.6	1.0
HVP (LO)	6 949.	43.
HVP (NLO)	-98.	1.
HLbL (LO)	116.	40.
HVP (NNLO)	12.4	0.1
HLbL (NLO)	3.	2.
theory	116 591 855.	59.

$$a_{\mu}^{\mathsf{exp}} - a_{\mu}^{\mathsf{SM}} = (234 \pm 86) imes 10^{-11} [2.7\sigma]$$

⇒Theory error comes almost exclusively from hadronic part

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering

Outline

Hadronic vacuum polarization

- Approaches to HLbL
- The HLbL tensor: gauge invariance and crossing symmetry

A dispersion relation for HLbL

- Master formula
- Pion box
- Pion rescattering
- Input for pion pole (and beyond)

Summary and outlook

Hadronic vacuum polarization

- General principles yield direct connection with experiment
 - Gauge invariance

$$k, \mu \qquad k, \nu \qquad = -i(k^2 g^{\mu\nu} - k^{\mu} k^{\nu}) \Pi(k^2)$$

Analyticity

$$\Pi_{\text{ren}} = \Pi(k^2) - \Pi(0) = \frac{k^2}{\pi} \int_{4M_\pi^2}^{\infty} \text{d}s \frac{\text{Im}\,\Pi(s)}{s(s-k^2)}$$

Unitarity

$$\operatorname{Im}\Pi(s) = \frac{s}{4\pi\alpha}\sigma_{\operatorname{tot}}(e^+e^- \to \operatorname{hadrons}) = \frac{\alpha}{3}R(s)$$

- 1 Lorentz structure, 1 kinematic variable, parameter-free
- Dedicated e⁺e⁻ program under way: BaBar, Belle, BESIII, CMD3, KLOE2, SND (still hard to go much below 1%)

= ∕) < (~

Hadronic vacuum polarization: two-pion channel

- Accuracy goal: 0.6% (present) \rightarrow 0.2% (experiment)
- Systematics of $\pi\pi$ channel: τ data, ISR data
- Current status BESIII 2015

HLbL: irreducible uncertainty?

π^0, η, η'	π^{\pm}, K^{\pm}		$\sigma, f_0,$		2	quarks	R
Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
r^0, η, η'	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	-	114 ± 13	99 ± 16
r, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
r, K loops + other subleading in N_c	-	-	-	0 ± 10	-	-	-
xial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	-	15 ± 10	22 ± 5
calars	-6.8 ± 2.0	-	-	-	-	-7 ± 7	-7 ± 2
Juark loops	21 ± 3	9.7 ± 11.1	-	-	-	2.3±	21 ± 3
otal	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	110 ± 40	105 ± 26	116 ± 39

• HVP systematically improvable

Jegerlehner, Nyffeler 2009

- HLbL more challenging
 - 4-point function of EM currents
 - Unambiguous definitions?
 - 5 kinematic variables, many more Lorentz structures (but only 7 master structures)
 - Folk theorem: "it cannot be expressed in terms of measurable quantities"
- Our suggestion: adapt methods from HVP, stay as data-driven as possible

Approaches to HLbL

Model calculations

• ENJL	Bijnens, Pallante, Prades 1995-96
 NJL and hidden gauge 	Hayakawa, Kinoshita, Sanda 1995-96
 Nonlocal <i>χ</i>QM 	Dorokhov, Broniowski 2008
AdS/CFT	Cappiello, Cata, D'Ambrosio 2010
 Dyson–Schwinger 	Goecke, Fischer, Williams 2011
• Constituent χ QM	Greynat, de Rafael 2012
Resonances in narrow-width limit	Pauk, Vanderhaeghen 2014

Rigorous constraints from QCD

 High-energy constraints ta 	ken into account in several	models above,
addressed specifically by		Knecht, Nyffeler 2001
• ChPT for a_{μ}	Knecht, Nyffeler, Perrottet	, de Rafael 2002, Ramsey-Musolf, Wise 2002
 High-energy constraints related to the axial anomaly 		Melnikov, Vainshtein 2004, Nyffeler 2009
• Sum rules for $\gamma^*\gamma \to X$		Pascalutsa, Pauk, Vanderhaeghen 2012
 Low-energy constraints from pion polarizabilities 		Engel, Ramsey-Musolf 2013
Lattice		Blum et al. 2005, 2012-16, Green et al. 2015

A D b 4 A b

크 > < 크 >

1= 990

Cauchy's theorem

$$f(s) = rac{1}{2\pi i} \int_{\partial\Omega} rac{\mathrm{d}s' f(s')}{s' - s}$$

From Cauchy's theorem to dispersion relations

Cauchy's theorem

$$f(s) = rac{1}{2\pi i} \int_{\partial\Omega} rac{\mathrm{d}s' f(s')}{s' - s}$$

• Dispersion relation

$$f(s) = \frac{g}{s - M^2} + \frac{1}{\pi} \int_{\text{cuts}} \frac{\mathrm{d}s' \operatorname{Im} f(s')}{s' - s}$$

 $\hookrightarrow \textbf{analyticity}$

From Cauchy's theorem to dispersion relations

• Dispersion relation

$$f(s) = \frac{g}{s - M^2} + \frac{1}{\pi} \int_{\text{cuts}} \frac{\mathrm{d}s' \operatorname{Im} f(s')}{s' - s}$$

 $\hookrightarrow \textbf{analyticity}$

Subtractions

$$f(s) = \frac{g}{s - M^2} + \underbrace{C}_{f(0) + \frac{g}{M^2}} + \frac{s}{\pi} \int_{\text{cuts}} \frac{\text{d}s' \,\text{Im} \, f(s')}{s'(s' - s)}$$

Dispersion relation

$$f(s) = \frac{g}{s - M^2} + \frac{1}{\pi} \int_{\text{cuts}} \frac{\mathrm{d}s' \operatorname{Im} f(s')}{s' - s}$$

 $\hookrightarrow \textbf{analyticity}$

Subtractions

$$f(s) = \frac{g}{s - M^2} + \underbrace{C}_{f(0) + \frac{g}{M^2}} + \frac{s}{\pi} \int_{\text{cuts}} \frac{\text{d}s' \, \text{Im} \, f(s')}{s'(s' - s)}$$

Imaginary part from Cutkosky rules

 $\hookrightarrow \text{ forward direction: } \textbf{optical theorem}$

see HVP and $\sigma(e^+e^- \rightarrow \text{hadrons})$

- Unitarity for partial waves: $\lim f(s) = \rho(s)|f(s)|^2$
- Residue g reaction-independent

Why dispersive approach?

- Analytic structure: poles and cuts
 - \hookrightarrow **Residues** and **imaginary parts** \Rightarrow by definition **on-shell** quantities
 - \hookrightarrow form factors and scattering amplitudes from experiment
 - ← model-independent definition of all contributions!

Why dispersive approach?

