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ChPT nuclear forces
VNN V3N V4N

Worked out up 
to the order N4LO N3LO 

N4LO in progress
N3LO

Regularization 
used

Dim. Reg 
In combination with semi-local 
regularization in Schrödinger eq.
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By construction long - range physics is unaffected by this regulator

No additional SFR is needed

Novelties in NN sector (beside the construction of N4LO NN)

Theoretical uncertainty estimation due to chiral expansion for every fixed cutoff

Local regularization
Working with relatively low cut-offs                                 prevents appearance of NN deeply bound states ⇤ ⇠ 500 . . . 600MeV
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Absence of deeply bound states is advantageous for few- and many-body simulations 

Finite cut-off artefacts are manifested in residual cut-off dependence of nuclear observables

Reduce cut-off artefacts by efficient choice of regularization 

Standard non-local momentum space regulator:
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Affects the discontinuity across the left-hand cuts
9

Im E
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FIG. 2: Singularity structure of the partial-wave two-nucleon scattering amplitude in the complex energy plane. The solid
dot indicates the position of the S-wave (virtual) bound state. Elastic unitarity is satisfied on the right-hand cut, also called
unitarity cut. Left-hand cuts are caused by exchange processes in the potential. The first and second left-hand cuts due to
one- and two-pion exchange start at laboratory energy of E

⇡

= �M2
⇡

/(2m
N

) ⇠ 10MeV and E2⇡ = �2M2
⇡

/m
N

⇠ 40MeV,
respectively.

governed by contributions emerging from pion exchanges which are unambiguously4 determined by the chiral symmetry
of QCD and experimental information on the pion-nucleon system needed to pin down the relevant LECs. Secondly,
the short-range part of the potential is parametrized by all possible contact interactions with increasing number
of derivatives. It is desirable to introduce regularization in such a way that the long-range part of the interaction
including especially the OPEP, which is responsible for left-hand cuts in the partial-wave scattering amplitude as
visualized in Fig. 2 and thus governs near-threshold energy behavior of the S-matrix, is not a↵ected by the regulator.
Notice that the near-threshold left-hand singularities of the amplitude can be tested e.g. via the low-energy theorems
[27, 59].

The standard implementation of the regulator used e.g. in Refs. [1, 2] is as follows:
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the chiral order one is working at. Specifically, Ref. [1] used m = 6 while Ref. [2] employed di↵erent powers m  6 for
di↵erent terms in the potential, presumably in order to optimize the quality of the fit. It is clear that the multiplicative
regulator introduced above leads to distortions of the analytic structure of the partial-wave amplitude near threshold
as it a↵ects the discontinuity across the left-hand cuts, see also Refs. [60, 61] for recent studies of NN scattering
which explicitly exploit the analytic structure of the amplitude. While such distortions are small if ⇤ can be chosen
su�ciently large, they can lead to sizable e↵ects for the commonly adopted choices of ⇤ ⇠ 500MeV. It is easy to
avoid this unpleasant feature by exploiting the fact that long-range potentials derived in chiral EFT are nearly local,
i.e. depend only on momentum transfer ~q. In fact, the only source of non-locality is given by relativistic corrections
which, in the power counting scheme we are using, start to appear at N3LO, see the previous section. The feature
of locality naturally suggests to apply regularization in coordinate space similar to what was done in Refs. [57, 58]
by cutting o↵ short-range parts of the pion-exchange potentials, for which chiral expansion does not converge, see
Ref. [62] for a related discussion:

Vlong�range(~r ) ! V

reg
long�range(~r ) = Vlong�range(~r )f

⇣
r

R

⌘
, (3.25)

where the regulator function f(x) is chosen such that its value goes to 0 (1) su�ciently fast for x ! 0 (exponentially
fast for x � 1). It is instructive to write this regularization in momentum space,

V (~q ) ! V

reg(~q ) = V (~q )�
Z

d

3
l

(2⇡)3
V (~l ) FT~q�~l [1� f ] , (3.26)

4
Strictly speaking, even the long-range tail of the potential is scheme-dependent as it can be a↵ected by unitary transformations. Notice,

however, that unitary ambiguity of the chiral nuclear forces was found to be strongly reduced in the static limit if one demands that

the corresponding potentials are renormalizable [32].

Cut-off artefacts can be partly reduced by additional introduction of SFR

Convenient for partial wave decomposition of nuclear force: simple multiplication

Local regularization in coordinate space:
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By construction long - range physics is unaffected by this regulator

No additional SFR is needed

Distortion of analytic structure of partial-wave amplitudes near threshold.
Effects proportional to inverse power of    . ⇤ ⇠ 500 . . . 600MeV
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Uncertainty due to chiral expansion
4
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FIG. 2: Predictions for the np total cross section based on the
improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green),
N3LO (filled triangles, color online: blue) and N4LO (filled
circles, color online: red) at the laboratory energies of 50,
96, 143 and 200 MeV for the di↵erent choices of the cuto↵:
R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm and
R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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Here, Q is the expansion parameter given by
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. (4)

For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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NPWA with the uncertainty estimated as explained in the
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
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see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at

R = 0.9 fm NLO N2LO N3LO N4LO

Good convergence of chiral expansion

Excellent agreement with NPWA data

Error bands are consistent with each other            strong support of chiral uncertainty estimation 
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Nuclear currents in chiral EFT
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Electroweak probes on nucleons and nuclei can be described by current formalism
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Siegert approach + N4LO
Generate longitudinal component of NN current by continuity equation 
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regularized longitudinal current (Siegert approach)
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FIG. 1. (Color online) The total cross section σtot for the γ + d → p + n reaction. The chiral
N4LO, R=0.9 fm predictions for the SNC (SNC+Siegert) current model are shown with the dashed

red (thick black dashed) curve. The AV18 predictions for the SNC, SNC+Siegert and SNC+MEC
current models are shown with the double-dotted-dashed green, dotted violet and solid blue curve,
respectively. The experimental data are from Ref. [46] (black ”x”), [47] (magenta squares), [48]

(open circles), [49] (black pluses) and [50] (black dots).

obtain very similar predictions, practically indistinguishable at photon energies below ap-
proximately 30 MeV. At the higher energies a small difference develops between the chiral
and the AV18 potential, with the chiral predictions lying closer to the data.

Next we study a more detailed observable, namely the differential cross section at two
photon laboratory energies Eγ=30 MeV (Fig. 2, the upper row) and Eγ=100 MeV (Fig. 2,
the lower row). In the left panel we show the convergence of predictions for R=0.9 fm with
respect to the order of the chiral expansion. In the middle panel the uncertainty of theoretical
predictions due to the truncation of higher order contributions is given. Finally, in the right
panel, we demonstrate the dependence of predictions on the values of the regulator R at
N4LO using five different values of R: 0.8, 0.9, 1.0, 1.1 and 1.2 fm. Our best prediction,
SNC+Siegert for R=0.9 fm is represented by the thick black dashed curve and is shown
both in the left and right panels. For the sake of comparison, also the AV18 prediction given
by the thick violet dotted line is displayed in these two panels. The same arrangement of
curves will be preserved also in Figs. 3-6, 8 and 12.

It is clear that for both energies one has to go beyond the leading order (LO) to describe
data. At the lower energy all the higher than LO predictions are close to each other, but
at Eγ=100 MeV the convergence is reached only at N3LO. The truncation errors presented
in the central panel confirm this observation and the band at N4LO lies on the N3LO
one. A small but visible width of the N4LO band for the higher energy suggests that some
contributions from higher orders are still possible for this observable. The cut-off dependence
of the cross section is very small at lower energy and increases with energy, reaching at
Eγ=100 MeV about 20% at small proton c.m. scattering angles. However, a more careful
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FIG. 6. (Color online) The differential cross section d2σ/dΩ for the n + d →3 H + γ reaction at
En=9.0 MeV (top) and for the p+d →3 He+ γ reaction at Ep=29 MeV (middle) and Ep=95 MeV

(bottom). The left column shows the convergence of predictions at R=0.9 fm with respect to the
order of the chiral expansion (curves as in Fig. 2). The middle column shows the truncation errors

(see text) at the different orders of the chiral expansion (bands as in Fig. 2). The right column
shows the dependence of the predictions at N4LO on the value of the R parameter (curves as in
Fig. 2 ). The data at En=9.0 MeV are from [59], at Ep=29 MeV from [60] and at Ep=95 MeV

from [61].

section at photon laboratory energy Eγ= 40 MeV and 120 MeV as a function of the final
proton energy for the proton emerging at four angles Θp with respect to the photon beam:
Θp = 0◦, 60◦, 120◦ and 180◦. Since we focus here on predictions of the new local chiral
potential, we refer the reader to Refs. [64] and [36] for the discussion on the origin of
structures observed in the spectra.

In Fig. 9 we show the convergence of predictions with respect to the order of the chiral
expansion for the detected proton at Eγ= 40 MeV (top) and Eγ= 120 MeV (bottom). Only
predictions at LO are far away from the rest and are surely not sufficient to describe the
data. The other predictions are close to each other and, in particular the N3LO and N4LO
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MeV are from [62, 63] and at Ep=95 MeV from [61].
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proton energy for the proton emerging at four angles Θp with respect to the photon beam:
Θp = 0◦, 60◦, 120◦ and 180◦. Since we focus here on predictions of the new local chiral
potential, we refer the reader to Refs. [64] and [36] for the discussion on the origin of
structures observed in the spectra.

In Fig. 9 we show the convergence of predictions with respect to the order of the chiral
expansion for the detected proton at Eγ= 40 MeV (top) and Eγ= 120 MeV (bottom). Only
predictions at LO are far away from the rest and are surely not sufficient to describe the
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13

0 30 60 90 120 150
Θ
γd [deg]

0

0.2

0.4

0.6

d2 σ
/d
Ω

 [
µ

b 
sr

-1
]

0 30 60 90 120 150
Θ
γd [deg]

0 30 60 90 120 150 180
Θ
γd [deg]

FIG. 7. (Color online) The truncation errors at different orders of the chiral expansion for the

same cross section as shown in Fig.6 but at the proton energy Ep=95 MeV only. The predictions
have been obtained using the value of the regularization parameter R=0.8 fm (left), R =1.0 fm
(middle) and R =1.2 fm (right). Bands are as in Fig. 2 and data are from [61].

-0.2
-0.16
-0.12
-0.08
-0.04

0
A

y(d
)

0 30 60 90 120 150
Θ
γd [deg]

-0.1

-0.05

0

0 30 60 90 120 150
Θ
γd [deg]

0 30 60 90 120 150 180
Θ
γd [deg]

FIG. 8. (Color online) The deuteron analyzing power Ay(d) for the p + d →3 He + γ reaction at

the deuteron laboratory energies Ed= 17.5 MeV (top) and Ed=95 MeV (bottom). The left column
shows the convergence of the predictions at R=0.9 fm with respect to the order of the chiral
expansion (curves as in Fig. 2). The middle column shows the truncation errors at the different

orders of the chiral expansion (bands as in Fig. 2). The right column shows the dependence of
predictions at N4LO on the value of the R parameter (curves as in Fig. 2 ). The data at Ep=17.5

MeV are from [62, 63] and at Ep=95 MeV from [61].

14

0 30 60 90 120 150
Θ
γd [deg]

0

0.2

0.4

0.6

d2 σ
/d
Ω

 [
µ

b 
sr

-1
]

0 30 60 90 120 150
Θ
γd [deg]

0 30 60 90 120 150 180
Θ
γd [deg]

FIG. 7. (Color online) The truncation errors at different orders of the chiral expansion for the

same cross section as shown in Fig.6 but at the proton energy Ep=95 MeV only. The predictions
have been obtained using the value of the regularization parameter R=0.8 fm (left), R =1.0 fm
(middle) and R =1.2 fm (right). Bands are as in Fig. 2 and data are from [61].

-0.2
-0.16
-0.12
-0.08
-0.04

0

A
y(d

)

0 30 60 90 120 150
Θ
γd [deg]

-0.1

-0.05

0

0 30 60 90 120 150
Θ
γd [deg]

0 30 60 90 120 150 180
Θ
γd [deg]

FIG. 8. (Color online) The deuteron analyzing power Ay(d) for the p + d →3 He + γ reaction at

the deuteron laboratory energies Ed= 17.5 MeV (top) and Ed=95 MeV (bottom). The left column
shows the convergence of the predictions at R=0.9 fm with respect to the order of the chiral
expansion (curves as in Fig. 2). The middle column shows the truncation errors at the different

orders of the chiral expansion (bands as in Fig. 2). The right column shows the dependence of
predictions at N4LO on the value of the R parameter (curves as in Fig. 2 ). The data at Ep=17.5

MeV are from [62, 63] and at Ep=95 MeV from [61].

14

0 30 60 90 120 150
Θ
γd [deg]

0

0.2

0.4

0.6

d2 σ
/d
Ω

 [
µ

b 
sr

-1
]

0 30 60 90 120 150
Θ
γd [deg]

0 30 60 90 120 150 180
Θ
γd [deg]

FIG. 7. (Color online) The truncation errors at different orders of the chiral expansion for the

same cross section as shown in Fig.6 but at the proton energy Ep=95 MeV only. The predictions
have been obtained using the value of the regularization parameter R=0.8 fm (left), R =1.0 fm
(middle) and R =1.2 fm (right). Bands are as in Fig. 2 and data are from [61].

-0.2
-0.16
-0.12
-0.08
-0.04

0

A
y(d

)
0 30 60 90 120 150

Θ
γd [deg]

-0.1

-0.05

0

0 30 60 90 120 150
Θ
γd [deg]

0 30 60 90 120 150 180
Θ
γd [deg]

FIG. 8. (Color online) The deuteron analyzing power Ay(d) for the p + d →3 He + γ reaction at

the deuteron laboratory energies Ed= 17.5 MeV (top) and Ed=95 MeV (bottom). The left column
shows the convergence of the predictions at R=0.9 fm with respect to the order of the chiral
expansion (curves as in Fig. 2). The middle column shows the truncation errors at the different

orders of the chiral expansion (bands as in Fig. 2). The right column shows the dependence of
predictions at N4LO on the value of the R parameter (curves as in Fig. 2 ). The data at Ep=17.5

MeV are from [62, 63] and at Ep=95 MeV from [61].

14

Ep = 29 MeV Ed = 17.5 MeV Ed = 95 MeV

Nucleon-deuteron radiative capture:

h
H

strong

,⇢
i
= ~k · ~J

� + d ! p+ n

p(n) + d !3 H(3He) + �

A
(�1)

0,1

k
0

/m ⇠ Q4/⇤4

b

H()
n,p

n p  = d+
3

2
n+ p+ a� 4

Aµ(k) ! U†Aµ(k)U, P (k) ! U†P (k)U, H
strong

! U †H
strong

U

Aµ(k) ! U†Aµ(k)U, ~K ! U † ~KU, H
strong

! U†H
strong

U, Xµ ! U†XµU

Xµ ! Xµ � i
h
~e · ~K,Y µ(~k)

i
+ ~e · ~rk

h
H

strong

,Y µ(~k)
i
� Y ?