- Analytic structure: poles and cuts
 - \hookrightarrow **Residues** and **imaginary parts** \Rightarrow by definition **on-shell** quantities
 - \hookrightarrow form factors and scattering amplitudes from experiment
 - ← model-independent definition of all contributions!
- Challenges
 - Find suitable quantities for dispersive analysis: Bardeen–Tung–Tarrach basis
 - Large number of amplitudes and invariants: no closed formula as for HVP
 - \hookrightarrow Expansion in mass of intermediate states and partial waves
- Pseudoscalar poles most important, next $\pi\pi$ cuts
- Decompose the tensor according to

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

- \hookrightarrow accounts for **one-** and **two-pion** intermediate states
- Generalizes immediately to η , η' , $K\bar{K}$, but e.g. 3π more difficult

$$q_4 = k = q_1 + q_2 + q_3$$
 $k^2 = 0$

HLbL tensor

$$\Pi^{\mu\nu\lambda\sigma} = i^{3} \int d^{4}x \int d^{4}y \int d^{4}z \, e^{-i(q_{1}\cdot x + q_{2}\cdot y + q_{3}\cdot z)} \langle 0|T\{j^{\mu}(x)j^{\nu}(y)j^{\lambda}(z)j^{\sigma}(0)\}|0\rangle$$
$$= g^{\mu\nu}g^{\lambda\sigma}\Pi_{1} + g^{\mu\lambda}g^{\nu\sigma}\Pi_{2} + g^{\mu\sigma}g^{\nu\lambda}\Pi_{3} + \sum_{ijkl} q^{\mu}_{i}q^{\nu}_{j}q^{\lambda}_{k}q^{\sigma}_{l}\Pi_{ijkl} + \cdots$$

- Lorentz decomposition: 138 (136 Eichmann, Fischer, Heupel, Williams 2014) functions
- Constraints from gauge invariance: Bardeen, Tung 1968, Tarrach 1975
- Need basis free of kinematic singularities and zeros

Detour: subprocess $\gamma^* \gamma^* \to \pi \pi$

• Consider
$$\gamma^*(q_1, \lambda_1)\gamma^*(q_2, \lambda_2) \to \pi(p_1)\pi(p_2)$$

 $W^{\mu\nu} = i \int d^4x \, e^{-iq_1 \cdot x} \langle \pi(p_1)\pi(p_2)|T\{j^{\mu}(x)j^{\nu}(0)|0\rangle$
 $= g^{\mu\nu}W_1 + \sum_{ij} q_i^{\mu}q_j^{\nu}W_2^{ij} \qquad q_3 = p_2 - p_1$

- Lorentz decomposition: 10 scalar functions
- Gauge invariance:

$$q_1^{\mu} \mathbf{W}_{\mu\nu} = q_2^{\nu} \mathbf{W}_{\mu\nu} = 0$$

• Bardeen, Tung 1968: hit with projectors $I^{\mu
u} = g^{\mu
u} - rac{q_2^{\mu}q_1^{\nu}}{q_1\cdot q_2}$

$$W_{\mu\nu} = I_{\mu\mu'} I_{\nu'\nu} W_{\mu'\nu'} = \sum_{i=1}^{5} \bar{T}^{i}_{\mu\nu} \bar{A}_{i} = \sum_{i=1}^{5} T^{i}_{\mu\nu} A_{i}$$

• \bar{A}_i free of kinematic singularities, but not zeros \hookrightarrow remove poles from \bar{T}_i^{μ} to get to A_i

The resulting basis

$$\begin{split} T_1^{\mu\nu} &= q_1 \cdot q_2 g^{\mu\nu} - q_2^{\mu} q_1^{\nu} \\ T_2^{\mu\nu} &= q_1^2 q_2^2 g^{\mu\nu} + q_1 \cdot q_2 q_1^{\mu} q_2^{\nu} - q_1^2 q_2^{\mu} q_2^{\nu} - q_2^2 q_1^{\mu} q_1^{\nu} \\ T_3^{\mu\nu} &= q_1^2 q_2 \cdot q_3 g^{\mu\nu} + q_1 \cdot q_2 q_1^{\mu} q_3^{\nu} - q_1^2 q_2^{\mu} q_2^{\nu} - q_2^2 q_1^{\mu} q_1^{\nu} \\ T_4^{\mu\nu} &= q_2^2 q_1 \cdot q_3 g^{\mu\nu} + q_1 \cdot q_2 q_3^{\mu} q_2^{\nu} - q_2^2 q_3^{\mu} q_1^{\nu} - q_1 \cdot q_3 q_2^{\mu} q_2^{\nu} \\ T_5^{\mu\nu} &= q_1 \cdot q_3 q_2 \cdot q_3 g^{\mu\nu} + q_1 \cdot q_2 q_3^{\mu} q_3^{\nu} - q_1 \cdot q_3 q_2^{\mu} q_3^{\nu} - q_2 \cdot q_3 q_1^{\mu} q_1^{\nu} \end{split}$$

becomes degenerate for $q_1 \cdot q_2 = 0$ Tarrach 1975

Need one more structure

$$T_{6}^{\mu\nu} = \left(q_{1}^{2}q_{3}^{\mu} - q_{1} \cdot q_{3}q_{1}^{\mu}\right)\left(q_{2}^{2}q_{3}^{\nu} - q_{2} \cdot q_{3}q_{2}^{\nu}\right)$$

\hookrightarrow redundant set of 5 + 1 BTT functions

Crossing symmetry of the pions actually removes Tarrach ambiguity Drechsel et al. 1998

= 990

- BTT for HLbL Colangelo, MH, Procura, Stoffer 2015
 - 43 basis tensors
 - I1 additional ones
 - Out of 54 only 7 independent (up to crossing)
 - 2 further redundancies in *d* = 4

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

Back to HLbL

- BTT for HLbL Colangelo, MH, Procura, Stoffer 2015
 - 43 basis tensors
 - I1 additional ones
 - Out of 54 only 7 independent (up to crossing)
 - 2 further redundancies in *d* = 4