µ

h
~e · ~K,H

strong

i
= i~e · ~P

h
i~e · ~K, i

h
H

strong

, Yµ(~k)
ii

= i
h
H

strong

,
h
i~e · ~K,Yµ(~k)

ii
� i~e · ~k Yµ(~k)

U [a] = exp

✓
i

Z
d3xY µ(~x) · aµ(~x, x

0

)

◆

U [p] = exp

✓
i

Z
d3xZ(~x) · p(~x, x

0

)

◆

Aµ(k) ! Aµ(k) + i
h
H

strong

,Y µ(~k)
i
� i k

0

Y µ(~k)

P (k) ! P (k) + i
h
H

strong

,Z(~k)
i
� i k

0

Z(~k)

lhs of cont. eq. ! lhs of cont. eq.+ i
h
H

strong

,~k · ~Y (~k)
i

rhs of cont. eq. ! rhs of cont. eq.+ i
h
H

strong

,~k · ~Y (~k)
i

lhs of cont. eq. ! lhs of cont. eq.+mq

h
H

strong

,Z(~k)
i

rhs of cont. eq. ! rhs of cont. eq.+mq

h
H

strong

,Z(~k)
i

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
 = H

e↵

[a, v, s, p] 

i
@

@t
U †(R,L) = H

e↵

[a0, v0, s0, p0]U†(R,L) 

1

Skibinski, Golak, Topolniki, Witala, Edelbaum, HK, Kamada, Meißner, Nogga, arXiv:1605.02011 

0 10 20 30 40 50 60 70 80
E
γ
 [MeV]

10

100

1000

σ
to

t [µ
b]

FIG. 1. (Color online) The total cross section σtot for the γ + d → p + n reaction. The chiral
N4LO, R=0.9 fm predictions for the SNC (SNC+Siegert) current model are shown with the dashed

red (thick black dashed) curve. The AV18 predictions for the SNC, SNC+Siegert and SNC+MEC
current models are shown with the double-dotted-dashed green, dotted violet and solid blue curve,
respectively. The experimental data are from Ref. [46] (black ”x”), [47] (magenta squares), [48]

(open circles), [49] (black pluses) and [50] (black dots).

of including many-body contributions to the current operator give quite similar predictions,
which are in a very good agreement with the data, when the AV18 NN potential is used
to generate the 2N states. Further, the SNC+Siegert approach to the current operator
works equally well with the chosen chiral and the AV18 NN potentials. In both cases we
obtain very similar predictions, practically indistinguishable at photon energies below ap-
proximately 30 MeV. At the higher energies a small difference develops between the chiral
and the AV18 potential, with the chiral predictions lying closer to the data.

Next we study a more detailed observable, namely the differential cross section at two
photon laboratory energies Eγ=30 MeV (Fig. 2, the upper row) and Eγ=100 MeV (Fig. 2,
the lower row). In the left panel we show the convergence of predictions for R=0.9 fm with
respect to the order of the chiral expansion. In the middle panel the uncertainty of theoretical
predictions due to the truncation of higher order contributions is given. Finally, in the right
panel, we demonstrate the dependence of predictions on the values of the regulator R at
N4LO using five different values of R: 0.8, 0.9, 1.0, 1.1 and 1.2 fm. Our best prediction,
SNC+Siegert for R=0.9 fm is represented by the thick black dashed curve and is shown
both in the left and right panels. For the sake of comparison, also the AV18 prediction given
by the thick violet dotted line is displayed in these two panels. The same arrangement of
curves will be preserved also in Figs. 3-6, 8 and 12.

It is clear that for both energies one has to go beyond the leading order (LO) to describe
data. At the lower energy all the higher than LO predictions are close to each other, but
at Eγ=100 MeV the convergence is reached only at N3LO. The truncation errors presented
in the central panel confirm this observation and the band at N4LO lies on the N3LO

7



with the accuracy of ~ 1.5%

1 Introduction

In 2013 we published the final result of the MuCap experiment [2], which is a precision determination of g
P

,
the weak-pseudoscalar coupling of the proton. The hydrogen time projection chamber (TPC) technique
employed is relatively immune to the poorly known molecular physics complications that plagued previous
e↵orts. The result, g

P

= 8.06±0.55, settles a long-standing experimental challenge. It provides a sensitive
test of QCD symmetries and finally confirms a fundamental prediction of chiral perturbation theory. The
result was recognized as an Editor’s Suggestion and described in an American Physical Society synopsis
and in several press releases.
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Figure 2: Recent theoretical and experimental results on muon capture rate ⇤
d

from the doublet state of
the µd atom. The pion-less EFT calculation [3] cannot be readily expressed by a single value and is not
included. Bertin 1973 is o↵ scale (c.f. [4]). Experimental results scatter widely and the most accurate
result is inconsistent with modern theory. The ambitious precision goal of MuSun is indicated.

The good agreement between the MuCap result and theory demonstrates that all parameters entering
the one-nucleon weak amplitudes are well under control. This allows the MuSun experiment to extend
this program with a precise determination of the strength of the weak interaction in the two-nucleon

system, using the process
µ+ d ! n+ n+ ⌫. (1)

MuSun will determine the sole unknown low-energy constant involved in modern – QCD-based – e↵ective
field theory (EFT) calculations of weak nuclear reactions. The anticipated precision is 5 times greater
than presently available from the 2N system and will be essential for calibrating these reactions in a model-
independent way. This will provide a benchmark for extending the EFT method to more complicated
few-body processes. Regarding the 2N system, muon capture will provide unique constraints on electro-

3

µ- + d ➝ νµ + n + n
Main goal: measure the doublet capture rate Λd in 

This will strongly constrain the short-range 
axial current 

d

n n

µ-

νµ

W
L1,A

EFT

The resulting axial exchange current can be used to make precision calculations for

triton half life, fT1/2 = 1129.6 ± 3.0 s, and the muon capture rate on 3He, 
Λ0 = 1496 ± 4 s-1  →   precision tests of the theory

weak reactions of astrophysical interest such 
as e.g. the pp chain of the solar burning: 

p + p ➝ d + e+ + νe
p + p + e- ➝ d + νe

p + 3He ➝ 4He + e+ + νe
7Be + e- ➝ 7Li + νe

8B ➝ 8Be* + e+ + νe

L1,A governs the leading 3NF

MuSun experiment at PSI



Historical remarks

Baroni, Girlanda, Pastore, Schiavilla, Viviani, PRC93 (2016) 015501, Erratum: PRC 93 (2016) 049902

Brown, Adam, Mosconi, Ricci, Truhlik, Nakamura, Sato, Ando, Kubidera, Riska, Sauer, Friar, … 

Leading one-loop expressions using TOPT including pion-pole terms for general 
kinematics (still incomplete, e.g. no 1/m corrections)

First derivation within chiral EFT to leading 1-loop order using TOPT

Meson-exchange theory, Skyrme model, phenomenology, …

— pion-pole diagrams ignored

— box-type diagrams neglected

— renormalization incomplete

Park, Min, Rho Phys. Rept. 233 (1993) 341;  Park et al., Phys. Rev. C67 (2003) 055206

— only for the threshold kinematics

Complete derivation to leading one-loop order using the method of UT
HK, Epelbaum, Meißner, arXiv:1610.03569  
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In general, a time-dependent unitary transformation U(t) of a given Hamiltonian H (which might have an explicit time
dependence through external sources) is not just given by U †(t)HU(t). This can be easily seen from the Schrödinger
equation

i
@

@t
 = H , (2.14)

that leads to

i
@

@t
U(t)U†(t) = U(t)i

@

@t
U†(t) +

✓

i
@

@t
U(t)

◆

U †(t) = HU(t)U†(t) . (2.15)

Multiplying both sides by U†(t) and bringing the term with the time-derivative of the unitary transformation on the
right-hand side, we obtain the Schrödinger equation for the transformed state  0 = U†(t) in the form

i
@

@t
 0 =



U †(t)HU(t)� U†(t)
✓

i
@

@t
U(t)

◆�

 0 . (2.16)

Thus, the unitary transformation of the Hamiltonian H is given by

H ! U†(t)HU(t) +

✓

i
@

@t
U†(t)

◆

U(t). (2.17)

We see that in the case of a time-dependent UT, there is an additional term which depends on the time-derivative of
the operator U(t). For this reason, the transformed Hamiltonian in our case depends on external sources and their
time derivatives:

He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] =

⌘U†[a, v, s, p]U †
⌘U

†
OkuboH[a, v, s, p]UOkuboU⌘U [a, v, s, p]⌘ + ⌘

✓

i
@

@t
U †[a, v, s, p]

◆

U [a, v, s, p]⌘. (2.18)

For a = v = p = 0 and s = mq we obtain the nuclear potential

V := He↵ [a = 0, ȧ = 0, v = 0, v̇ = 0, s = mq, ṡ = 0, p = 0, ṗ = 0]�H0, (2.19)

where H0 is the free nucleon Hamiltonian. The individual contributions to V have a form similar to those obtained
in TOPT and are given by a sequence of vertices and the corresponding energy denominators. For example, the
leading and subleading contributions to the nuclear force V (Q0) and V (Q2) constructed solely from the lowest order

⇡N coupling proportional to the nucleon axial-vector constant gA from L(1)
⇡N have the form

V (Q0) = �⌘H
(1)
2,1

�1

E⇡
H

(1)
2,1⌘ ,

V (Q2) = �1

2
⌘H

(1)
2,1

�1

E⇡
H

(1)
2,1

�2

E⇡
H

(1)
2,1

�1

E⇡
H

(1)
2,1⌘ +

1

2
⌘H

(1)
2,1

�1

E2
⇡

H
(1)
2,1⌘H

(1)
2,1

�1

E⇡
H

(1)
2,1⌘ + h.c. , (2.20)

where we have adopted the notation introduced in [36] with H
()
a,b denoting an interaction from the Hamiltonian

with a nucleon and b pion fields. Further, �i denotes a projection operator onto states with i pions while E⇡ =
P

i !i =
P

i

p

~pi 2 +M2
⇡ is the pion kinetic energy. The operator V (Q0) contributes to the nucleon self-energy and

gives rise to the one-pion exchange 2N potential while the terms in V (Q2) contribute to the nucleon self-energy,
renormalization of the one-pion exchange 2N potential, the leading two-pion exchange 2N potential and the tree-level
two-pion exchange 3N forces (which, however, turn out to vanish). The explicit form of these contributions is easily

obtained by substituting the explicit expressions for the vertices H(1)
2,1 , written in second quantization, and performing

the algebra. Here and in what follows, all loop integrals are calculated in the standard way using dimensional
regularization. Finally, we emphasize that the contributions which do not involve reducible topologies can be more
e�ciently calculated using the Feynman graph technique. This is, in fact, the way some of the presented results are
obtained.
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✓
i
@

@t
U †

[a, v]

◆
U [a, v]

abµ(x)

abµ(x)

e�

µ�

⌫µ

=: He↵ [a, ȧ, v, v̇]

Ab
µ(~x, t) :=

�

�aµ,b(~x, t)
He↵ [a, ȧ, v, v̇]

���
a=v=0

abµ

�

�0

�0

�LT

�LT

�pLT

�pLT (box) = 3.35µ2 � 2.78µ3 � 1.08µ4
+ 1.67µ5

+

+ 0.10µ6
+ 0.05µ7 � 0.01µ8

+ . . .

in [10

�4
fm

4
] with µ = M⇡/mN

�LT ⇠
Z

d⌫
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�
L⇤
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1+(M1+ + 3E1+) + . . .
 

1

mN
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�4
fm

�4
]

(9 + 5⌧3)fLT
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Due to time-derivatives (   ,   ) the currents 
depend on energy transfer if transformed
into momentum space
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D. Chiral symmetry constraints and the continuity equations

Under chiral SU(2)L⇥SU(2)R rotations, the external sources transform as

rµ ! r0µ = RrµR
† + iR @µR

† ,

lµ ! l0µ = L lµL
† + iL @µL

† ,

s+ i p ! s0 + i p0 = R(s+ i p)L† ,

s� i p ! s0 � i p0 = L(s� i p)R† . (2.21)

The vector and axial-vector sources can be expressed as a linear combination of the left- and right-handed sources:

vµ =
1

2
(rµ + lµ) and aµ =

1

2
(rµ � lµ) . (2.22)

In the above expressions, R and L denote independent chiral SU(2) transformations which can be parametrized in
the exponential form

R = exp

✓

i

2
⌧ · ✏R(~x, t)

◆

and L = exp

✓

i

2
⌧ · ✏L(~x, t)

◆

. (2.23)

Using the standard parametrization of the external sources in terms of the isoscalar and isovector components,

vµ = v(s)µ +
1

2
⌧ · v, aµ =

1

2
⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p , (2.24)

(XXX why no factor 1/2 in s and p? XXX) the transformation properties of the sources with respect to
infinitesimal SU(2)L ⇥ SU(2)R rotations have the form

vµ ! v0
µ = vµ + vµ ⇥ ✏V + aµ ⇥ ✏A + @µ✏V ,

aµ ! a0
µ = aµ + aµ ⇥ ✏V + vµ ⇥ ✏A + @µ✏A,

s0 ! s00 = s0 � p · ✏A,
s ! s0 = s+ s⇥ ✏V � p0✏A,

i p0 ! i p00 = i(p0 + s · ✏A),
ip ! ip0 = i(p+ p⇥ ✏V + s0 ✏A), (2.25)

where

✏V =
1

2
(✏R + ✏L) and ✏A =

1

2
(✏R � ✏L) . (2.26)

Notice that as it is well known, the singlet axial-vector current is not conserved as the U(1)A is anomalously broken.

We now proceed similar to Ref. [61]. Starting with the original Schrödinger equation2

i
@

@t
 = He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] , (2.27)

we expect that there is an (in general, time-dependent) unitary transformation U on the Fock space such that

i
@

@t
U† = He↵ [a

0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ]U† , (2.28)

which means that observables are not a↵ected by chiral rotations. In other words, we expect that the Hamiltonians
He↵ [a0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] and He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] are unitary equivalent:

He↵ [a
0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] = U †He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ]U +

✓

i
@

@t
U †

◆

U. (2.29)

2 In general, also second and higher order time-derivatives of external sources can appear in the Hamiltonian. These terms, however, are
only relevant at higher chiral orders beyond the accuracy of the current work.