$$\begin{split} T_{1}^{\mu\nu\lambda\sigma} &= \epsilon^{\mu\nu\alpha\beta} \epsilon^{\lambda\sigma\gamma\delta} a_{1\,\alpha} q_{2\,\beta} q_{3\,\gamma} q_{4\,\delta} \qquad T_{4}^{\mu\nu\lambda\sigma} = \left(q_{2}^{\mu} q_{1}^{\nu} - q_{1} \cdot q_{2} g^{\mu\nu}\right) \left(q_{4}^{\lambda} q_{3}^{\sigma} - q_{3} \cdot q_{4} g^{\lambda\sigma}\right) \\ T_{7}^{\mu\nu\lambda\sigma} &= \left(q_{2}^{\mu} q_{1}^{\nu} - q_{1} \cdot q_{2} g^{\mu\nu}\right) \left(q_{1} \cdot q_{4} \left(q_{1}^{\lambda} q_{3}^{\sigma} - q_{1} \cdot q_{3} g^{\lambda\sigma}\right) + q_{4}^{\lambda} q_{1}^{\sigma} q_{1} \cdot q_{3} - q_{1}^{\lambda} q_{1}^{\sigma} q_{3} \cdot q_{4}\right) \\ T_{19}^{\mu\nu\lambda\sigma} &= \left(q_{2}^{\mu} q_{1}^{\nu} - q_{1} \cdot q_{2} g^{\mu\nu}\right) \left(q_{2} \cdot q_{4} \left(q_{1}^{\lambda} q_{3}^{\sigma} - q_{1} \cdot q_{3} g^{\lambda\sigma}\right) + q_{4}^{\lambda} q_{2}^{\sigma} q_{1} \cdot q_{3} - q_{1}^{\lambda} q_{2}^{\sigma} q_{3} \cdot q_{4}\right) \\ T_{31}^{\mu\nu\lambda\sigma} &= \left(q_{2}^{\mu} q_{1}^{\nu} - q_{1} \cdot q_{2} g^{\mu\nu}\right) \left(q_{2}^{\lambda} q_{1} \cdot q_{3} - q_{1}^{\lambda} q_{2} \cdot q_{3}\right) \left(q_{2}^{\sigma} q_{1} \cdot q_{4} - q_{1}^{\sigma} q_{2} \cdot q_{4}\right) \\ &+ g^{\mu\sigma} \left(q_{2}^{\lambda} q_{3} \cdot q_{4} - q_{4}^{\mu} q_{1} \cdot q_{3}\right) \left(q_{3}^{\nu} q_{4}^{\lambda} q_{2}^{\sigma} - q_{4}^{\nu} q_{2}^{\lambda} q_{3}^{\sigma} + g^{\lambda\sigma} \left(q_{4}^{\nu} q_{2} \cdot q_{3} - q_{3}^{\nu} q_{2}^{\lambda} q_{4}\right) \\ &+ g^{\nu\sigma} \left(q_{2}^{\lambda} q_{3} \cdot q_{4} - q_{4}^{\lambda} q_{2} \cdot q_{3}\right) + g^{\lambda\nu} \left(q_{3}^{\sigma} q_{2} \cdot q_{4} - q_{2}^{\sigma} q_{3} \cdot q_{4}\right) \right) \\ T_{49}^{\mu\nu\lambda\sigma} &= q_{3}^{\sigma} \left(q_{1} \cdot q_{3} q_{2} \cdot q_{4} q_{4}^{\mu} q_{3}^{\lambda} q_{1}^{\lambda} + q_{1} \cdot q_{4} q_{2}^{\nu} q_{4}^{\lambda} q_{2}^{\lambda} q_{4} - q_{2}^{\sigma} q_{3} \cdot q_{4}\right) \right) \\ &+ q_{1} \cdot q_{4} q_{3}^{\mu} q_{4}^{\mu} q_{2}^{\lambda} q_{2}^{\lambda} - q_{2} \cdot q_{4} q_{4}^{\mu} q_{3}^{\lambda} q_{1}^{\lambda} + q_{1} \cdot q_{4} q_{2}^{\nu} q_{4} \left(q_{3}^{\mu} g^{\lambda\mu} - q_{3}^{\mu} g^{\lambda\nu}\right) \right) \\ &- q_{4}^{\lambda} \left(q_{1} \cdot q_{4} q_{2} \cdot q_{3} q_{3}^{\mu} g^{\mu\sigma} - q_{2} \cdot q_{3} q_{3}^{\mu} g^{\mu\sigma} + q_{1} \cdot q_{3} q_{2}^{\nu} q_{3} \left(q_{4}^{\nu} g^{\mu\sigma} - q_{4}^{\mu} g^{\nu\sigma}\right) \right) \\ &+ q_{1} \cdot q_{3} q_{4}^{\mu} q_{3}^{\mu} q_{3}^{\sigma} q_{2}^{\sigma} - q_{2} \cdot q_{3} q_{3}^{\mu} q_{3}^{\sigma} q_{1}^{\sigma} + q_{1} \cdot q_{3} q_{2}^{\mu} q_{3}^{\nu}\right) \left(q_{3}^{\mu} q_{1}^{\sigma} - q_{1} \cdot q_{3} g^{\mu\sigma}\right) \right) \\ &+ q_{1} \cdot q_{3} q_{4}^{\mu} q_{3}^{\mu} q_{3}^{\sigma} q_{1}^{\sigma} - q_{2} \cdot q_{3} q_{3}^{\mu} q_{1}^{\sigma}\right) \right) \\ &+ q_{1} \cdot q_{3} q_{4}^{\mu} q_{3}^{\mu} q_{3}^{\sigma} q_{1}^{\sigma} - q_{2} \cdot q_{3} q_{3}^{\mu}\right) \left(q_{3}^{\mu} q_{2}^{\sigma} - q_{2} \cdot q_{3} q_{3}^{\mu} q_{1}^{\sigma}$$

- BTT for HLbL Colangelo, MH, Procura, Stoffer 2015
 - 43 basis tensors
 - 11 additional ones
 - Out of 54 only 7 independent (up to crossing)
 - 2 further redundancies in *d* = 4

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

 \hookrightarrow dynamical calculation for only 7 scalar amplitudes!

Master formula for a_{μ}

$$\mathbf{a}_{\mu}^{\mathsf{HLbL}} = -e^{6} \int \frac{\mathsf{d}^{4} q_{1}}{(2\pi)^{4}} \int \frac{\mathsf{d}^{4} q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \bar{\Pi}_{i}(q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2} q_{2}^{2} (q_{1} + q_{2})^{2} ((p + q_{1})^{2} - m_{\mu}^{2}) ((p - q_{2})^{2} - m_{\mu}^{2})}$$

- \hat{T}_i : known kernel functions
- $\overline{\Pi}_i$: linear combinations of Π_i
- Can perform five integrations with Gegenbauer polynomials

Master formula for a_{μ}

$$\mathbf{a}_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^\infty \mathrm{d}Q_1 \int_0^\infty \mathrm{d}Q_2 \int_{-1}^1 \mathrm{d}\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

- T_i: known kernel functions
- $\overline{\Pi}_i$: linear combinations of Π_i
- Can perform five integrations with Gegenbauer polynomials
- Wick rotation: all input quantities at space-like kinematics

Master formula for a_{μ}

$$\mathbf{a}_{\mu}^{\mathsf{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^\infty \mathsf{d}Q_1 \int_0^\infty \mathsf{d}Q_2 \int_{-1}^1 \mathsf{d}\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

- *T_i*: known kernel functions
- $\overline{\Pi}_i$: linear combinations of Π_i
- Can perform five integrations with Gegenbauer polynomials
- Wick rotation: all input quantities at space-like kinematics
- Decomposition completely general, now dispersion relations for n
 i
- Alternative: dispersion relations for Pauli form factor F2(t) Pauk, Vanderhaeghen 2014
 - a_{μ}^{HLbL} from $a_{\mu} = F_2(0)$
 - Do the 2-loop integral dispersively, known result for pseudoscalar pole reproduced
 - Large number of cuts for higher intermediate states

ELE DQC

Setting up the dispersive calculation: pion pole

- Pion pole: known
- Projection onto BTT basis: done
- Master formula reproduces explicit expressions in the literature
- To be done: incorporation of pQCD constraints

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

In JHEP 2014 paper

Separate contribution with two simultaneous cuts

- Analytic properties like the box diagram in sQED
- Triangle and bulb required by gauge invariance
- Multiplication with vector form factor F_{π}^{V} gives correct q^{2} -dependence \Rightarrow FsQED