8

D. Chiral symmetry constraints and the continuity equations

Under chiral SU(2)L⇥SU(2)R rotations, the external sources transform as

rµ ! r0µ = RrµR
† + iR @µR

† ,

lµ ! l0µ = L lµL
† + iL @µL

† ,

s+ i p ! s0 + i p0 = R(s+ i p)L† ,

s� i p ! s0 � i p0 = L(s� i p)R† . (2.21)

The vector and axial-vector sources can be expressed as a linear combination of the left- and right-handed sources:

vµ =
1

2
(rµ + lµ) and aµ =

1

2
(rµ � lµ) . (2.22)

In the above expressions, R and L denote independent chiral SU(2) transformations which can be parametrized in
the exponential form

R = exp

✓

i

2
⌧ · ✏R(~x, t)

◆

and L = exp

✓

i

2
⌧ · ✏L(~x, t)

◆

. (2.23)

Using the standard parametrization of the external sources in terms of the isoscalar and isovector components,

vµ = v(s)µ +
1

2
⌧ · v, aµ =

1

2
⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p , (2.24)

(XXX why no factor 1/2 in s and p? XXX) the transformation properties of the sources with respect to
infinitesimal SU(2)L ⇥ SU(2)R rotations have the form

vµ ! v0
µ = vµ + vµ ⇥ ✏V + aµ ⇥ ✏A + @µ✏V ,

aµ ! a0
µ = aµ + aµ ⇥ ✏V + vµ ⇥ ✏A + @µ✏A,

s0 ! s00 = s0 � p · ✏A,
s ! s0 = s+ s⇥ ✏V � p0✏A,

i p0 ! i p00 = i(p0 + s · ✏A),
ip ! ip0 = i(p+ p⇥ ✏V + s0 ✏A), (2.25)

where

✏V =
1

2
(✏R + ✏L) and ✏A =

1

2
(✏R � ✏L) . (2.26)

Notice that as it is well known, the singlet axial-vector current is not conserved as the U(1)A is anomalously broken.

We now proceed similar to Ref. [61]. Starting with the original Schrödinger equation2

i
@

@t
 = He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] , (2.27)

we expect that there is an (in general, time-dependent) unitary transformation U on the Fock space such that

i
@

@t
U† = He↵ [a

0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ]U† , (2.28)

which means that observables are not a↵ected by chiral rotations. In other words, we expect that the Hamiltonians
He↵ [a0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] and He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] are unitary equivalent:

He↵ [a
0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] = U †He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ]U +

✓

i
@

@t
U †

◆

U. (2.29)

2 In general, also second and higher order time-derivatives of external sources can appear in the Hamiltonian. These terms, however, are
only relevant at higher chiral orders beyond the accuracy of the current work.
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D. Chiral symmetry constraints and the continuity equations

Under chiral SU(2)L⇥SU(2)R rotations, the external sources transform as

rµ ! r0µ = RrµR
† + iR @µR

† ,

lµ ! l0µ = L lµL
† + iL @µL

† ,

s+ i p ! s0 + i p0 = R(s+ i p)L† ,

s� i p ! s0 � i p0 = L(s� i p)R† . (2.21)

The vector and axial-vector sources can be expressed as a linear combination of the left- and right-handed sources:

vµ =
1

2
(rµ + lµ) and aµ =

1

2
(rµ � lµ) . (2.22)

In the above expressions, R and L denote independent chiral SU(2) transformations which can be parametrized in
the exponential form

R = exp

✓

i

2
⌧ · ✏R(~x, t)

◆

and L = exp

✓

i

2
⌧ · ✏L(~x, t)

◆

. (2.23)

Using the standard parametrization of the external sources in terms of the isoscalar and isovector components,

vµ = v(s)µ +
1

2
⌧ · v, aµ =

1

2
⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p , (2.24)

(XXX why no factor 1/2 in s and p? XXX) the transformation properties of the sources with respect to
infinitesimal SU(2)L ⇥ SU(2)R rotations have the form

vµ ! v0
µ = vµ + vµ ⇥ ✏V + aµ ⇥ ✏A + @µ✏V ,

aµ ! a0
µ = aµ + aµ ⇥ ✏V + vµ ⇥ ✏A + @µ✏A,

s0 ! s00 = s0 � p · ✏A,
s ! s0 = s+ s⇥ ✏V � p0✏A,

i p0 ! i p00 = i(p0 + s · ✏A),
ip ! ip0 = i(p+ p⇥ ✏V + s0 ✏A), (2.25)

where

✏V =
1

2
(✏R + ✏L) and ✏A =

1

2
(✏R � ✏L) . (2.26)

Notice that as it is well known, the singlet axial-vector current is not conserved as the U(1)A is anomalously broken.

We now proceed similar to Ref. [61]. Starting with the original Schrödinger equation2

i
@

@t
 = He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] , (2.27)

we expect that there is an (in general, time-dependent) unitary transformation U on the Fock space such that

i
@

@t
U† = He↵ [a

0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ]U† , (2.28)

which means that observables are not a↵ected by chiral rotations. In other words, we expect that the Hamiltonians
He↵ [a0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] and He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] are unitary equivalent:

He↵ [a
0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] = U †He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ]U +

✓

i
@

@t
U †

◆

U. (2.29)

2 In general, also second and higher order time-derivatives of external sources can appear in the Hamiltonian. These terms, however, are
only relevant at higher chiral orders beyond the accuracy of the current work.

Chiral symmetry constraints
Chiral symmetry transformations on the path integral level

Gasser, Leutwyler Ann. Phys. (1984) 142:

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

1

8

D. Chiral symmetry constraints and the continuity equations

Under chiral SU(2)L⇥SU(2)R rotations, the external sources transform as

rµ ! r0µ = RrµR
† + iR @µR

† ,

lµ ! l0µ = L lµL
† + iL @µL

† ,

s+ i p ! s0 + i p0 = R(s+ i p)L† ,

s� i p ! s0 � i p0 = L(s� i p)R† . (2.21)

The vector and axial-vector sources can be expressed as a linear combination of the left- and right-handed sources:

vµ =
1

2
(rµ + lµ) and aµ =

1

2
(rµ � lµ) . (2.22)

In the above expressions, R and L denote independent chiral SU(2) transformations which can be parametrized in
the exponential form

R = exp

✓

i

2
⌧ · ✏R(~x, t)

◆

and L = exp

✓

i

2
⌧ · ✏L(~x, t)

◆

. (2.23)

Using the standard parametrization of the external sources in terms of the isoscalar and isovector components,

vµ = v(s)µ +
1

2
⌧ · v, aµ =

1

2
⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p , (2.24)

(XXX why no factor 1/2 in s and p? XXX) the transformation properties of the sources with respect to
infinitesimal SU(2)L ⇥ SU(2)R rotations have the form

vµ ! v0
µ = vµ + vµ ⇥ ✏V + aµ ⇥ ✏A + @µ✏V ,

aµ ! a0
µ = aµ + aµ ⇥ ✏V + vµ ⇥ ✏A + @µ✏A,

s0 ! s00 = s0 � p · ✏A,
s ! s0 = s+ s⇥ ✏V � p0✏A,

i p0 ! i p00 = i(p0 + s · ✏A),
ip ! ip0 = i(p+ p⇥ ✏V + s0 ✏A), (2.25)

where

✏V =
1

2
(✏R + ✏L) and ✏A =

1

2
(✏R � ✏L) . (2.26)

Notice that as it is well known, the singlet axial-vector current is not conserved as the U(1)A is anomalously broken.

We now proceed similar to Ref. [61]. Starting with the original Schrödinger equation2

i
@

@t
 = He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] , (2.27)

we expect that there is an (in general, time-dependent) unitary transformation U on the Fock space such that

i
@

@t
U† = He↵ [a

0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ]U† , (2.28)

which means that observables are not a↵ected by chiral rotations. In other words, we expect that the Hamiltonians
He↵ [a0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] and He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] are unitary equivalent:

He↵ [a
0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] = U †He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ]U +

✓

i
@

@t
U †

◆

U. (2.29)

2 In general, also second and higher order time-derivatives of external sources can appear in the Hamiltonian. These terms, however, are
only relevant at higher chiral orders beyond the accuracy of the current work.

Chiral                           rotation
does not change the generating
functional        Ward identities 

8

D. Chiral symmetry constraints and the continuity equations

Under chiral SU(2)L⇥SU(2)R rotations, the external sources transform as

rµ ! r0µ = RrµR
† + iR @µR

† ,

lµ ! l0µ = L lµL
† + iL @µL

† ,

s+ i p ! s0 + i p0 = R(s+ i p)L† ,

s� i p ! s0 � i p0 = L(s� i p)R† . (2.21)

The vector and axial-vector sources can be expressed as a linear combination of the left- and right-handed sources:

vµ =
1

2
(rµ + lµ) and aµ =

1

2
(rµ � lµ) . (2.22)

In the above expressions, R and L denote independent chiral SU(2) transformations which can be parametrized in
the exponential form

R = exp

✓

i

2
⌧ · ✏R(~x, t)

◆

and L = exp

✓

i

2
⌧ · ✏L(~x, t)

◆

. (2.23)

Using the standard parametrization of the external sources in terms of the isoscalar and isovector components,

vµ = v(s)µ +
1

2
⌧ · v, aµ =

1

2
⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p , (2.24)

(XXX why no factor 1/2 in s and p? XXX) the transformation properties of the sources with respect to
infinitesimal SU(2)L ⇥ SU(2)R rotations have the form

vµ ! v0
µ = vµ + vµ ⇥ ✏V + aµ ⇥ ✏A + @µ✏V ,

aµ ! a0
µ = aµ + aµ ⇥ ✏V + vµ ⇥ ✏A + @µ✏A,

s0 ! s00 = s0 � p · ✏A,
s ! s0 = s+ s⇥ ✏V � p0✏A,

i p0 ! i p00 = i(p0 + s · ✏A),
ip ! ip0 = i(p+ p⇥ ✏V + s0 ✏A), (2.25)

where

✏V =
1

2
(✏R + ✏L) and ✏A =

1

2
(✏R � ✏L) . (2.26)

Notice that as it is well known, the singlet axial-vector current is not conserved as the U(1)A is anomalously broken.

We now proceed similar to Ref. [61]. Starting with the original Schrödinger equation2

i
@

@t
 = He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] , (2.27)

we expect that there is an (in general, time-dependent) unitary transformation U on the Fock space such that

i
@

@t
U† = He↵ [a

0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ]U† , (2.28)

which means that observables are not a↵ected by chiral rotations. In other words, we expect that the Hamiltonians
He↵ [a0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] and He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] are unitary equivalent:

He↵ [a
0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ] = U †He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ]U +

✓

i
@

@t
U †

◆

U. (2.29)

2 In general, also second and higher order time-derivatives of external sources can appear in the Hamiltonian. These terms, however, are
only relevant at higher chiral orders beyond the accuracy of the current work.

Chiral symmetry transformations on the Hamiltonian level

There exists a unitary transformation                such that from Schrödinger eq.

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

1

takes the form

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
U †

(R,L) = H
e↵

[a0, v0, s0, p0]U†
(R,L) 

1

Transformed Hamiltonian is unitary equivalent to the untransformed one

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
U †

(R,L) = H
e↵

[a0, v0, s0, p0]U†
(R,L) 

H
e↵

[a0, ȧ0, v0, v̇0, s0, p0] = U†
(R,L)H

e↵

[a, ȧ, v, v̇, s, p]U(R,L)+

✓
i
@

@t
U†

(R,L)

◆
U(R,L)

1

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
 = H

e↵

[a, v, s, p] 

i
@

@t
U †

(R,L) = H
e↵

[a0, v0, s0, p0]U†
(R,L) 

H
e↵

[a0, ȧ0, v0, v̇0, s0, p0] = U†
(R,L)H

e↵

[a, ȧ, v, v̇, s, p]U(R,L)+

✓
i
@

@t
U†

(R,L)

◆
U(R,L)

1



Continuity equation

Expanding both sides in           , comparing the coefficients and transforming to 
momentum space we get the continuity equation

˜H[a, v, s, p] ! U †
[a, v] ˜H[a, v, s, p]U [a, v] +

✓
i
@

@t
U †

[a, v]

◆
U [a, v]

i
@

@t
 = He↵ [a, ȧ, v, v̇] 

i
@

@t
U †

(~✏V ,~✏A) = He↵ [a
0, ȧ0, v0, v̇0]U †

(~✏V ,~✏A) 

He↵ [a
0, ȧ0, v0, v̇0] = U †

(~✏V ,~✏A)He↵ [a, ȧ, v, v̇]U(~✏V ,~✏A)+

✓
i
@

@t
U †

(~✏V ,~✏A)

◆
U(~✏V ,~✏A)

U(~✏V ,~✏A)

abµ(x)

abµ(x)

e�

µ�

⌫µ

=: He↵ [a, ȧ, v, v̇]

Ab
µ(~x, t) :=

�

�aµ,b(~x, t)
He↵ [a, ȧ, v, v̇]

���
a=v=0

abµ

�

�0

�0

�LT

�LT

�pLT

�pLT (box) = 3.35µ2 � 2.78µ3 � 1.08µ4
+ 1.67µ5

+

+ 0.10µ6
+ 0.05µ7 � 0.01µ8

+ . . .

in [10

�4
fm

4
] with µ = M⇡/mN

1

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
U †

(R,L) = H
e↵

[a0, v0, s0, p0]U†
(R,L) 

H
e↵

[a0, ȧ0, v0, v̇0, s0, p0] = U†
(R,L)H

e↵

[a, ȧ, v, v̇, s, p]U(R,L)+

✓
i
@

@t
U†

(R,L)

◆
U(R,L)

1

Infinitesimally we have                                and   

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
 = H

e↵

[a, v, s, p] 

i
@

@t
U †

(R,L) = H
e↵

[a0, v0, s0, p0]U†
(R,L) 

R = 1 +

i

2

⌧ · ✏R(x)

L = 1 +

i

2

⌧ · ✏L(x)

H
e↵

[a0, ȧ0, v0, v̇0, s0, p0] = U†
(R,L)H

e↵

[a, ȧ, v, v̇, s, p]U(R,L)+

✓
i
@

@t
U†

(R,L)

◆
U(R,L)

1

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
 = H

e↵

[a, v, s, p] 

i
@

@t
U †

(R,L) = H
e↵

[a0, v0, s0, p0]U†
(R,L) 

R = 1 +

i

2

⌧ · ✏R(x)

L = 1 +

i

2

⌧ · ✏L(x)

H
e↵

[a0, ȧ0, v0, v̇0, s0, p0] = U†
(R,L)H

e↵

[a, ȧ, v, v̇, s, p]U(R,L)+

✓
i
@

@t
U†

(R,L)

◆
U(R,L)

1
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D. Chiral symmetry constraints and the continuity equations

Under chiral SU(2)L⇥SU(2)R rotations, the external sources transform as

rµ ! r0µ = RrµR
† + iR @µR

† ,

lµ ! l0µ = L lµL
† + iL @µL

† ,

s+ i p ! s0 + i p0 = R(s+ i p)L† ,

s� i p ! s0 � i p0 = L(s� i p)R† . (2.21)

The vector and axial-vector sources can be expressed as a linear combination of the left- and right-handed sources:

vµ =
1

2
(rµ + lµ) and aµ =

1

2
(rµ � lµ) . (2.22)

In the above expressions, R and L denote independent chiral SU(2) transformations which can be parametrized in
the exponential form

R = exp

✓

i

2
⌧ · ✏R(~x, t)

◆

and L = exp

✓

i

2
⌧ · ✏L(~x, t)

◆

. (2.23)

Using the standard parametrization of the external sources in terms of the isoscalar and isovector components,

vµ = v(s)µ +
1

2
⌧ · v, aµ =

1

2
⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p , (2.24)

(XXX why no factor 1/2 in s and p? XXX) the transformation properties of the sources with respect to
infinitesimal SU(2)L ⇥ SU(2)R rotations have the form

vµ ! v0
µ = vµ + vµ ⇥ ✏V + aµ ⇥ ✏A + @µ✏V ,

aµ ! a0
µ = aµ + aµ ⇥ ✏V + vµ ⇥ ✏A + @µ✏A,

s0 ! s00 = s0 � p · ✏A,
s ! s0 = s+ s⇥ ✏V � p0✏A,

i p0 ! i p00 = i(p0 + s · ✏A),
ip ! ip0 = i(p+ p⇥ ✏V + s0 ✏A), (2.25)

where

✏V =
1

2
(✏R + ✏L) and ✏A =

1

2
(✏R � ✏L) . (2.26)

Notice that as it is well known, the singlet axial-vector current is not conserved as the U(1)A is anomalously broken.

We now proceed similar to Ref. [61]. Starting with the original Schrödinger equation2

i
@

@t
 = He↵ [a, ȧ, v, v̇, s, ṡ, p, ṗ] , (2.27)

we expect that there is an (in general, time-dependent) unitary transformation U on the Fock space such that

i
@

@t
U† = He↵ [a
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which means that observables are not a↵ected by chiral rotations. In other words, we expect that the Hamiltonians
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2 In general, also second and higher order time-derivatives of external sources can appear in the Hamiltonian. These terms, however, are
only relevant at higher chiral orders beyond the accuracy of the current work.
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D. Chiral symmetry constraints and the continuity equations
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The vector and axial-vector sources can be expressed as a linear combination of the left- and right-handed sources:
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(rµ + lµ) and aµ =

1
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(rµ � lµ) . (2.22)
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Using the standard parametrization of the external sources in terms of the isoscalar and isovector components,
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⌧ · v, aµ =
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⌧ · a, s = s0 + ⌧ · s, p = p0 + ⌧ · p , (2.24)

(XXX why no factor 1/2 in s and p? XXX) the transformation properties of the sources with respect to
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Notice that as it is well known, the singlet axial-vector current is not conserved as the U(1)A is anomalously broken.
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2 In general, also second and higher order time-derivatives of external sources can appear in the Hamiltonian. These terms, however, are
only relevant at higher chiral orders beyond the accuracy of the current work.
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2 In general, also second and higher order time-derivatives of external sources can appear in the Hamiltonian. These terms, however, are
only relevant at higher chiral orders beyond the accuracy of the current work.
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We make an ansatz for the unitary transformation U by writing it in the form

U = exp

✓

i

Z

d3x
⇥

Rv
0(~x) · ✏V (~x, t) +Rv

1(~x) · ✏̇V (~x, t) +Ra
0(~x) · ✏A(~x, t) +Ra

1(~x) · ✏̇A(~x, t)
⇤

◆

, (2.30)

with Rv,a
0,1 (~x) being some Hermitian field operators in the Schrödinger picture. Eq. (2.29) can be used to derive the

continuity equation for the currents. Setting v = v̇ = a = ȧ = p = ṗ = ṡ = s = 0 and s0 = mq = (mu +md)/2 on the
right-hand side of Eq. (2.29) and keeping only terms linear in ✏V , ✏A and their time derivatives, we obtain

He↵ [a
0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ]|v=v̇=a=ȧ=p=ṗ=ṡ=0,s=m

q

=

W +

Z

d3x
⇣

i
⇥

W,Rv
0(~x)

⇤ · ✏V (~x, t) + i
⇥

W,Rv
1(~x)

⇤ · ✏̇V (~x, t) + i
⇥

W,Ra
0(~x)

⇤ · ✏A(~x, t) (2.31)

+i
⇥

W,Ra
1(~x)

⇤ · ✏̇A(~x, t) +Rv
0(~x) · ✏̇V (~x, t) +Rv

1(~x) · ✏̈V (~x, t) +Ra
0(~x) · ✏̇A(~x, t) +Ra

1(~x) · ✏̈A(~x, t)
⌘

,

with W ⌘ H0 + V . On the other hand, we can directly expand the left-hand side of Eq. (2.29) in ✏V , ✏A and their
time derivatives to get

He↵ [a
0, ȧ0, v0, v̇0, s0, ṡ0, p0, ṗ0 ]|v=v̇=a=ȧ=p=ṗ=ṡ=s=0,s0=m

q

=

W +

Z

d3x
⇣

V (0)
µ (~x) · @µ✏V (~x, t) + V (1)

µ (~x) · @µ✏̇V (~x, t) +A(0)
µ (~x) · @µ✏A(~x, t) +A(1)

µ (~x) · @µ✏̇A(~x, t)

+mq P
(0)(~x) · ✏A(~x, t) +mq P

(1)(~x) · ✏̇A(~x, t)
⌘

, (2.32)

where the vector, axial-vector and pseudoscalar currents are defined by

V (0)j
µ (~x) :=

�He↵

�vµj (~x, t)
, V (1)j

µ (~x) :=
�He↵

�v̇µj (~x, t)
, A(0)j

µ (~x) :=
�He↵

�aµj (~x, t)
,

A(1)j
µ (~x) :=

�He↵

�ȧµj (~x, t)
, P

(0)
j (~x) :=

�He↵

�pj(~x, t)
, P

(1)
j (~x) :=

�He↵

�ṗj(~x, t)
, (2.33)

with j = 1, 2, 3 an isospin index. In all these expressions, the functional derivatives are taken at v = v̇ = a = ȧ = p =
ṗ = ṡ = s = 0 and s0 = mq. Matching Eqs. (2.31) and (2.32) with respect to ✏̈V (~x, t) and ✏̈A(~x, t), we read o↵

Rv
1(~x) = V (1)

0 (~x), Ra
1(~x) = A(1)

0 (~x) . (2.34)

Next, matching the coe�cients in front of the first derivatives ✏̇V (~x, t) and ✏̇A(~x, t) yields

Rv
0(~x) + i

⇥

W,Rv
1(~x)

⇤

= V (0)
0 (~x)� ~r · ~V (1)

(~x),

Ra
0(~x) + i

⇥

W,Ra
1(~x)

⇤

= A(0)
0 (~x)� ~r · ~A(1)

(~x) +mqP
(1)(~x). (2.35)

Finally, matching the coe�cients in front of ✏V (~x, t) and ✏A(~x, t) gives

i
⇥

W,Rv
0(~x)

⇤

= �~r · ~V (0)
(~x),

i
⇥

W,Ra
0(~x)

⇤

= �~r · ~A(0)
(~x) +mqP

(0)(~x). (2.36)

Combining these relations, we obtain the continuity equations

i
⇥

W,V (0)
0 (~x)� ~r · ~V (1)

(~x)� i
⇥

W,V (1)
0 (~x)

⇤⇤

= �~r · ~V (0)
(~x),

i
⇥

W,A(0)
0 (~x)� ~r · ~A(1)

(~x)� i
⇥

W,A(1)
0 (~x)

⇤

+mqP
(1)(~x)

⇤

= �~r · ~A(0)
(~x) +mqP

(0)(~x). (2.37)

Notice that the form of the continuity equation we obtain di↵ers from the usual one with V (1)
µ (~x) = A(1)

µ (~x) =

P (1)(~x) = 0. In our case, these terms originate from the additional unitary transformations involving external
sources, and they cannot be discarded.3 Clearly, V (1)

µ (~x),A(1)
µ (~x) and P (1)(~x) are proportional to the unitary phases

3 It has already been mentioned in the literature that the continuity equation gets modified if one uses time-dependent unitary transfor-
mations [62].
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The continuity eq. is invariant under the two discussed classes of unitary transformations

Class I: time-independent unitary transformations
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strong

! U †H
strong

U

h0
out

|0
in
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Class II: time-dependent unitary transformations

Aµ(k) ! U†Aµ(k)U, P (k) ! U†P (k)U, H
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[a0, ȧ0, v0, v̇0, s0, p0]

✏V , ˙✏V , ¨✏V , ✏A, ˙✏A, ¨✏A

2⇡�(E↵�E��k
0

)h↵|
h
i~e· ~K,Aµ(k)

i
+A?

µ (k)�~e·~rk

h
H

strong

,Aµ(k)
i
�~e·~k @

@k
0

Aµ(k)|�i = 0

k · ab

NN⇡b

NNN

⇠

h
i~e· ~K,Aµ(k)

i
+A?

µ (k)�~e·~rk

h
H

strong

,Aµ(k)
i
�~e·~k @

@k
0

Aµ(k)+i
h
H

strong

,Xµ

i
�ik

0

Xµ = 0

1

Aµ(k) ! U†Aµ(k)U, P (k) ! U†P (k)U, H
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✓
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Class II: time-dependent unitary transformations
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U [a] = exp

✓
i

Z
d3xY µ(~x) · aµ

(~x, x
0

)

◆

U [p] = exp

✓
i

Z
d3xZ(~x) · p(~x, x

0

)

◆

Aµ(k) ! Aµ(k) + i
h
H

strong

,Y µ(
~k)
i
� i k

0

Y µ(
~k)

lhs of cont. eq. ! lhs of cont. eq.+ i
h
H

strong

,~k · ~Y (

~k)
i

rhs of cont. eq. ! rhs of cont. eq.+ i
h
H

strong

,~k · ~Y (

~k)
i

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
 = H

e↵

[a, v, s, p] 

i
@

@t
U †

(R,L) = H
e↵

[a0, v0, s0, p0]U†
(R,L) 

R = 1 +

i

2

⌧ · ✏R(x)

L = 1 +

i

2

⌧ · ✏L(x)

H
e↵
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Four-vector constraint
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This would lead to modification of the current

AH
µ (x) ! A0H

µ (x) = A(0)H
µ (x)� i

h

W,A(1)H
µ (x)

i

. (46)

Note that the current A0
µ(~x) = A0H

µ (~x, x0 = 0) satisfies the usual non modified continuity equation

i
⇥

W,A0
0(~x)

⇤

= �~r · ~A0
(~x) + 2mqP

0(~x), (47)

where similar to the axial vector current we define a primed version of a pseudoscalar current by

P 0(~x) = P (0)(~x)� i
⇥

W,P (1)(~x)]. (48)

Eq. 47 comes out immediately by putting the definitions of Eqs. 46 and 48 in Eq. 33. The current A0H
µ , however, is

identical to the current without additional unitary transformations with external fields. To see this we consider the
axial vector current contribution to e↵ective Hamiltonian before unitary transformation with external fields

U †
⌘U

†
OkuboH[a]UOkuboU⌘ = W +

Z

d3xBµ(~x) · aµ(x0, ~x). (49)

Parametrizing an additional unitary transformation with external sources by

U [a] = 1�
Z

d3xCµ(~x) · aµ(x0, ~x) +O(a2), (50)

where Cµ is antihermitean field operator, we get

⌘U†[a]U†
⌘U

†
OkuboH[a]UOkuboU⌘U [a]⌘ + i ⌘

✓

@

@x0
U †[a]

◆

U [a]⌘

= W +

Z

d3x
h

(Bµ(~x) + [Cµ(~x),W ]) · aµ(x0, ~x) + iCµ(~x) · ȧµ(x0, ~x)
i

. (51)

We read o↵

A(0)
µ (~x) = Bµ(~x) + [Cµ(~x),W ] and A(1)

µ (~x) = iCµ(~x) (52)

and follow

A0H
µ (x) = BH

µ (x) +
h

CH
µ (x),W

i

+
h

W,CH
µ (x)

i

= BH
µ (x). (53)

Additional unitary transformations with external sources are needed for renormalization of the current. Since their
e↵ects are switched o↵ in the current A0

µ we prefer to work with the current Aµ in order to get a renormalizable
current.

E. Constraint from Lorentz transformation
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where ~K is a boost operator, ~e is a boost direction and ⇤ is a 4⇥ 4 boost matrix which depends on a boost direction
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Introducing to a given 4-vector x = (x0, ~x) an orthogonal 4-vector by
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Boost operator Heisenberg picture Lorentz transformation
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i

. (2.55)

We then read o↵

A(0)
µ (~x) = Bµ(~x) + [Cµ(~x),W ] and A(1)

µ (~x) = iCµ(~x) , (2.56)

and conclude

A0H
µ (x) = BH

µ (x) +
h

CH
µ (x),W

i

+
h

W,CH
µ (x)

i

= BH
µ (x). (2.57)
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For a given four-vector x = (x0, ~x), we can introduce an orthogonal four-vector via
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⇤(✓)x = x+ ✓ x? +O�

✓2). (2.61)
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We now make the substitution x ! ⇤�1(✓)x in the integral appearing in the definition of SA[a0] to obtain
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Linear expansion of the four-vector relation in     leads in momentum space to
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Sandwiching this relation between the final and initial states |↵i and |�i, respectively, and taking the functional
derivative with respect to the axial-vector source in momentum space on both sides, we end up with our final result
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We can also write this relation in the operator form as
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where Xµ is an arbitrary operator satisfying
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G. E↵ective boost operator

In order to explicitly verify the four-vector condition of Eq. (2.77) we need to construct the boost operator ~K. As
usual, we start from the classical conserved Noether current which is a reflection of the fact that proper orthochronous
Lorentz transformations represent the symmetry of any relativistic field theory. An infinitesimal proper orthochronous
Lorentz transformation, which is a combination of a rotation and a boost, is given by
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where i is the isospin index of the nucleon,
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and the �µ are the Dirac matrices. If we set all external sources to zero (or to mq in the case of the scalar source),
the e↵ective chiral Lagrangian density does not depend explicitly on x, and we get
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(1)

µ (~k)
⇤

) + i~e · ~k Ã(1)

µ (~k)
⌘

|�i.

We can also write this relation in the operator form as

�i
⇥

~e · ~K, Ãµ(k)
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where i is the isospin index of the nucleon,

⌃µ⌫ =
i

2

⇥

�µ, �⌫
⇤

, (2.82)

and the �µ are the Dirac matrices. If we set all external sources to zero (or to mq in the case of the scalar source),
the e↵ective chiral Lagrangian density does not depend explicitly on x, and we get
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where we assume that the chiral Lagrangian density is a Lorentz scalar:
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Poincare algebra gets block-diagonalized by Okubo unitary transformation
Glöckle, Müller, PRC23 (1981) 1183; Krüger, Glöckle nucl-th:9712043          special model

HK, Epelbaum, Meißner, arXiv:1691217         general proof

To check the four-vector relation we need to block-diagonalize it via unitary transf.