Claim: **FsQED** is not an approximation $\Pi_{\mu\nu\lambda\sigma}^{\pi\text{-box}} = \Pi_{\mu\nu\lambda\sigma}^{\text{FsQED}}$

Now with BTT basis

- Constructed a Mandelstam representation for $\pi\pi$ intermediate states with pion-pole left-hand cut
- Checked explicitly that this agrees with FsQED

Proven: **FsQED** is not an approximation $\Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} = \Pi^{\text{FsQED}}_{\mu\nu\lambda\sigma}$ Uniquely defines the notion of a "pion loop"

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

- Remainder $\bar{\Pi}_{\mu\nu\lambda\sigma}$ has cuts only in one channel
- Physics: $\pi\pi$ rescattering
- Calculated with a partial-wave expansion
- Similar for η , η' poles and $K\bar{K}$ intermediate states

$$\Pi_{i}^{\pi^{0}\text{-pole}}(s,t,u) = \frac{\rho_{i;s}}{s - M_{\pi}^{2}} + \frac{\rho_{i;t}}{t - M_{\pi}^{2}} + \frac{\rho_{i;u}}{u - M_{\pi}^{2}}$$

$$\rho_{i,s} = \delta_{i1}F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{2}^{2})F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{3}^{2}, q_{4}^{2})$$

$$\rho_{i,t} = \delta_{i2}F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{3}^{2})F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{2}^{2}, q_{4}^{2})$$

$$\rho_{i,u} = \delta_{i3}F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2}, q_{4}^{2})F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{2}^{2}, q_{3}^{2})$$

- Crucial ingredient: pion transition form factor $F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)$
- $\bullet\,$ Dispersive approach: pion on-shell $\rightarrow\,$ data input

Pion box: projection onto BTT

Г

Very compact expressions in BTT basis

$$\begin{split} I_{l}^{\pi-\text{box}}(q_{1}^{2},q_{2}^{2},q_{3}^{2}) &= F_{\pi}^{V}(q_{1}^{2})F_{\pi}^{V}(q_{2}^{2})F_{\pi}^{V}(q_{3}^{2})\frac{1}{16\pi^{2}}\int_{0}^{1}dx\int_{0}^{1-x}dy\,I_{l}(x,y)\\ I_{1}(x,y) &= -\frac{2}{3}\frac{(1-2y)(1-2x-2y)(1-6x(1-x))}{\Delta^{2}}\qquad I_{7}(x,y) = -\frac{4}{3}\frac{(1-2x)^{2}(1-2y)^{2}y(1-y)}{\Delta^{3}}\\ I_{4}(x,y) &= -\frac{2}{3}\frac{(1-2x)(1+2x(1-3x(1-2y)-6y(1-y)))}{\Delta^{2}}\qquad \dots\\ \Delta &= M_{\pi}^{2} - xyq_{1}^{2} - x(1-x-y)q_{2}^{2} - y(1-x-y)q_{3}^{2} \end{split}$$

- Manifestly free of kinematic singularities
- Only 9 independent functions due to remaining crossing symmetries, e.g.

$$\Pi_{2} = \mathcal{C}_{23}[\Pi_{1}] \qquad \Pi_{5} = \mathcal{C}_{23}[\Pi_{4}] \qquad \Pi_{9} = \mathcal{C}_{13}[\mathcal{C}_{23}[\Pi_{7}]] \qquad \Pi_{10} = \mathcal{C}_{23}[\Pi_{7}]$$

and even just 6 independent $\overline{\Pi}_i$

Pion box: numerics

- Only input space-like pion vector form factor
- Preliminary numbers: $a_{\mu}^{\pi\text{-box}} = -15.9 \times 10^{-11}$, $a_{\mu}^{\pi\text{-box,VMD}} = -16.4 \times 10^{-11}$
- Compare: $a_{\mu}^{K\text{-box,VMD}} = -0.5 \times 10^{-11}$

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
π^0, η, η'	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	-	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
π , K loops + other subleading in N_c	-	-	-	0 ± 10	-	-	-
Axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	-	15 ± 10	22 ± 5
Scalars	-6.8 ± 2.0	-	-	-	-	-7 ± 7	-7 ± 2
Quark loops	21 ± 3	9.7 ± 11.1	-	-	-	2.3±	21 ± 3
Total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	110 ± 40	105 ± 26	116 ± 39

Only input space-like pion vector form factor

- Preliminary numbers: $a_{\mu}^{\pi\text{-box}} = -15.9 \times 10^{-11}$, $a_{\mu}^{\pi\text{-box},\text{VMD}} = -16.4 \times 10^{-11}$
- Compare: $a_{\mu}^{K\text{-box,VMD}} = -0.5 \times 10^{-11}$

▲目▶ 目目 の々で

Pion box: saturation

- Impose cutoff in momenta *Q*_{max} (polar-coordinate-type trafo)
- Rapid convergence: $Q_{\text{max}} = \{1, 1.5\} \text{ GeV} \Rightarrow a_{\mu}^{\pi\text{-box}} = \{95, 99\}\%$ of full result

• Dispersion relations for Π_i , e.g. fixed-*u* at $u = u_b = q_1^2$

$$\Pi_{1}(q_{1}^{2}, q_{2}^{2}, q_{3}^{2}) = \lim_{q_{4}^{2} \to 0} \left(\frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{D_{1}^{s;u}(s'; u_{b})}{s' - q_{3}^{2}} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} dt' \frac{D_{1}^{t;u}(t'; u_{b})}{t' - q_{2}^{2}} \right)$$

• Discontinuities from unitarity: diagonal in helicity basis for partial waves, e.g.

$$\operatorname{Im} h_{++,++}^{J}(s; q_{1}^{2}, q_{2}^{2}; q_{3}^{2}, 0) = \frac{\sigma(s)}{16\pi} h_{J,++}^{*}(s; q_{1}^{2}, q_{2}^{2}) h_{J,++}(s; q_{3}^{2}, 0)$$

 \hookrightarrow need to project onto BTT basis

Solved for S-waves in 2014, now for arbitrary partial waves

- BTT and d = 4 ambiguities lead to different representation for $a_{\mu} \checkmark$
- Equivalence implies set of sum rules: checked with FsQED \checkmark
- Projection on partial waves violates these sum rules if expansion is truncated
 → how fast is the convergence? ✓
- Unphysical photon polarizations seemed to contribute to $a_{\mu} \checkmark$
- $\bullet\,$ Test case: partial-wave expansion of FsQED $\checkmark\,$

Partial-wave expansion of FsQED

• fixed-s, -t, -u dispersion relation

\hookrightarrow	equivalent	due to	crossing	symmetry
-------------------	------------	--------	----------	----------

- Fixed-s special: no s-channel cut, cancellations for J = 0
- Can use sum rules to optimize partial-wave convergence
- Beyond FsQED

$$a_{\mu} = rac{1}{2} \left(a_{\mu}^{ ext{fixed-}s} + a_{\mu}^{ ext{fixed-}t} + a_{\mu}^{ ext{fixed-}u}
ight) + ext{higher cuts}$$

M. Hoferichter (Institute for Nuclear Theory)

	J = 20	extrapolation
s	-16.40	-
t	-16.33	-16.40
и	-16.26	-16.40

 $a_{\mu}^{\pi\text{-box}}(J) \sim J^{-n}, n pprox rac{5}{2}$

$\gamma^*\gamma^* \to \pi\pi$ partial waves

Roy(-Steiner) equations = Dispersion relations + partial-wave expansion

+ crossing symmetry + unitarity + gauge invariance

• **On-shell case** $\gamma\gamma
ightarrow \pi\pi$ García-Martín, Moussallam 2010, MH,

Phillips, Schat 2011, partial-wave analysis Dai, Pennington 2014

- Singly-virtual $\gamma^* \gamma \rightarrow \pi \pi$ Moussallam 2013
- Doubly-virtual $\gamma^*\gamma^* o \pi\pi$: anomalous thresholds

Colangelo, MH, Procura, Stoffer arXiv:1309.6877

$\gamma^*\gamma^* \to \pi\pi$ partial waves

Roy(-Steiner) equations = Dispersion relations + partial-wave expansion

+ crossing symmetry + unitarity + gauge invariance

- **On-shell case** $\gamma\gamma \rightarrow \pi\pi$ García-Martín, Moussallam 2010, MH, Phillips, Schat 2011, **partial-wave analysis** Dai, Pennington 2014
- Singly-virtual $\gamma^* \gamma \rightarrow \pi \pi$ Moussallam 2013
- Doubly-virtual $\gamma^* \gamma^* \rightarrow \pi \pi$: anomalous thresholds Colangelo, MH, Procura, Stoffer arXiv:1309.6877
- Constraints
 - Low energies: pion polarizabilities, ChPT
 - **Primakoff**: $\gamma \pi \rightarrow \gamma \pi$ (COMPASS), $\gamma \gamma \rightarrow \pi \pi$ (JLab)
 - Scattering: $e^+e^- \rightarrow e^+e^-\pi\pi$, $e^+e^- \rightarrow \pi\pi\gamma$
 - (Transition) Form factors: F_V^{π} , $\omega, \phi \to \pi^0 \gamma^*$

Physics of $\gamma^*\gamma^* \to \pi\pi$

- ππ rescattering includes dofs corresponding to resonances, e.g. f₂(1270)
- S-wave provides model-independent implementation of the $f_0(500)$

Physics of $\gamma^*\gamma^* \to \pi\pi$

- ππ rescattering includes dofs corresponding to resonances, e.g. f₂(1270)
- S-wave provides model-independent implementation of the $f_0(500)$
- Analytic continuation with dispersion theory: resonance properties
 - Precise determination of σ -pole parameters from $\pi\pi$ scattering Caprini, Colangelo, Leutwyler 2006

$$M_{\sigma} = 441^{+16}_{-8} \,\mathrm{MeV} \qquad \Gamma_{\sigma} = 544^{+18}_{-25} \,\mathrm{MeV}$$

• Coupling $\sigma \to \gamma \gamma$ from $\gamma \gamma \to \pi \pi$ MH, Phillips, Schat 2011

糸(500) PARTIAL WIDTHS

M. Hoferichter (Institute for Nuclear Theory)

Towards a data-driven analysis of HLbL scattering

Preliminary results for $\pi\pi$ rescattering

Full analysis requires careful study of

- Subtractions
- Asymptotic behavior
- Structure of the left-hand cut
- Coupled-channel system of $\pi\pi/\bar{K}K$
- Here: numerics for ππ rescattering with a pion-pole left-hand cut and phase shifts from inverse-amplitude method
 - Isolates $\pi\pi$ states
 - Reproduces f₀(500) properties and low-energy phenomenological phase shifts
 - Defines reasonable extrapolation to ∞
 - Pion form factor still describes off-shell behavior
 - \hookrightarrow solve dispersion relation for $\gamma^*\gamma^* \to \pi\pi$ **S-waves**

• S-wave contributions

cutoff	1 GeV	1.5 GeV	2 GeV	∞
<i>l</i> = 0	-9.2	-9.5	-9.3	-8.8
<i>l</i> = 2	2.0	1.3	1.1	0.9

- Check on $\gamma^*\gamma^* \to \pi\pi$: sum rule involving J = 0 (and higher) amplitudes
 - \hookrightarrow fulfilled at better than 10% with S-waves alone
- " $f_0(500)$ contribution" to a_{μ} around -9×10^{-11}

Preliminary results for $\pi\pi$ rescattering

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
π^0, η, η'	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	-	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
π , K loops + other subleading in N _c	-	-	-	0 ± 10	-	-	-
Axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	-	15 ± 10	22 ± 5
Scalars	-6.8 ± 2.0	-	-	-	-	-7 ± 7	-7 ± 2
Quark loops	21 ± 3	9.7 ± 11.1	-	-	-	2.3±	21 ± 3
Total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	110 ± 40	105 ± 26	116 ± 39

• S-wave contributions

cutoff	1 GeV	1.5 GeV	2 GeV	∞
<i>l</i> = 0	-9.2	-9.5	-9.3	-8.8
<i>l</i> = 2	2.0	1.3	1.1	0.9

• Check on $\gamma^* \gamma^* \to \pi \pi$: sum rule involving J = 0 (and higher) amplitudes

- \hookrightarrow fulfilled at better than 10% with S-waves alone
- " $f_0(500)$ contribution" to a_{μ} around -9×10^{-11}

Back to the pion pole: pion transition form factor

- In principle, the doubly-virtual form factor $F_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2)$ can be measured
- Absent data, and/or to improve accuracy: dispersive reconstruction
- Required input
 - Pion vector form factor
 - $\gamma^* \rightarrow 3\pi$ amplitude
 - $\pi\pi$ scattering amplitude
- Done for the singly-virtual case MH, Kubis, Leupold, Niecknig, Schneider 2014, doubly-virtual in progress
- Transition form factors $\omega, \phi \to \pi^0 \gamma^*$ probe a particular doubly-virtual configuration

Predicting $\sigma(e^+e^- \to \pi^0\gamma)$ from $\sigma(e^+e^- \to 3\pi)$

- Fit dispersive representation to
 - $e^+e^-
 ightarrow 3\pi$
- Determines singly-virtual form factor in time-like region
- ③ Predict $e^+e^-
 ightarrow \pi^0\gamma$ as check on the

formalism

Extraction of slope and space-like continuation

For HLbL need the form factor in the

space-like region

 \hookrightarrow another dispersion relation

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(q^2,0) = \mathcal{F}_{\pi\gamma\gamma} + rac{q^2}{\pi} \int_{s_{ ext{thr}}}^{\infty} \mathrm{d}s' rac{\mathrm{Im}\, \mathcal{F}_{\pi^0\gamma^*\gamma}(s',0)}{s'(s'-q^2)}$$