Straightforward calculation of effective boost operator
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Four-vector constraint is unaffected by the two discussed classes of unitary transformations
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[a, ȧ, v, v̇, s, p]U(R,L)+

✓
i
@

@t
U†

(R,L)

◆
U(R,L)

h
H

strong

,A
0

(

~k, 0)� @

@k
0

~k · ~A(

~k, k
0

) +

@

@k
0

h
H

strong

,A
0

(

~k, k
0

)

i
+ i

@

@k
0

mqP (

~k, k
0

)

i

=

~k · ~A(

~k, 0)� imqP (

~k, 0)

1

Multiplying out we realize that the four-vector constraint is unaffected

Four-vector constraint is unitary unambiguous and should be satisfied for any four-current



Unitary ambiguities
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Reasonable constraints come from

Perturbative renormalizability of the current

High unitary ambiguity is related to appearance of the axial-vector-one-pion interaction
(30 out of 34 transformations depend on it)
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[a0, ȧ0, v0, v̇0, s0, p0] = U†
(R,L)H

e↵
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2. The resulting expressions for the axial charge and current operators are required to be properly renormalized.
For the one-loop contributions to the one-pion exchange charge and current operators, this requires that all UV

divergences are cancelled by expressing the relevant bare LECs li from L(4)
⇡ and di from L(3)

⇡N in terms of the
renormalized ones via

li = lri (µ) + �i� =:
1

16⇡2
l̄i + �i�+

�i
16⇡2

ln

✓

M⇡

µ

◆

,

di = dri (µ) +
�i

F 2
� =: d̄i +

�i

F 2
�+

�i

16⇡2F 2
ln

✓

M⇡

µ

◆

, (2.118)

where µ is the scale introduced by dimensional regularization. Further, the quantity � is defined as
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with �E = ��0(1) ' 0.577 the Euler constant and d the number of space-time dimensions. The �- and �-
functions appearing in the above expressions are well known [58, 67]. For the sake of completeness, we list below
the expressions relevant to our calculations:

�3 = �1

2
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A cancellation of the UV divergences in the loop contributions to the single nucleon and to the one-pion exchange
axial charge operators by the counterterms fixed by the �-functions listed above yields additional constraints
on the unitary phases:

↵ax
10 + ↵ax

11 = �1

2
,

↵ax,Tadpole
16 = ↵ax,Static

16 = ↵ax,LO
16 = �1. (2.121)

A more general requirement of the cancellation of power-low divergences in addition to the logarithmic ones,
which are taken care of in dimensional regularization, implies that the current should be renormalizable in d = 3
dimensions. This yields an additional constraint

↵ax
1 = 0. (2.122)

Thus, in total, we obtain 19 constraints from the requirement that the axial-vector current is renormalizable.

3. In addition to the renormalizability constraints specified above, we require the irreducible two- and three-nucleon
pion-production amplitudes appearing in the expressions for the current operators to match the corresponding
ones which appear in the expressions for the three- and four-nucleon forces, respectively, as visualized schemati-
cally earlier in Fig. 1. More precisely, we require the following matching condition between the one-pion exchange
contributions to the nuclear forces and the corresponding axial current operator at the pion pole:
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Here, k ⌘ |~k | refers to the momentum of the exchanged pion, while k · ãb(k) denotes the leading pion-nucleon
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Matching to nuclear forces
Dominance of the pion production operator at the pion-pole (axial-vector current)

= Non-pole contributions
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ȧµ ! ȧ0µ = @µ✏̇A + . . .

H
e↵
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[a0, ȧ0, v0, v̇0, s0, p0]

✏V , ˙✏V , ¨✏V , ✏A, ˙✏A, ¨✏A

2⇡�(E↵�E��k
0

)h↵|
h
i~e· ~K,Aµ(k)

i
+A?

µ (k)�~e·~rk

h
H

strong

,Aµ(k)
i
�~e·~k @

@k
0

Aµ(k)|�i = 0

k · ab

NN⇡b

h
i~e· ~K,Aµ(k)

i
+A?

µ (k)�~e·~rk

h
H

strong

,Aµ(k)
i
�~e·~k @

@k
0

Aµ(k)+i
h
H

strong

,Xµ

i
�ik

0

Xµ = 0

1

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
 = H

e↵

[a, v, s, p] 

i
@

@t
U †

(R,L) = H
e↵

[a0, v0, s0, p0]U†
(R,L) 

R = 1 +

i

2

⌧ · ✏R(x)

L = 1 +

i

2

⌧ · ✏L(x)

H
e↵
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[a0, ȧ0, v0, v̇0, s0, p0]

✏V , ˙✏V , ¨✏V , ✏A, ˙✏A, ¨✏A

2⇡�(E↵�E��k
0

)h↵|
h
i~e· ~K,Aµ(k)

i
+A?

µ (k)�~e·~rk

h
H

strong

,Aµ(k)
i
�~e·~k @

@k
0

Aµ(k)|�i = 0

k · ab

NN⇡b

NNN

⇠

h
i~e· ~K,Aµ(k)

i
+A?

µ (k)�~e·~rk

h
H

strong

,Aµ(k)
i
�~e·~k @

@k
0

Aµ(k)+i
h
H

strong

,Xµ

i
�ik

0

Xµ = 0

1

=! Matching requirement is fulfilled only
for particular choice of unitary phases

Consistent regularization of nuclear forces and currents calls for matching 
requirement between pion-production operators in different processes

After renormalizability and matching requirement there are no further unitary ambiguities!



Single nucleon current up to order Q
Up to 1/m - corrections one can parametrize axial-vector current by form factors
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where we have used Eqs. (4.40), (4.34) with t = �k2 along with the Goldberger-Treiman relation

g⇡N =
gAm

F⇡
. (4.45)

Obviously for ↵ax,LO
16 6= �1 the two results would disagree. The renormalizability condition, however, dictates the

choice ↵ax,LO
16 = �1, which leads to the agreement with the on-shell result.

Based on the above results, we conjecture that the static two-loop contributions to the axial current operator can be
obtained by taking the on-shell result for the corresponding form factors and dropping the energy-conserving delta-
function. This allows us to give the last missing piece in the current operator at order Q without explicitly evaluating
it using the method of UT:
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To summarize, our final result for the single-nucleon axial charge and current operators up to order Q can be expressed
in terms of the nucleon form factors the following compact form

A0,a
1N = �GA(�k2)

2m
⌧ai
~ki · ~�i +

GP (�k2)

8m2
⌧ai k0

~k · ~�i ,

~Aa
1N = �GA(�k2)

2
⌧ai ~�i +

GP (�k2)

8m2
⌧ai
~k~k · ~�i + ~A
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a (Q)
1N: 1/m2 , (4.47)

where the last two terms are specified in Eqs. (4.13) and (4.18).

V. TWO-NUCLEON AXIAL CHARGE AND CURRENT OPERATORS

A. Contributions at orders Q�1 and Q0

As already mentioned above, the chiral expansion for the 2N axial four-current operator starts at order Q�1. The
relevant diagrams generating the dominant contributions are shown in the first line of Fig. 10. As should be clear
from the previous sections, all diagrams shown here and in the following are to be understood as representing the
irreducible (i.e. non-iterative) pieces of the corresponding amplitudes. For the charge operator, the last two diagrams
in the first line of Fig. 10 depend on the lowest-order unitary transformation
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16 . (5.1)

For the current operator, the contributions of the leading-order tree-level graphs depend on unitary phases as follows:

(1) ⇠ k0↵
ax
1 ,

(3) ⇠ k0(↵
ax
25 + ↵ax

26 ),

(4) ⇠ k0↵
ax
12

k2 +M2
⇡

⇥

. . .
⇤

+
k0↵

ax
13

(k2 +M2
⇡)

2

⇥

. . .
⇤

,

(5) ⇠ k0(↵
ax
21 + ↵ax

22 + ↵ax
23 ). (5.2)

As already pointed out, we adopt the choice of unitary phases ↵ax
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12 = 0, ↵ax
13 = ↵ax

25 +↵ax
26 = ↵ax

21 +↵ax
22 +↵ax

23 = 1
and ↵ax,LO

16 = �1 which is dictated by renormalizability and by matching to the nuclear force. With this choice, the
expressions for the one-pion-exchange contributions take the form
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Axial and pseudoscalar formfactors are known up to two-loop order: Kaiser PRC67 (2003) 027002
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Finally, there are various contributions at order Q. We begin with terms proportional to k0/m which emerge from
diagrams (2) and (3) of Fig. 5. Their dependence on unitary phases is given by Eq. (4.9). For the standard choice of
unitary phases, the explicit expressions have the form

A
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For the static part which is proportional to k0, we get nonvanishing contributions from diagrams (3) and (4) of Fig. 3
as well as from the diagrams shown in Fig. 4. For the standard choice of unitary phases we obtain after renormalization
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So far, the k0 dependence in our expressions emerged entirely from the time dependence of the unitary transformations.
The contribution proportional to d̄22 in Eq. (4.14), however, originates directly from the interaction term
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of the Lagrangian L(3)
⇡N when evaluating the corresponding Feynman diagram. In the formulation presented so far, we

have not included time-derivatives of the axial vector source in the interaction. Rather, their time-derivatives were
eliminated from the action by performing partial integration in time. In Appendix C, we show that the term / d̄22
indeed emerges from a corresponding unitary transformations if the time-derivative of the axial source is eliminated
via partial time-integration.

The second class of order-Q contributions involves relativistic 1/m2-corrections. The corresponding non-vanishing
diagrams are visualized in Fig. 6. They contribute only to the current operator. The dependence on the unitary
phases of the contributions from diagrams in Fig. 6 is given by
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ax,1/m
16 ,

(3), (4) ⇠ 1� ↵ax
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while diagrams (1) and (5) do not depend on unitary phases. Our final result for 1/m2-corrections at order Q reads
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In order to obtain this result, we have calculated the contributions of all diagrams in Fig. 6 using the MUT. Notice
that we have also included in Eq. (4.18) the corrections accounting for the nonrelativistic normalization of the nucleon
fields which amounts to multiplying the expressions for the current operator with the factors of

p

m/Ep for every
external nucleon with a momentum p, see [21, 57] for details. Expanding the result in 1/m we obtain, in addition to
the expressions for diagrams of Fig. 6, the contribution
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which is already accounted for in Eq. (4.18).

The third kind of order-Q contributions emerges from relativistic 1/m-corrections to the leading one-loop terms. The
corresponding non-vanishing diagrams are shown in Figs. 7, 8 and 9. The dependence on the unitary phases has the
form given by

(2) ⇠ 1 + ↵ax,Static
16 ,
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⇡N (1/m-corrections from
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following dependence of the resulting contributions on the unitary phases for the charge
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and current operator
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The final result for the 1/m corrections to the 1N axial-vector current for our standard choice of unitary phases reads

A
0,a (Q�1)
1N: 1/m = � gA

2m
⌧ai ~�i · ~ki , (4.10)

~A
a (Q�1)
1N: 1/m = 0 , (4.11)

where

~k = ~pi
0 � ~pi, ~ki =

~pi
0 + ~pi
2

. (4.12)

This completes the derivation of the 1N terms at order Q�1.

There are no corrections to the 1N charge and current operators at order Q0. In particular, the absence of ci/m-
corrections and k0-dependent contributions can be understood from the fact that there are no order-Q�2 terms while
the contributions of one-loop diagrams with a single insertion of subleading interactions vanish after renormalization.

due to adopted counting for 1/m-corrections
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following dependence of the resulting contributions on the unitary phases for the charge
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and current operator
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The final result for the 1/m corrections to the 1N axial-vector current for our standard choice of unitary phases reads
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. (4.12)

This completes the derivation of the 1N terms at order Q�1.

There are no corrections to the 1N charge and current operators at order Q0. In particular, the absence of ci/m-
corrections and k0-dependent contributions can be understood from the fact that there are no order-Q�2 terms while
the contributions of one-loop diagrams with a single insertion of subleading interactions vanish after renormalization.

A
(�1)

0,1

k
0

/m ⇠ Q4/⇤4

b

H()
n,p

n p  = d+
3

2

n+ p+ a� 4

Aµ(k) ! U†Aµ(k)U, P (k) ! U†P (k)U, H
strong

! U †H
strong

U

Aµ(k) ! U†Aµ(k)U, ~K ! U † ~KU, H
strong

! U†H
strong

U, Xµ ! U†XµU

Xµ ! Xµ � i
h
~e · ~K,Y µ(

~k)
i
+ ~e · ~rk

h
H

strong

,Y µ(
~k)
i
� Y ?

µ

h
~e · ~K,H

strong

i
= i~e · ~P

h
i~e · ~K, i

h
H

strong

, Yµ(
~k)
ii

= i
h
H

strong

,
h
i~e · ~K,Yµ(

~k)
ii

� i~e · ~k Yµ(
~k)

U [a] = exp

✓
i

Z
d3xY µ(~x) · aµ

(~x, x
0

)

◆

U [p] = exp

✓
i

Z
d3xZ(~x) · p(~x, x

0

)

◆

Aµ(k) ! Aµ(k) + i
h
H

strong

,Y µ(
~k)
i
� i k

0

Y µ(
~k)

P (k) ! P (k) + i
h
H

strong

,Z(

~k)
i
� i k

0

Z(

~k)

lhs of cont. eq. ! lhs of cont. eq.+ i
h
H

strong

,~k · ~Y (

~k)
i

rhs of cont. eq. ! rhs of cont. eq.+ i
h
H

strong

,~k · ~Y (

~k)
i

lhs of cont. eq. ! lhs of cont. eq.+mq

h
H

strong

,Z(

~k)
i

rhs of cont. eq. ! rhs of cont. eq.+mq

h
H

strong

,Z(

~k)
i

h0
out

|0
in

ia,v,s,p = exp (i Z[a, v, s, p]) = exp (i Z[a0, v0, s0, p0]) = h0
out

|0
in

ia0,v0,s0,p0

U(R,L)

i
@

@t
 = H

e↵

[a, v, s, p] 

i
@

@t
U †

(R,L) = H
e↵

[a0, v0, s0, p0]U†
(R,L) 

R = 1 +

i

2

⌧ · ✏R(x)

L = 1 +

i

2

⌧ · ✏L(x)

1



31

(5)

subleading order (Q  ):0

(1) (2) (3) (4)

(9)(6) (7) (8)

leading order (Q  ):
−1

FIG. 10: Diagrams leading to the lowest-order contributions to the 2N axial charge A0 (Q�1
)

2N

(upper line) and current operator

~A
(Q0

)

2N

(lower line). Filled circles denote the subleading vertices from the e↵ective Lagrangians L(2)

⇡N and L(1)

⇡NN . Diagrams
resulting from the interchange of the nucleon lines and/or application of the time reversal operation are not shown. For
remaining notation see Fig. 1.

where ~qi = ~p 0
i � ~pi (⌧ i) denotes the momentum transfer (Pauli isospin matrix) of nucleon i and qi ⌘ |~qi |. For the

standard choice of the unitary phases, the short-range contribution of the last diagram in the first line of Fig. 10
vanishes:

A
0,a (Q�1)
2N: cont = 0, (5.5)

~A
a (Q�1)
2N: cont = 0. (5.6)

Notice that the choice ↵ax,LO
16 = ↵ax,Static

16 = ↵ax,Tadpole
16 = �1 switches o↵ all pion-pole contributions to the charge.

This choice is dictated by (o↵-shell) renormalizability of the single-nucleon charge operator, where terms proportional
to k0 are required to be finite.

Next, at order Q0, one encounters the contributions to the 2N axial current operator only, which originate from
diagrams shown in the second line of Fig. 10. There are no charge contributions at this order. Again, the corresponding
expressions are well-known and have the form
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where ci and D denote the LECs from L(2)
⇡N and L(1)

⇡NN , respectively, while v is the isovector anomalous magnetic

moment of the nucleon. Further, we use the notation with k ⌘ |~k |. It is easy to verify that the pion-pole contributions
to the axial current fulfill the matching relations
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where
⇥

V 3NF
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⇤

13
(
⇥

V 3NF
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⇤

12
) denotes the part of the order-Q3 two-pion exchange 3N force in Eq. (2) (Eq. (10)) of [9]

symmetric with respect to the interchange of nucleons 1 and 3 (1 and 2).

NN current at order Q-1 & Q019
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FIG. 2: Diagrams leading to the lowest-order contributions to the 2N axial charge (upper line) and current operators (lower

line). Filled circles denote the subleading vertices from the e↵ective Lagrangians L(2)
⇡N

and L(1)
⇡NN

. Diagrams resulting from the
interchange of the nucleon lines and/or application of the time reversal operation are not shown. For remaining notation see
Fig. 1.

III. TWO-NUCLEON AXIAL CHARGE AND CURRENT OPERATORS AT ORDERS Q�1 AND Q0

As already mentioned in the previous section, the chiral expansion for the 2N axial four-current operator starts at
order Q�1. The relevant diagrams are shown in the first line of Fig. 2. As should be clear from the previous section, all
diagrams shown here and in the following are to be understood as representing the irreducible (in the above-mentioned
sense) pieces of the corresponding amplitudes. For the charge operator the last two diagrams in the first line of Fig. 2
depend on the the leading-order unitary transformation

(4), (5) ⇠ 1 + ↵ax,LO
16 (124)

For the current NN operator leading order tree diagrams depend on unitary phases via
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As already pointed out, we adopt the choise of unitary phases ↵ax
1 = ↵ax

12 = 0,↵13 = ↵ax
25 +↵ax

26 = ↵ax
21 +↵ax

22 +↵ax
23 = 1

which is based on renormalizability and on nuclear force matching conditions. The resulting expressions are
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where ~qi = ~pi
0 � ~pi (⌧ i) denotes the momentum transfer (Pauli isospin matrix) of nucleon i and qi ⌘ |~qi |. As can

be seen from Eq. 127 the current operator is proportional to the energy transfer k0. These contributions are o↵shell
e↵ects which come from time derivatives of unitary transformations. They are always a↵ected by the choise of unitary
phases. In the Breit frame they obviously disappear and lead to well known vanishing NN current at order Q�1.

Well known results for axial NN current at Q-1 and Q0 - order

30

where we have used Eqs. (4.40), (4.34) with t = �k2 along with the Goldberger-Treiman relation

g⇡N =
gAm

F⇡
. (4.45)

Obviously for ↵ax,LO
16 6= �1 the two results would disagree. The renormalizability condition, however, dictates the

choice ↵ax,LO
16 = �1, which leads to the agreement with the on-shell result.

Based on the above results, we conjecture that the static two-loop contributions to the axial current operator can be
obtained by taking the on-shell result for the corresponding form factors and dropping the energy-conserving delta-
function. This allows us to give the last missing piece in the current operator at order Q without explicitly evaluating
it using the method of UT:
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To summarize, our final result for the single-nucleon axial charge and current operators up to order Q can be expressed
in terms of the nucleon form factors the following compact form
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where the last two terms are specified in Eqs. (4.13) and (4.18).

V. TWO-NUCLEON AXIAL CHARGE AND CURRENT OPERATORS

A. Contributions at orders Q�1 and Q0

As already mentioned above, the chiral expansion for the 2N axial four-current operator starts at order Q�1. The
relevant diagrams generating the dominant contributions are shown in the first line of Fig. 10. As should be clear
from the previous sections, all diagrams shown here and in the following are to be understood as representing the
irreducible (i.e. non-iterative) pieces of the corresponding amplitudes. For the charge operator, the last two diagrams
in the first line of Fig. 10 depend on the lowest-order unitary transformation

(4), (5) ⇠ 1 + ↵ax,LO
16 . (5.1)

For the current operator, the contributions of the leading-order tree-level graphs depend on unitary phases as follows:
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As already pointed out, we adopt the choice of unitary phases ↵ax
1 = ↵ax

12 = 0, ↵ax
13 = ↵ax

25 +↵ax
26 = ↵ax

21 +↵ax
22 +↵ax

23 = 1
and ↵ax,LO

16 = �1 which is dictated by renormalizability and by matching to the nuclear force. With this choice, the
expressions for the one-pion-exchange contributions take the form

A
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FIG. 14: Diagrams leading to non-vanishing relativistic corrections to the two-pion exchange 3N force at N3LO which do not
include the 1/m-vertices from L(2)

⇡N (shown by open squares) at the leftmost nucleon line. Time reversed diagrams are not
shown. For remaining notation see Fig. 1.

receive contributions from diagrams involving an insertion of the 1/m-vertex at the nucleon line, which we regard
as being attributed to the axial-vector source (i.e. the leftmost nucleon line in the 3N force shown in Fig. 1), and
which is connected with the two-nucleon system via one-pion exchange. Thus, to establish the connection, we have
to consider only those topologies in the 3N force, which do not include such contributions. In Fig. 14 we show all
relevant diagrams which generate non-vanishing terms in the 3N force. We have calculated the resulting contributions
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TPE, 1/m]modified and verified the validity of the relation
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Last but not least, there are also contributions proportional to the energy transfer k0 stemming from time-derivatives
of the unitary transformations in diagrams shown in Fig. 10. As already mentioned earlier, k0 counts as a quantity
of order Q3 so that the contributions from diagrams (1), (3) and (4) of Fig. 10 are shifted from order Q�1 to order Q.
For the standard choice of unitary phases we obtain
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The current contribution in Eq. (5.23) involves the pion production operator, which, again, can be matched to the
corresponding expressions in the 3N force. The energy transfer k0 can then be written as the di↵erence of the initial
and final kinetic energies of the third nucleon,

k0 =
p23
2m

� p0 23
2m

. (5.24)

Notice that k0 refers to the outgoing (incoming) energy transfer of the third nucleon (subsystem of the nucleons 1
and 2). Thus, we need to consider a subset of diagrams generating relativistic corrections to the two-pion exchange
3N force with the kinetic-energy insertions at the third nucleon, i.e. at the leftmost nucleon lines in Fig. 15. The
explicit expressions for the corresponding 3N force contributions are given by
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FIG. 2: Diagrams leading to the lowest-order contributions to the 2N axial charge (upper line) and current operators (lower

line). Filled circles denote the subleading vertices from the e↵ective Lagrangians L(2)
⇡N

and L(1)
⇡NN

. Diagrams resulting from the
interchange of the nucleon lines and/or application of the time reversal operation are not shown. For remaining notation see
Fig. 1.

III. TWO-NUCLEON AXIAL CHARGE AND CURRENT OPERATORS AT ORDERS Q�1 AND Q0

As already mentioned in the previous section, the chiral expansion for the 2N axial four-current operator starts at
order Q�1. The relevant diagrams are shown in the first line of Fig. 2. As should be clear from the previous section, all
diagrams shown here and in the following are to be understood as representing the irreducible (in the above-mentioned
sense) pieces of the corresponding amplitudes. For the charge operator the last two diagrams in the first line of Fig. 2
depend on the the leading-order unitary transformation

(4), (5) ⇠ 1 + ↵ax,LO
16 (124)

For the current NN operator leading order tree diagrams depend on unitary phases via
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As already pointed out, we adopt the choise of unitary phases ↵ax
1 = ↵ax

12 = 0,↵13 = ↵ax
25 +↵ax

26 = ↵ax
21 +↵ax

22 +↵ax
23 = 1

which is based on renormalizability and on nuclear force matching conditions. The resulting expressions are

A
0,a (Q�1)
2N = �

ig3A~q1 · ~�1

⇣

�

2M2
⇡ + q22

�

[⌧ 1 ⇥ ⌧ 2]a � 2⌧a1~k · [~q1 ⇥ ~�2]
⌘

8F 2
⇡ (k2 +M2

⇡) (q
2
1 +M2

⇡)
+

igA(g2A~q1 · ~�1 � 8F 2
⇡CT

~k · ~�1)[⌧ 1 ⇥ ⌧ 2]a

8F 2
⇡ (k2 +M2

⇡)

+
igA

�

g2A � 2
�

~q1 · ~�1[⌧ 1 ⇥ ⌧ 2]a

8F 2
⇡ (q21 +M2

⇡)
+ 1 $ 2 , (126)

~A
a (Q�1)
2N = k0~k

"

�
ig3A~q1 · ~�1

⇣

�

2M2
⇡ + q22

�

[⌧ 1 ⇥ ⌧ 2]a � 2⌧a1~k · [~q1 ⇥ ~�2]
⌘

8F 2
⇡ (k2 +M2

⇡)
2 (q21 +M2

⇡)

+
igA(g2A~q1 · ~�1 � 8F 2

⇡CT
~k · ~�1)[⌧ 1 ⇥ ⌧ 2]a

8F 2
⇡ (k2 +M2

⇡)
2 +

igA
�

g2A � 1
�

~q1 · ~�1[⌧ 1 ⇥ ⌧ 2]a

8F 2
⇡ (k2 +M2

⇡) (q
2
1 +M2

⇡)

#

+ 1 $ 2 . (127)

where ~qi = ~pi
0 � ~pi (⌧ i) denotes the momentum transfer (Pauli isospin matrix) of nucleon i and qi ⌘ |~qi |. As can

be seen from Eq. 127 the current operator is proportional to the energy transfer k0. These contributions are o↵shell
e↵ects which come from time derivatives of unitary transformations. They are always a↵ected by the choise of unitary
phases. In the Breit frame they obviously disappear and lead to well known vanishing NN current at order Q�1.
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FIG. 2: Diagrams leading to the lowest-order contributions to the 2N axial charge (upper line) and current operators (lower

line). Filled circles denote the subleading vertices from the e↵ective Lagrangians L(2)
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and L(1)
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. Diagrams resulting from the
interchange of the nucleon lines and/or application of the time reversal operation are not shown. For remaining notation see
Fig. 1.

III. TWO-NUCLEON AXIAL CHARGE AND CURRENT OPERATORS AT ORDERS Q�1 AND Q0

As already mentioned in the previous section, the chiral expansion for the 2N axial four-current operator starts at
order Q�1. The relevant diagrams are shown in the first line of Fig. 2. As should be clear from the previous section, all
diagrams shown here and in the following are to be understood as representing the irreducible (in the above-mentioned
sense) pieces of the corresponding amplitudes. For the charge operator the last two diagrams in the first line of Fig. 2
depend on the the leading-order unitary transformation

(4), (5) ⇠ 1 + ↵ax,LO
16 (124)

For the current NN operator leading order tree diagrams depend on unitary phases via
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As already pointed out, we adopt the choise of unitary phases ↵ax
1 = ↵ax

12 = 0,↵13 = ↵ax
25 +↵ax

26 = ↵ax
21 +↵ax

22 +↵ax
23 = 1

which is based on renormalizability and on nuclear force matching conditions. The resulting expressions are
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where ~qi = ~pi
0 � ~pi (⌧ i) denotes the momentum transfer (Pauli isospin matrix) of nucleon i and qi ⌘ |~qi |. As can

be seen from Eq. 127 the current operator is proportional to the energy transfer k0. These contributions are o↵shell
e↵ects which come from time derivatives of unitary transformations. They are always a↵ected by the choise of unitary
phases. In the Breit frame they obviously disappear and lead to well known vanishing NN current at order Q�1.

Tree-level diagrams contribute to energy-
transfer dependent contributions

42

FIG. 19: Diagrams leading to non-vanishing relativistic corrections to the one-pion-exchange-contact 3N force at N3LO which
do not include the 1/m-vertices from L(2)

⇡N (shown by open squares) at the leftmost nucleon line. Time reversed diagrams are
not shown. For remaining notation see Fig. 1.

(6) ⇠ ↵ax
17 + ↵ax

18 + ↵ax
19 � 1. (5.40)

For our standard choice of the unitary phases, we find the following result for the axial current operator:
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To verify the matching condition with the 3N force, we have calculated the contribution [V 3NF
1⇡�cont, 1/m]modified of the

diagrams shown in Fig. 19, which do not involve 1/m-corrections at the leftmost nucleon line. We have then verified
that the following relation is indeed valid:

[V 3NF
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2F 2
⇡

X

a

⌧a3 ~�3 · ~Aa (Q)
2N: cont, 1/m

�

�

�

�

~k=�~q3,k2=�M2
⇡

+O
⇣

(k2 +M2
⇡)

0
⌘

. (5.42)

Finally, there are also contributions from diagram (5) of Fig. 10, which are proportional to the energy transfer k0.
For the standard choice of unitary phases we obtain the following result:

A
0,a (Q)
2N: cont,UT0 = 0,

~A
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Similar to the one-pion exchange current, this expression matches the corresponding terms in the 3N force for the
choice of �̄8 = 1/2.

VI. THREE-NUCLEON AXIAL CURRENTS

We now turn to the 3N axial current operators, whose dominant contributions appear at order Q from tree-level
diagrams constructed solely from the lowest-order vertices. In Fig. 20, we show all graphs which yield non-vanishing
contributions to the axial current, and that do not involve contact interactions. Interestingly, we find only vanishing
contributions to the 3N charge operator at this order. Out of the 26 diagrams shown in Fig. 20, graphs (1-18) yield
expressions which depend on the unitary phases as follows:

(1� 4) ⇠ 1 + ↵ax
1 ,

(5� 7) ⇠ ↵ax
1 ,

(12), (13) ⇠ �1 + ↵ax
25 + ↵ax

26 ,

(17), (18) ⇠ �2 + ↵ax
25 + ↵ax

26 ,

Off-shell effects proportional to energy transfer are important for frame-
independent investigations and also for checking the continuity equation 
and four-current relations
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FIG. 13: One-pion exchange diagrams leading to non-vanishing 1/m-contributions to ~A
(Q)

2N

. Open rectangles refer to 1/m-

vertices from L(2)

⇡N . For remaining notation see Fig. 10.

current operator have the form
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where the vector-valued quantities ~Bi depend on various momenta and the Pauli spin matrices and are given by
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2
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,
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It is not quite straightforward to make a connection between the derived relativistic corrections to the axial current
operator and the corresponding 1/m-terms appearing in the 3N force at N3LO. This is because the later ones also

35

FIG. 13: One-pion exchange diagrams leading to non-vanishing 1/m-contributions to ~A
(Q)

2N

. Open rectangles refer to 1/m-

vertices from L(2)

⇡N . For remaining notation see Fig. 10.

current operator have the form

~A
a (Q)
2N: 1⇡, 1/m =

gA
16F 2

⇡m

⇢

i[⌧ 1 ⇥ ⌧ 2]
a



1

(q21 +M2
⇡)

2

✓

~B1 �
~k~k · ~B1

k2 +M2
⇡

◆

+
1

q21 +M2
⇡

✓ ~B2

(k2 +M2
⇡)

2
+

~B3

k2 +M2
⇡

+ ~B4

◆�

+ ⌧a1



1

(q21 +M2
⇡)

2

✓

~B5 �
~k~k · ~B5

k2 +M2
⇡

◆

+
1

q21 +M2
⇡

✓ ~B6

(k2 +M2
⇡)