• Sum rules for $F_{\pi\gamma\gamma}$ and slope parameters

$$\begin{split} a_{\pi} &= \frac{M_{\pi^0}^2}{F_{\pi\gamma\gamma}} \frac{1}{\pi} \int_{s_{\text{thr}}}^{\infty} \mathrm{d}s' \frac{\mathrm{Im} \, F_{\pi^0\gamma^*\gamma}(s',0)}{s'^2} \\ &= (30.7 \pm 0.6) \times 10^{-3} \\ b_{\pi} &= (1.10 \pm 0.02) \times 10^{-3} \end{split}$$

- Soon to be tested at BESIII
- Similar program for η , η' Hanhart, Kupść, Meißner, Stollenwerk, Wirzba 2013 Kubis, Plenter 2015, Xiao et al. 2015

Left-hand cut

- **Pion pole**: coupling determined by F_V^{π} as before
- Multi-pion intermediate states: approximate in terms of resonances
 - $2\pi \sim \rho$: can even be done **exactly** using $\gamma^* \rightarrow 3\pi$ amplitude
 - ↔ cf. pion transition form factor MH, Kubis, Sakkas 2012, MH, Kubis, Leupold, Niecknig, Schneider 2014
 - $3\pi \sim \omega, \phi$: narrow-width approximation
 - \hookrightarrow transition form factors for $\omega,\phi o \pi^0\gamma^*$ Schneider, Kubis, Niecknig 2012
 - Higher intermediate states also potentially relevant: axials, tensors
 - \hookrightarrow sum rules to constrain their transition form factors Pauk, Vanderhaeghen 2014

Towards a data-driven analysis of HLbL

- Reconstruction of $\gamma^* \gamma^* \to \pi \pi, \pi^0$: combine experiment and theory constraints
- Beyond: η , η' , $K\bar{K}$, multi-pion channels (resonances), pQCD constraints, ...

- Dispersive framework for the calculation of the HLbL contribution to a_µ
- Includes one- and two-pion intermediate states, can be extended to other pseudoscalar poles and two-meson states
- General master formula in terms of BTT function
- Preliminary numbers for pion box and $\pi\pi$ rescattering
- Next steps
 - Doubly-virtual pion transition form factor
 - Refined analysis of rescattering effects
 - Implementation of pQCD constraints
 - Error analysis: which input quantity has the biggest impact on a_{μ} ?

Pion transition form factor: physical regions

Pion transition form factor: physical regions

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven a

Towards a data-driven analysis of HLbL scattering

Santa Barbara, October 21, 2016 38

Pion transition form factor: physical regions

M. Hoferichter (Institute for Nuclear Theory)

Towards a data-driven analysis of HLbL scattering

Santa Barbara, October 21, 2016

Unitarity for pion vector form factor

$$\operatorname{Im} F_V^{\pi}(s) = \theta(s - 4M_{\pi}^2) F_V^{\pi}(s) e^{-i\delta_1(s)} \sin \delta_1(s)$$

 \hookrightarrow final-state theorem: phase of F_V^{π} equals $\pi\pi P$ -wave phase δ_1 Watson 1954

Unitarity for pion vector form factor

$$\operatorname{Im} F_V^{\pi}(s) = \theta(s - 4M_{\pi}^2) F_V^{\pi}(s) e^{-i\delta_1(s)} \sin \delta_1(s)$$

- \hookrightarrow final-state theorem: phase of F_V^{π} equals $\pi\pi$ *P*-wave phase δ_1 Watson 1954
- Solution in terms of Omnès function Omnès 1958

$$F_{V}^{\pi}(s) = P(s)\Omega_{1}(s) \qquad \Omega_{1}(s) = \exp\left\{\frac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{1}(s')}{s'(s'-s)}\right\}$$

• Asymptotics + normalization $\Rightarrow P(s) = 1$

Unitarity

$$\operatorname{Im} f_1(s) = \theta(s - 4M_{\pi}^2) f_1(s) e^{-i\delta_1(s)} \sin \delta_1(s)$$

 \hookrightarrow again Watson's theorem, but now left-hand cut in $f_1(s)$

Unitarity

$$\operatorname{Im} f_1(s) = \theta(s - 4M_{\pi}^2) f_1(s) e^{-i\delta_1(s)} \sin \delta_1(s)$$

 \hookrightarrow again Watson's theorem, but now left-hand cut in $f_1(s)$

Including the left-hand cut

$$\operatorname{Im} f_{1}(s) = \operatorname{Im} \mathcal{F}(s) = \left(\underbrace{\mathcal{F}(s)}_{\operatorname{RHC}} + \underbrace{\widehat{\mathcal{F}}(s)}_{\operatorname{LHC}}\right) \theta\left(s - 4M_{\pi}^{2}\right) \sin \delta_{1}(s) e^{-i\delta_{1}(s)}$$

 $f_1(s) = \mathcal{F}(s) + \hat{\mathcal{F}}(s) \qquad \hat{\mathcal{F}}(s) = 3\langle (1-z^2)\mathcal{F} \rangle \qquad \langle z^n \mathcal{F} \rangle = \frac{1}{2} \int_{-1}^1 dz \, z^n \mathcal{F}(t)$

Omnès solution for $\mathcal{F}(s)$

$$\mathcal{F}(s) = \Omega_1(s) \left\{ \frac{C_1}{3} \left(1 - \dot{\Omega}_1(0)s \right) + \frac{C_2}{3}s + \frac{s^2}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\hat{\mathcal{F}}(s')\sin\delta_1(s')}{s'^2(s'-s)|\Omega_1(s')|} \right\}$$

Omnès solution for $\mathcal{F}(s)$

$$\mathcal{F}(s) = \Omega_1(s) \left\{ \frac{C_1}{3} \left(1 - \dot{\Omega}_1(0)s \right) + \frac{C_2}{3}s + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\hat{\mathcal{F}}(s')\sin\delta_1(s')}{s'^2(s'-s)|\Omega_1(s')|} \right\}$$

Solve for *F*(s) by iteration

• $\hat{\mathcal{F}}(s)$ corresponds to crossed-channel $\pi\pi$ rescattering

• Important observation: $\mathcal{F}(s)$ linear in C_i

$$\mathcal{F}(s) = C_1 \mathcal{F}_1(s) + C_2 \mathcal{F}_2(s)$$

 \hookrightarrow basis functions $\mathcal{F}_i(s)$ can be calculated once and for all

$\gamma\pi \to \pi\pi$: from cross-section data to the transition form factor

- Representation of the cross section in terms of two parameters → fit C_i to data мн, кubis, Sakkas 2012
 - Test of chiral anomaly $F_{3\pi} = e/(4\pi^2 F_{\pi}^3)$
 - Precise description of f₁
- Looking forward to COMPASS result
 - \hookrightarrow currently: use chiral prediction