2
+

~B7

k2 +M2
⇡

+ ~B8

◆��

+ 1 $ 2 , (5.19)

where the vector-valued quantities ~Bi depend on various momenta and the Pauli spin matrices and are given by
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operator and the corresponding 1/m-terms appearing in the 3N force at N3LO. This is because the later ones also
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where the vector-valued quantities ~Bi depend on various momenta and the Pauli spin matrices and are given by

~B1 = g2A~q1 · ~�1[�2(1 + 2�̄8)~q1 ~k1 · ~q1 � (1� 2�̄8)(2~q1 ~k2 · ~q1 � i ~q1 ⇥ ~�2
~k · ~q1],

~B2 = (1� 2�̄8)g
2
A
~k~k · ~q1~q1 · ~�1[2~k · ~k2 � i~k · ~q1 ⇥ ~�2],

~B3 = 2~k
h

� g2A((1 + 2�̄9)~k · ~q1~k1 · ~�1 + (1� 2�̄9)~q1 · ~�1(~k · ~k2 + ~k2 · ~q1))

+ ~q1 · ~�1(~k · ~k2 + i~k · ~q1 ⇥ ~�2 � ~k1 · ~q1 + ~k2 · ~q1)
i

,

~B4 = g2A[2(1 + 2�̄9)~q1~k1 · ~�1 + (1� 2�̄9)~q1 · ~�1(2~k2 � i~k ⇥ ~�2)]� 2~q1 · ~�1(i~q1 ⇥ ~�2 � i~k ⇥ ~�2 + 2~k2),

~B5 = g2A~q1 · ~�1

h

(1� 2�̄8)(~q1 ~k · ~q1 � 2i ~q1 ⇥ ~�2
~k2 · ~q1)� 2i(1 + 2�̄8)~q1 ⇥ ~�2

~k1 · ~q1
i

,

~B6 = �(1� 2�̄8)g
2
A
~k ~q1 · ~�1[(~k · ~q1)2 � 2i~k · ~k2~k · ~q1 ⇥ ~�2],

~B7 = g2A
~k
h

(1� 2�̄9)~q1 · ~�1(�2i(~k · ~k2 ⇥ ~�2 + ~k2 · ~q1 ⇥ ~�2) + k2 + q21)� 2i(1 + 2�̄9)~k1 · ~�1
~k · ~q1 ⇥ ~�2

i

,

~B8 = �g2A[(1� 2�̄9)~q1 · ~�1(~k � 2i~k2 ⇥ ~�2)� 2i(1 + 2�̄9)~q1 ⇥ ~�2
~k1 · ~�1]. (5.20)

It is not quite straightforward to make a connection between the derived relativistic corrections to the axial current
operator and the corresponding 1/m-terms appearing in the 3N force at N3LO. This is because the later ones also
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FIG. 17: Loop diagrams with contact interactions contributing to Aµ (Q)

2N

. Solid dots denote vertices from L(1)

⇡N , L(2)

⇡ or L(0)

NN .
For remaining notation see Fig. 10.

(1) (2) (3) (4) (5) (6)

FIG. 18: Tree-level diagrams with contact interactions leading to 1/m-contributions to ~A
(Q)

2N

. Solid dots (open squares) denote

vertices from L(1)

⇡N (1/m�corrections from L(2)

⇡N ). For remaining notation see Fig. 10.

In addition to the static terms considered above, one also encounters relativistic 1/m corrections involving a single

insertion of the LO contact interactions from L(0)
NN . We find that the contributions to the axial charge disappear

regardless of the choice of the unitary phases. For the vector current, non-vanishing 1/m-corrections emerge from the
diagrams shown in Fig. 18. The unitary phase dependence of these diagrams is given by

(1) ⇠ 1 + ↵
ax,1/m
16 ,

(2), (4), (5) ⇠ ↵ax
21 + ↵ax

22 + ↵ax
23 � 1,

(3) ⇠ ↵ax
17 + ↵ax

18 + ↵ax
19 + ↵ax

21 + ↵ax
22 + ↵ax

23 � 2,
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FIG. 19: Diagrams leading to non-vanishing relativistic corrections to the one-pion-exchange-contact 3N force at N3LO which
do not include the 1/m-vertices from L(2)

⇡N (shown by open squares) at the leftmost nucleon line. Time reversed diagrams are
not shown. For remaining notation see Fig. 1.

(6) ⇠ ↵ax
17 + ↵ax

18 + ↵ax
19 � 1. (5.40)

For our standard choice of the unitary phases, we find the following result for the axial current operator:

~A
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2N: cont, 1/m = � gA
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⌘
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+ 1 $ 2 . (5.41)

To verify the matching condition with the 3N force, we have calculated the contribution [V 3NF
1⇡�cont, 1/m]modified of the

diagrams shown in Fig. 19, which do not involve 1/m-corrections at the leftmost nucleon line. We have then verified
that the following relation is indeed valid:

[V 3NF
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X
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. (5.42)

Finally, there are also contributions from diagram (5) of Fig. 10, which are proportional to the energy transfer k0.
For the standard choice of unitary phases we obtain the following result:

A
0,a (Q)
2N: cont,UT0 = 0,

~A
a (Q)
2N: cont,UT0 = �i k0~k

gACT
~k · ~�1[⌧ 1 ⇥ ⌧ 2]a
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⇡)

2 + 1 $ 2 . (5.43)

Similar to the one-pion exchange current, this expression matches the corresponding terms in the 3N force for the
choice of �̄8 = 1/2.

VI. THREE-NUCLEON AXIAL CURRENTS

We now turn to the 3N axial current operators, whose dominant contributions appear at order Q from tree-level
diagrams constructed solely from the lowest-order vertices. In Fig. 20, we show all graphs which yield non-vanishing
contributions to the axial current, and that do not involve contact interactions. Interestingly, we find only vanishing
contributions to the 3N charge operator at this order. Out of the 26 diagrams shown in Fig. 20, graphs (1-18) yield
expressions which depend on the unitary phases as follows:

(1� 4) ⇠ 1 + ↵ax
1 ,

(5� 7) ⇠ ↵ax
1 ,

(12), (13) ⇠ �1 + ↵ax
25 + ↵ax

26 ,

(17), (18) ⇠ �2 + ↵ax
25 + ↵ax

26 ,

No relativistic corrections to the axial NN charge



NN current at order Q
One-pion exchange contributions match to         exchange 3NF at N3LO21

FIG. 3: Non-tadpole one-loop one-pion-exchange diagrams contributing to the 2N axial charge and/or current operator. For
notation see Fig. 1.

(11) ⇠ (1� 2↵ax
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. . . . (131)

where . . . denote some spin-isospin-momentum structures which do not depend on unitary phases. One observes that
the contributions to the axial current operator from diagrams (3) and (4) vanish for the standard choice of the unitary
phases.

Next, in Fig. 4 we show all non-vanishing one-pion-exchange tadpole diagrams and tree graphs involving di-vertices

from L(3)
⇡N and li-vertices from L(4)

⇡ . We found that all these diagrams contribute only to the axial charge operator.
Further, graphs (7-12) turn out to depend on the unitary phases as follows

(7), (9), (10), (12) ⇠ 1 + ↵ax,LO
16 ,

(8) ⇠ 1 + ↵ax,Tadpole
16 ,

(11) ⇠ 1 + ↵ax,Static
16 . (132)

Evaluating the contributions from the diagrams depicted in Figs. 3 and 4 for our standard choice of the unitary phases,
replacing all bare LECs li and di in terms of their renormalized values as defined in Eq. (113), and expressing the
results in terms of physical parameters F⇡, M⇡ and gA, see e.g. [62], leads to our final result for the static order-Q
contributions to the 2N one-pion-exchange axial current and charge operators:
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FIG. 4: One-pion-exchange tadpole and tree dragrams involving d
i

-vertices from L(3)
⇡N

(denoted by filled squares) which con-
tribute to the 2N axial charge operator. For notation see Fig. 1.
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where the scalar functions hi(q2) are given by
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FIG. 12: One-pion-exchange tadpole and tree-level dragrams involving di-vertices from L(3)

⇡N (denoted by filled squares) which

contribute to A0 (Q)
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One observes that the contributions to the axial current operator from diagrams (3) and (4) vanish for the standard
choice of the unitary phases. For the charge operator, diagrams (1), (2), (11), (21), (23) also turn out to yield vanishing
contributions for the standard choice of the unitary phases.

Next, in Fig. 12 we show all non-vanishing one-pion-exchange tadpole diagrams and tree graphs involving di-vertices

from L(3)
⇡N and li-vertices from L(4)

⇡ . We found that these diagrams contribute only to the axial charge operator.
Further, graphs (7-12) yield contributions which depend on the unitary phases as

(7), (9), (10), (12) ⇠ 1 + ↵ax,LO
16 ,

(8) ⇠ 1 + ↵ax,Tadpole
16 ,

(11) ⇠ 1 + ↵ax,Static
16 , (5.12)

and vanish for the standard choice of the phases. Evaluating the contributions from the diagrams depicted in Figs. 11
and 12 for our standard choice of the unitary phases, replacing all bare LECs li and di in terms of their renormalized
values as defined in Eq. (2.118), and expressing the results in terms of physical parameters F⇡, M⇡ and gA, see
e.g. [33], leads to our final result for the static order-Q contributions to the 2N one-pion-exchange axial current and
charge operators:
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Notice that as desired, the pion-pole contributions to the current operator are directly related to the two-pion exchange
contributions to the order-Q4 (N3LO) 3N force. In particular, the following relation holds true

h4(q2) = A(4)(q2), h5(q2) = B(4)(q2), (5.17)

where the scalar functions A(4)(q2) and B(4)(q2) entering the 3N force are defined in Eq. (3.4) of [14].

Finally, apart from the static contributions, we need to take into account for the leading relativistic corrections

emerging from tree-level diagrams with a single insertion of 1/m-vertices from the Lagrangian L(2)
⇡N . We stress again

that due to the employed counting for the nucleon mass with m ⇠ ⇤2
b/M⇡, these contributions are shifted one order

higher relative to the ones emerging from tree-level diagrams with a single insertion of the ci-vertices from L(2)
⇡N shown

in the second line of Fig. 10. In Fig. 13, we show all diagrams leading to non-vanishing contributions to the axial
current operator. Notice that no 1/m-corrections to the 2N axial charge operator appear at this order. Diagrams
(1-17) turn out to induce a dependence on the unitary phases in the following way:
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Again, our standard choice of the unitary phases leads to some simplifications. In particular, it eliminates the
contributions from diagrams (4) and (16). The explicit results for the 1/m-corrections to the one-pion-exchange

hi are related to TPE 3NF functions A & B
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FIG. 16: Two-pion-exchange diagrams contributing to Aµ (Q)
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where the scalar functions gi(q1) are defined as
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g5(q1) = �q21 g4(q1), 39
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Our standard choice of the unitary phases ensures that the 2N irreducible pion production amplitude entering the
pion-pole contributions to the axial current operator equals the one appearing in the one-pion-two-pion-exchange 3N
force at N3LO. This manifests itself in the relations

gi(q1) = Fi(q1), i = 1, . . . , 12, (5.32)

where Fi(q1) are the scalar functions entering the corresponding 3N force and defined in Eq. (3.2) of [15].8 Notice
further that the loop contributions to the current operator are finite in dimensional regularization, whereas the
divergences in the loop integrals appearing in the axial charge are absorbed into redefinition of LECs accompanying
the contact operators to be specified below.

D. Short-range contributions at order Q

We first consider static contributions and begin with tree-level diagrams, which emerge from the terms in the e↵ective

Lagrangian L(2)
NN involving one derivative and one insertion of the axial vector source. While there are no contributions

to the current at this order, four independent structures appear in the charge operator. Using the notation of Ref. [56],
the tree-level contributions read:

~A
a (Q)
2N: cont = 0, (5.33)

A
0,a (Q)
2N: cont = iz1[⌧ 1 ⇥ ⌧ 2]

a ~�1 · ~q2 + iz2[⌧ 1 ⇥ ⌧ 2]
a ~�1 · ~q1 + iz3⌧

a
1 ~q2 · ~�1 ⇥ ~�2

+ z4(⌧
a
1 � ⌧a2 )(~�1 � ~�2) · ~k1 + 1 $ 2 , (5.34)

with zi denoting the corresponding LECs.

8 Notice that in [15], we have only shown explicitly non-polynomial contributions to the scalar functions Fi since the polynomial terms,
which for dimensional reasons have to be momentum-independent and proportional to M⇡ , only lead to finite shifts of the LEC cD.
Eq. (5.32) is valid both for polynomial and non-polynomial parts.
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Our standard choice of the unitary phases ensures that the 2N irreducible pion production amplitude entering the
pion-pole contributions to the axial current operator equals the one appearing in the one-pion-two-pion-exchange 3N
force at N3LO. This manifests itself in the relations

gi(q1) = Fi(q1), i = 1, . . . , 12, (5.32)

where Fi(q1) are the scalar functions entering the corresponding 3N force and defined in Eq. (3.2) of [15].8 Notice
further that the loop contributions to the current operator are finite in dimensional regularization, whereas the
divergences in the loop integrals appearing in the axial charge are absorbed into redefinition of LECs accompanying
the contact operators to be specified below.

D. Short-range contributions at order Q

We first consider static contributions and begin with tree-level diagrams, which emerge from the terms in the e↵ective

Lagrangian L(2)
NN involving one derivative and one insertion of the axial vector source. While there are no contributions

to the current at this order, four independent structures appear in the charge operator. Using the notation of Ref. [56],
the tree-level contributions read:

~A
a (Q)
2N: cont = 0, (5.33)

A
0,a (Q)
2N: cont = iz1[⌧ 1 ⇥ ⌧ 2]

a ~�1 · ~q2 + iz2[⌧ 1 ⇥ ⌧ 2]
a ~�1 · ~q1 + iz3⌧

a
1 ~q2 · ~�1 ⇥ ~�2

+ z4(⌧
a
1 � ⌧a2 )(~�1 � ~�2) · ~k1 + 1 $ 2 , (5.34)

with zi denoting the corresponding LECs.

8 Notice that in [15], we have only shown explicitly non-polynomial contributions to the scalar functions Fi since the polynomial terms,
which for dimensional reasons have to be momentum-independent and proportional to M⇡ , only lead to finite shifts of the LEC cD.
Eq. (5.32) is valid both for polynomial and non-polynomial parts.
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FIG. 15: Diagrams leading to non-vanishing contributions to the two-pion exchange 3N force at N3LO which include the
1/m-vertices from L(2)

⇡N (shown by open squares) at the leftmost nucleon line. The indicated kinetic energy insertions at the
leftmost nucleon line can be identically expressed in terms of the energy transfer k

0

of Eq. (5.24). Time reversed diagrams are
not shown.