$\gamma\pi \to \pi\pi$: from cross-section data to the transition form factor

- Representation of the cross section in terms of two parameters → fit C_i to data MH, Kubis, Sakkas 2012
 - Test of chiral anomaly $F_{3\pi} = e/(4\pi^2 F_{\pi}^3)$
 - Precise description of f₁
- Looking forward to COMPASS result
 - \hookrightarrow currently: use chiral prediction
- Dispersion relation for $f_{\pi^0\gamma}(s) = F_{\nu s}(s,0)$

$$f_{\pi^0\gamma}(s) = f_{\pi^0\gamma}(0) + \frac{s}{12\pi^2} \int_{4M_{\pi}^2}^{\infty} ds' \frac{q_{\pi}^3(s') (F_V^{\pi}(s'))^* f_1(s')}{s'^{3/2}(s'-s)}$$
$$q_{\pi}(s) = \sqrt{s/4 - M_{\pi}^2}$$

• Subtraction constant: $f_{\pi^0\gamma}(0) = \frac{F_{\pi\gamma\gamma}}{2} = \frac{e^2}{8\pi^2 F_{\pi}}$

$\omega, \phi \to \pi^0 \gamma^*$ transition form factor

- Similar procedure for $\omega,\phi o 3\pi$ and $\omega,\phi o \pi^0\gamma^*$ Schneider, Kubis, Niecknig 2012
- Additional complications due to decay kinematics

General virtualities: how to fix the normalization?

$$\hookrightarrow$$
 $F_{3\pi}$ for $\gamma \pi \rightarrow \pi \pi$, widths for $\omega, \phi \rightarrow 3\pi$

• Fit to $e^+e^- \rightarrow 3\pi$

$$\begin{aligned} \mathbf{a}(q^2) &= \alpha + \beta q^2 + \frac{q^4}{\pi} \int_{s_{\text{thr}}}^{\infty} \mathrm{d}s' \frac{\mathrm{Im}\,\mathcal{A}(s')}{s'^2(s'-q^2)} \\ \mathcal{A}(q^2) &= \frac{c_{\omega}}{M_{\omega}^2 - q^2 - i\sqrt{q^2}\Gamma_{\omega}(q^2)} + \frac{c_{\phi}}{M_{\phi}^2 - q^2 - i\sqrt{q^2}\Gamma_{\phi}(q^2)} \end{aligned}$$

• α fixed by $F_{3\pi}$, $\Gamma_{\omega/\phi}(q^2)$ include 3π , $K\bar{K}$, $\pi^0\gamma$ channels

- Good analytic properties, free parameters: β , c_{ω} , c_{ϕ}
- Valid up to 1.1 GeV, also fit including ω' , ω'' to estimate uncertainties

Pion transition form factor: unitarity relations

process	unitarity relations	SC 1	SC 2	
	7: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$F_{\pi^0\gamma\gamma}$	$\gamma \pi \rightarrow \pi \pi$
	P	$F_{3\pi}$	$\sigma(\gamma\pi o \pi\pi)$	
$\overset{\gamma^*_s}{\longrightarrow} \overset{\omega^*_{\gamma^*_s}}{\underset{i}{\longrightarrow}} \overset{\omega^*_{\gamma^*_s}}{\bigcup_{\gamma^*_s}} {\longrightarrow} {\overset}{\overset}{\longrightarrow} {\longrightarrow} {\overset}{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}{\overset}{$	$\underbrace{\omega,\phi}_{i} \underbrace{ \begin{pmatrix} i \\ i \\ j \end{pmatrix}}_{i} \gamma_{v}^{*}$		$\Gamma_{\pi^0\gamma}$	$\omega \rightarrow 3\pi, \phi \rightarrow 3\pi$
		Γ _{3π}	$rac{\mathrm{d}^2\Gamma}{\mathrm{d}s\mathrm{d}t}(\omega,\phi ightarrow 3\pi)$	
$\overset{\gamma^*_s}{\leadsto} {\bigvee} {\bigvee} {\bigvee} {\bigvee} {\underset{\iota_{\iota_{\iota_{\iota}}}}}$	7°		$\sigma(e^+e^- o \pi^0\gamma)$	$\gamma^* o {f 3}\pi$
		$\sigma(e^+e^- ightarrow 3\pi)$	$\sigma(\gamma\pi o\pi\pi)$ $rac{\mathrm{d}^{2}\Gamma}{\mathrm{d}s\mathrm{d}t}(\omega,\phi o3\pi)$	resummation of
	Ϋ́,	$F_{3\pi}$	$\sigma(e^+e^- ightarrow 3\pi)$	$\pi\pi$ rescattering

M. Hoferichter (Institute for Nuclear Theory)
$\gamma^* \gamma^* \to \pi \pi$ partial waves: unitarity relations

M. Hoferichter (Institute for Nuclear Theory)

Towards a data-driven analysis of HLbL scattering

= 990

$$\bar{\Pi}^{\mu\nu\lambda\sigma} = \sum_{i} \left(A^{\mu\nu\lambda\sigma}_{i,s} \Pi_{i}(s) + A^{\mu\nu\lambda\sigma}_{i,t} \Pi_{i}(t) + A^{\mu\nu\lambda\sigma}_{i,u} \Pi_{i}(u) \right)$$

- Need to choose $A_i^{\mu\nu\lambda\sigma}$ so that Π_i are free of kinematic singularities
- General procedure for finding such a basis Bardeen, Tung 1968, Tarrach 1975
- Results in non-diagonal terms

$$\Pi_{1}(\boldsymbol{s}) = \frac{\boldsymbol{s} - q_{3}^{2}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{\mathrm{d}\boldsymbol{s}'}{\boldsymbol{s}' - q_{3}^{2}} \left(\mathcal{K}_{1}(\boldsymbol{s}', \boldsymbol{s}) \mathrm{Im} \, \bar{h}_{++,++}^{0}(\boldsymbol{s}') + \frac{2\xi_{1}\xi_{2}}{\lambda(\boldsymbol{s}', q_{1}^{2}, q_{2}^{2})} \mathrm{Im} \, \bar{h}_{00,++}^{0}(\boldsymbol{s}') \right)$$

Example: $\gamma^* \gamma^* \to \pi \pi$

- Similar analysis for $\gamma^*\gamma^* o \pi\pi$: Bardeen-Tung-Tarrach basis
 - \hookrightarrow partial-wave dispersion relations (**Roy–Steiner equations**)
- Find similar non-diagonal kernels

= 990

Example: $\gamma^* \gamma^* \rightarrow \pi \pi$

• Similar analysis for $\gamma^*\gamma^* o \pi\pi$: Bardeen-Tung-Tarrach basis

 \hookrightarrow partial-wave dispersion relations (**Roy–Steiner equations**)

- Find similar non-diagonal kernels
- Check within 1-loop ChPT

$$\begin{split} &\frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \mathrm{d}t' \left\{ \left(\frac{1}{t'-t} - \frac{t'-q_1^2 - q_2^2}{\lambda(t',q_1^2,q_2^2)} \right) \mathrm{Im} \, h_1(t';q_1^2,q_2^2) + \frac{2q_1^2q_2^2}{\lambda(t',q_1^2,q_2^2)} \mathrm{Im} \, h_2(t';q_1^2,q_2^2) \right\} \\ &= 1 + 2 \left(M_{\pi}^2 + \frac{tq_1^2q_2^2}{\lambda(t,q_1^2,q_2^2)} \right) C_0(t,q_1^2,q_2^2) + \frac{t(q_1^2 + q_2^2) - (q_1^2 - q_2^2)^2}{\lambda(t,q_1^2,q_2^2)} \bar{J}(t) \\ &- \frac{q_1^2(t+q_2^2 - q_1^2)}{\lambda(t,q_1^2,q_2^2)} \bar{J}(q_1^2) - \frac{q_2^2(t+q_1^2 - q_2^2)}{\lambda(t,q_1^2,q_2^2)} \bar{J}(q_2^2) \\ \mathrm{Im} \, h_1(t;q_1^2,q_2^2) = 2 \left(M_{\pi}^2 + \frac{tq_1^2q_2^2}{\lambda(t,q_1^2,q_2^2)} \right) \mathrm{Im} \, C_0(t,q_1^2,q_2^2) + \frac{t(q_1^2 + q_2^2) - (q_1^2 - q_2^2)^2}{\lambda(t,q_1^2,q_2^2)} \mathrm{Im} \, \bar{J}(t) \\ \mathrm{Im} \, h_2(t;q_1^2,q_2^2) = -\frac{1}{\lambda(t,q_1^2,q_2^2)} \left[\left(t^2 - (q_1^2 - q_2^2)^2 \right) \mathrm{Im} \, C_0(t,q_1^2,q_2^2) + 4t \mathrm{Im} \, \bar{J}(t) \right] \end{split}$$

 \hookrightarrow non-diagonal kernels crucial for doubly-virtual case

● Another doubly-virtual complication: anomalous thresholds in time-like region Colangelo, MH, Procura, Stoffer arXiv:1309.6877

M. Hoferichter (Institute for Nuclear Theory)

Towards a data-driven analysis of HLbL scattering

Subtraction functions

Omnès representation for S-wave

$$\begin{split} h_{0,++}(s) &= \Delta_{0,++}(s) + \Omega_0(s) \left[\frac{1}{2} (s - s_+) a_+ (q_1^2, q_2^2) + \frac{1}{2} (s - s_-) a_- (q_1^2, q_2^2) + q_1^2 q_2^2 b(q_1^2, q_2^2) \right. \\ &+ \frac{s(s - s_+)}{2\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\sin \delta_0(s') \Delta_{0,++}(s')}{s'(s' - s_+)(s' - s) |\Omega_0(s')|} + \frac{s(s - s_-)}{2\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\sin \delta_0(s') \Delta_{0,++}(s')}{s'(s' - s_-)(s' - s) |\Omega_0(s')|} \\ &+ \frac{2q_1^2 q_2^2 s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\sin \delta_0(s') \Delta_{0,00}(s')}{s'(s' - s_+)(s' - s_-) |\Omega_0(s')|} \right] \qquad s_{\pm} = q_1^2 + q_2^2 \pm 2\sqrt{q_1^2 q_2^2} \end{split}$$

• Inhomogeneities $\Delta_{0,++}(s), \Delta_{0,00}(s)$ include left-hand cut

Subtraction functions

• $b(q_1^2, q_2^2)$ and $a_+(q_1^2, q_2^2) - a_-(q_1^2, q_2^2)$ multiply $q_1^2 q_2^2$ and $\sqrt{q_1^2 q_2^2}$

 \hookrightarrow inherently doubly-virtual observables \Rightarrow need ChPT (or lattice)

- However: $a(q_1^2, q_2^2) = (a_+(q_1^2, q_2^2) + a_-(q_1^2, q_2^2))/2$ fixed by singly-virtual measurements
 - \hookrightarrow compare with chiral prediction, uncertainty estimates for the other functions are $\neg \land \land \land$

• 1-loop result for arbitrary q_i^2 , e.g.

$$\begin{aligned} \mathbf{a}^{\pi^{0}}(q_{1}^{2}, q_{2}^{2}) &= -\frac{M_{\pi}^{2}}{8\pi^{2}F_{\pi}^{2}(q_{1}^{2} - q_{2}^{2})^{2}} \left\{ q_{1}^{2} + q_{2}^{2} + 2\left(M_{\pi}^{2}(q_{1}^{2} + q_{2}^{2}) + q_{1}^{2}q_{2}^{2}\right)C_{0}(q_{1}^{2}, q_{2}^{2}) \right. \\ &+ q_{1}^{2}\left(1 + \frac{6q_{2}^{2}}{q_{1}^{2} - q_{2}^{2}}\right)\bar{J}(q_{1}^{2}) + q_{2}^{2}\left(1 - \frac{6q_{1}^{2}}{q_{1}^{2} - q_{2}^{2}}\right)\bar{J}(q_{2}^{2}) \right\} \end{aligned}$$

• Special case: $q_1^2 = q_2^2 = 0$

$$a^{\pi^{\pm}}(0,0) = \frac{\overline{l_6} - \overline{l_5}}{48\pi^2 F_{\pi}^2} + \dots = \frac{M_{\pi}}{2\alpha} (\alpha_1 - \beta_1)^{\pi^{\pm}} \qquad b^{\pi^{\pm}}(0,0) = 0$$
$$a^{\pi^0}(0,0) = -\frac{1}{96\pi^2 F_{\pi}^2} + \dots = \frac{M_{\pi}}{2\alpha} (\alpha_1 - \beta_1)^{\pi^0} \qquad b^{\pi^0}(0,0) = -\frac{1}{1440\pi^2 F_{\pi}^2 M_{\pi}^2} + \dots$$

 \hookrightarrow resum higher chiral orders into pion polarizabilities

Subtraction functions: dispersive representation

Singly-virtual case: phenomenological representation with chiral constraints

- \hookrightarrow parameters fixed from $e^+e^- o \pi^0\pi^0\gamma$ (CMD2 and SND) Moussallam 2013
- **Dispersive representation**: imaginary part from 2π , 3π , ...

 \hookrightarrow analytic continuation from time-like to space-like kinematics

• Example: $I = 2 \Rightarrow$ isovector photons $\Rightarrow 2\pi \sim \rho$

$$\begin{aligned} a^{2}(q_{1}^{2},q_{2}^{2}) &= \alpha_{0} \Big[\alpha^{2} + \alpha \Big(q_{1}^{2} \mathcal{F}^{\rho}(q_{1}^{2}) + q_{2}^{2} \mathcal{F}^{\rho}(q_{2}^{2}) \Big) + q_{1}^{2} q_{2}^{2} \mathcal{F}^{\rho}(q_{1}^{2}) \mathcal{F}^{\rho}(q_{2}^{2}) \\ \mathcal{F}^{\rho}(q^{2}) &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathrm{d}s \frac{q_{\pi\pi}^{3}(s) (F_{\pi}^{V}(s))^{*} \Omega_{1}(s)}{s^{3/2}(s - q^{2})} \qquad q_{\pi\pi}(s) = \sqrt{\frac{s}{4} - M_{\pi}^{2}} \end{aligned}$$

 $\hookrightarrow \alpha_0$ and α can be determined from $a^2(q^2, 0)$ alone!

Moussallam 2013

Wick rotation: anomalous thresholds

Trajectory of the triangle anomalous thresholds for $0 < q_1^2 < 4m^2$

M. Hoferichter (Institute for Nuclear Theory)