+ (1 + 2�̄8)
g2A⌧ 1 · ⌧ 3~q3 · [~q1 ⇥ ~�2]

q23 +M2
⇡

�

+ 1 $ 2 , (5.25)

where k0 is specified in Eq. (5.24). We then find that the di↵erence between the 3N force in the above equation and
the contribution reconstructed from the axial current in Eq. (5.23) is given by

[V 3NF
TPE, k0

]modified +
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2F 2

⇡

X
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⌧a3 ~�3 · ~Aa (Q)
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2(q21 +M2
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⌧ 3 · [⌧ 1 ⇥ ⌧ 2]~q3 · ~q1 + ⌧ 1 · ⌧ 3~q3 · [~q1 ⇥ ~�2]

◆

+ 1 $ 2 . . (5.26)

This shows that the matching of ~A
a (Q)
2N: 1⇡,UT0 to the 3N force is only possible for �̄8 = 1/2.

C. Two-pion-exchange contributions

We now turn to the two-pion exchange contributions. In Fig. 16, we show all diagrams yielding non-vanishing results
for the axial charge and/or current operator with two exchanged pions. For the axial charge, diagrams (1), (4), (5),
(7), (10), (13), (17), (19), (21) give non-vanishing contributions, from which those of graphs (4), (10), (17), (19), (21)
appear to depend on the unitary phases via

(4), (10), (17), (19), (21) ⇠ 1 + ↵ax,LO
16 . (5.27)

Clearly, all these contributions vanish for our standard choice. For the axial current operator, we find non-vanishing
results from diagrams (2-6), (8-12), (14-18), (20), which in the case of graphs (2-6) depend on the unitary phases
according to
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. (5.28)

Notice that the contributions involving second-order pion-pole terms resulting from diagrams (4), (6) vanish for our
standard choice of the unitary phases. The final results for the two-pion exchange operators read
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FIG. 16: Two-pion-exchange diagrams contributing to Aµ (Q)

2N

. For notation see Fig. 10.
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NN current at order Q
Vanishing short-range contributions for the current, after antisymmetrization29

FIG. 8: Loop diagrams with contact interactions. Solid dots denote vertices from L(1)
⇡N

, L(2)
⇡

or L(0)
NN

.

z̄2 ! z̄2 +
gA
4F 2
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(2d̄2 + d̄6),

z̄3 ! g3A
32⇡2F 4

⇡

. (149)

Once we add these shifts to the polynomial pieces from two-pion exchange including pion-pole diagrams we get zero
result. So the only short-range operators which contribute to the charge are the four independent operators which
have been constructed in [24] and will be listed below.

For the current operator, the diagrams (1-9), (11-14), (17-27), (29) and (30) yield non-vanishing contributions from
which those of graphs (1-5), (21), (23-25), (27), (29) and (30) depend on the unitary phases:
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Three-nucleon current
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FIG. 20: Tree-level two-pion exchange diagrams leading to non-vanishing contributions to ~A
(Q)

3N

. For notation see Fig. 10.
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For our standard choice of the unitary phases, the contributions from diagrams (5-7) and (12-16) as well as all
expressions involving second-order pion-pole terms are found to vanish. In order to facilitate a comparison with the

four-nucleon force at N3LO, we write the resulting expression for the 3N axial current ~A
a (Q)
3N:⇡ in the form
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8
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FIG. 21: Tree-level diagrams involving one or two insertions of the leading contact interactions from L(0)

NN which lead to

non-vanishing contributions to ~A
(Q)

3N

. For notation see Fig. 10.

For our standard choice of the unitary phases, the contributions of graphs (3), (4), (7-11), (13-19) and all expressions
involving second-order pion-pole terms vanish yielding:
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The connection to the four-nucleon force manifests itself through the relations
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X
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+ 23permutations,
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X
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3

�
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~k=�~q4
+ 23permutations, (6.8)

where the expressions for the four-nucleon force contributions Vclass�IV and V 2
class�V are given in [36].

Lengthy expression for current: HK, Epelbaum, Meißner, arXiv:1610.03569  

Pion-pole terms match to 4NF 

First complete calculation of axial 3N currents

Vanishing charge operator
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two-pion exchange terms derived in Ref. [4]. However, a systematic study of axial current

contributions at N4LO is still lacking. The other goal of the present work is to provide a

numerically exact estimate of these contributions in the 3H GT matrix element.

II. NUCLEAR AXIAL CURRENTS IN �EFT

In this section we report the expressions for the nuclear axial current in the limit of

vanishing external field momentum (denoted as q) [1]. Of course, pion-pole contributions in

Fig. 1 vanish in this limit. The expressions at LO and N2LO read
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while those at N3LO are separated into one-pion exchange (OPE) and contact (CT) terms

corresponding respectively to panels (e) and (g) of Fig. 1,
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Lastly, the expressions at N4LO are separated into terms originating from OPE, panel (s),

and multi-pion exchange (MPE), panels (i), (k), (m), and (p),
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where the loop functions are given by
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At zero momentum transfer the result of Baroni et al. is

The current of Baroni et al. does not exist in the chiral limit!

Two currents have different long range parts!
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As one can see from the above equation, we have to set ↵ax
1 = 0 in order to eliminate the term proportional to

[⌧ 1 ⇥ ⌧ 2]a, which in turn is consistent with the renormalizability constraints. However, after setting ↵ax
1 = 0, we still

obtain a di↵erence:
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Thus, no choice of unitary phases makes our results agree with the ones of Baroni et al.. We conclude that our current
operator and that of Baroni et al. are unitary non-equivalent (within the set of unitary transformations employed in
our analysis).13 Since the loop function A(q1) a↵ects the long-range behavior of the current, we get a disagreement
even for the long-range terms.

Concerning the axial charge operator, our results for the two-pion exchange and short-range contributions A0,a
2N: 2⇡

and A0,a
2N: cont at order Q agree with the ones of Ref. [56]. For the one-pion exchange contributions, we find the same

expressions for the chiral logarithms, i.e. those terms in Eq. (5.14) which involve the loop function L(q). This is
not surprising given that they originate solely from the irreducible topologies (26) and (28) in Fig. 11 and thus can
be obtained by evaluating the corresponding Feynman diagrams. On the other hand, the contributions to the scalar
functions h6,7,8 in Eq. (5.14), which are given by rational functions of momenta and the pion mass, di↵er from the
corresponding terms found by Baroni and collaborators.

Finally, what concerns the three-nucleon axial current operator, whose leading terms emerge at order Q, Baroni et
al. only consider in Ref. [76] the contributions of diagrams (21) and (25) in Fig. 20. To the best of our knowledge, our
results in Eqs. (6.2) and (6.6) represent the first complete derivation of the dominant contributions to the three-nucleon
axial current operator ~Aa

3N:⇡ + ~Aa
3N: cont.

XII. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed in detail the nuclear axial-vector charge and current operators as well as the pseu-
doscalar currents in the framework of heavy-baryon chiral e↵ective field theory. The main results of our study can be
summarized below.

• First, we have worked out the general form of the continuity equation for the nuclear iso-triplet vector and
axial-vector current operators based on the e↵ective chiral Lagrangian involving (first-order) time derivatives of
external sources. The resulting continuity equations (2.42) and (2.42) di↵er from their commonly assumed form
by terms involving energy-transfer-dependent contributions to the charge and current operators.

• We have worked out Poincaré invariance constraints on the axial-vector charge and current operators which
manifest themselves in the on-shell relation (2.77) between the e↵ective Hamiltonian, boost and current oper-
ators. We have extended a formal proof of Ref. [64] that the generators of the Poincaré group acting in the
Fock space of nucleons and mesons are simultaneously block diagonalized by the Okubo unitary transformation
to the case of general interactions between the particles. This makes the proof valid for the e↵ective operators
derived in the framework of chiral EFT. We have also proposed an e�cient way of calculating the e↵ective boost
operator which acts on the nucleonic part of the Fock space. Using this approach, we were able to explicitly
verify Poincaré invariance constraints for the derived current operators.

13 We can, however, not exclude the possibility of existence of a di↵erent set of unitary transformations, which would relate the two
expressions for the current operator.
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TABLE I: Chiral expansion of the nuclear axial current operator up to N3LO.

order single-nucleon two-nucleon three-nucleon

LO (Q�3) ~Aa
1N: static

, Eq. (4.2) — —

NLO (Q�1) ~Aa
1N: static

, Eq. (4.7) — —

N2LO (Q0) — ~Aa
2N: 1⇡, Eq. (5.7) —

+ ~Aa
2N: cont

, Eq. (5.8)

N3LO (Q) ~Aa
1N: static

, Eq. (4.46) ~Aa
2N: 1⇡, Eq. (5.13) ~Aa

3N:⇡, Eq. (6.2)

+ ~Aa
1N: 1/m,UT

0 , Eq. (4.13) + ~Aa
2N: 1⇡,UT

0 , Eq. (5.23) + ~Aa
3N: cont

, Eq. (6.6)

+ ~Aa
1N: 1/m2 , Eq. (4.18) + ~Aa

2N: 1⇡, 1/m, Eq. (5.19)

+ ~Aa
2N: 2⇡, Eq. (5.29)

+ ~Aa
2N: cont,UT

0 , Eq. (5.43)

+ ~Aa
2N: cont, 1/m, Eq. (5.41)

TABLE II: Chiral expansion of the nuclear axial charge operator up to N3LO.

order single-nucleon two-nucleon three-nucleon

LO (Q�3) — — —

NLO (Q�1) A0,a
1N:UT

0 , Eq. (4.4) A0,a
2N: 1⇡, Eq. (5.3) —

+ A0,a
1N: 1/m, Eq. (4.10)

N2LO (Q0) — — —

N3LO (Q) A0,a
1N: static,UT

0 , Eq. (4.14) A0,a
2N: 1⇡, Eq. (5.14) —

+ A0,a
1N: 1/m, Eq. (4.22) + A0,a

2N: 2⇡, Eq. (5.30)

+ A0,a
2N: cont

, Eq. (5.34)

VII. SUMMARY OF THE DERIVED CONTRIBUTIONS

In this section we provide a summary of the derived contributions to the nuclear axial charge and current operators

Aµ = Aµ
1N +Aµ

2N +Aµ
3N + . . . . (7.1)

The chiral power counting implies that n-nucleon operators are, in general, suppressed by two powers of the expansion
parameter relative to n� 1-nucleon operators. Thus, to LO we have:

Aµ
1N ⇠ O(Q�3), Aµ

2N ⇠ O(Q�1), Aµ
3N ⇠ O(Q) , . . . . (7.2)

Therefore, up to N3LO (Q) in the chiral expansion, i.e. up to order Q4 relative to the dominant contribution at order
Q�3, it is necessary to include single-, two- and three-nucleon operators.

We have worked out all contributions to the nuclear axial current up to N3LO. The chiral expansion of the current
and charge operators is summarized in Tables I and II, respectively. We distinguish explicitly between the static
contributions, terms which are proportional to the energy transfer (which are labelled with “UT0”) and relativistic
corrections (1/m and 1/m2). Further, the contributions to the exchange operator are classified according to the range
of the interaction between the nucleons (“1⇡”, “2⇡” and “cont”). It is important to keep in mind that the expansion

Baroni et al. considered only
irr. diagrams of 3N current

terms not discussed by Baroni et al. ´16 terms on which we agree with Baroni et al. ´16
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TABLE III: Chiral expansion of the nuclear pseudoscalar operator up to N3LO.

order single-nucleon two-nucleon three-nucleon

LO (Q�4) P a
1N: static

, Eq. (8.11) — —

NLO (Q�2) P a
1N: static

, Eq. (8.13) — —

N2LO (Q�1) — P a
2N: 1⇡, Eq. (8.32) —

+ P a
2N: cont

, Eq. (8.33)

N3LO (Q0) P a
1N: static

, Eq. (8.27) P a
2N: 1⇡, Eq. (8.35) P a

3N:⇡, Eq. (8.48)

+ P a
1N: 1/m,UT

0 , Eq. (8.16) + P a
2N: 1⇡,UT

0 , Eq. (8.40) + P a
3N: cont

, Eq. (8.50)

+ P a
1N: 1/m2 , Eq. (8.18) + P a

2N: 1⇡, 1/m, Eq. (8.39)

+ P a
2N: 2⇡, Eq. (8.42)

+ P a
2N: cont,UT

0 , Eq. (8.46)

+ P a
2N: cont, 1/m, Eq. (8.45)

where X̂ means that the quantity X is to be taken as an operator rather than matrix element with respect to the

nucleon momenta, and Ĥ
(Q0)
1N refers to the nonrelativistic kinetic energy operator. Notice further that in order to

get a correct chiral order for any sequence of operators in the convention we are using, one should take into account
the suppression factor of Q3 for every intermediate nucleonic state. For example, the chiral order of the operator

Ĥ
(Q0)
1N Â

0,a (Q�1)
1N: 1/m is Q2, while that of V̂ (Q0)

2N: 1⇡ V̂
(Q0)
2N: 1⇡ Â

0,a (Q�1)
1N:UT0 is Q5. Alternatively, one can, of course, also explicitly

verify the chiral order of any sequence of operators by adding together the inverse mass dimension  of all vertices
as explained in section II. Last but not least, we remind the reader that within the adopted counting scheme for the
nucleon mass with m ⇠ ⇤2

b/M⇡, the energy-transfer k0 is counted as k0 ⇠ Q2/m = O(Q3).

In the following, we will explicitly verify the validity of the continuity equation for all derived contributions to the
charge and current operators.

• Single-nucleon current operator

Requiring the continuity equation (2.42) to hold true at all considered orders in the chiral expansion, we obtain
the relations

~k · ~̂Aa (Q�3)
1N: static �mqi P̂

a (Q�4)
1N: static = 0 , (10.2)

~k · ~̂Aa (Q�1)
1N: static �mqi P̂

a (Q�2)
1N: static = 0 , (10.3)

~k · ~̂Aa (Q)
1N: 1/m2 �mqi P̂

a (Q0)
1N: 1/m2 =

h

Ĥ
(Q0)
1N , Â

0,a (Q�1)
1N: 1/m � @

@k0
~k · ~̂Aa (Q)

1N: 1/m,UT0 +
h

Ĥ
(Q0)
1N ,

@

@k0
Â

0,a (Q�1)
1N:UT0

i

+ mqi
@

@k0
P̂

a (Q0)
1N: 1/m,UT0

i

, (10.4)

~k · ~̂Aa (Q)
1N: static �mqi P̂

a (Q0)
1N: static = 0 . (10.5)

It is easy to verify that the derived contributions fulfill the first three equations. Notice further that the last
equation implies the Goldberger-Treiman-like relation between the LECs fA

1 and fP
1 :

fP
1 = �4fA

1 . (10.6)

It is then straightforward to verify the validity of the last relation in Eq. (10.5) using Eqs. (4.46) and (8.27).

• Two-nucleon current operator

At leading order, the continuity equation (2.42) leads to the relations

~k · ~̂Aa (Q0)
2N: 1⇡ �mqi P̂

a (Q�1)
2N: 1⇡ = 0 , (10.7)

Pseudoscalar current

Continuity equations are verified for all currents
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Summary
Axial-vector current is analyzed up to order Q

There is a high degree of unitary ambiguity

Renormalizability and matching to nuclear forces conditions
lead to unique current

Outlook
Numerical implementations

Differences in long range part between our results and Baroni et al.

Axial-vector current up to order Q2

Modified continuity equation and 4-vector relations are satisfied for 
any choice  of unitary phases


