Axial-vector current in chiral effective field theory

Hermann Krebs Ruhr-Universität-Bochum

Frontiers in Nuclear Physics program, UCSB

October 13, 2016

Outline

- Nuclear forces in chiral EFT
- Axial-vector current in chiral EFT
 - Unitary transformations for currents
 - Modified continuity equation and 4-vector relations
 - Matching to nuclear forces
 - Axial-vector current up to order Q

ChPT nuclear forces

$$V(\vec{p}',\vec{p}) \to V_{\text{reg}}(\vec{p}',\vec{p}) = V(\vec{p}',\vec{p}) \exp\left(-\frac{p'^m + p^m}{\Lambda^m}\right), \qquad (3.24)$$

power m is chosen sufficiently large in order that the cutoff articlast $V(\vec{p}', \vec{p}) \times \mathcal{O}((Q/\Lambda)^m)$ are beyond

Uncertainty due to chiral expansion

Phase shifts and mixing angles

- Good convergence of chiral expansion
- \bigcirc Error bands are consistent with each other \longrightarrow strong support of chiral uncertainty estimation

Excellent agreement with NPWA data

3NF up to N⁴LO

Nuclear currents in chiral EFT

Electroweak probes on nucleons and nuclei can be described by current formalism

Chiral EFT Hamiltonian depends on external sources

Vector currents in chiral EFT

Chiral expansion of the electromagnetic current and charge operators

Park, Min, Rho, Kubodera, Song, Lazauskas (earlier works, incomplete, TOPT) Pastore, Schiavilla et al. (TOPT), Kölling, Epelbaum, HK, Meißner (UT)

MuSun experiment at PSI

Main goal: measure the doublet capture rate Λ_d in $\mu^2 + d \rightarrow v_\mu + n + n$ with the accuracy of ~ 1.5%

The resulting axial exchange current can be used to make precision calculations for

Iriton half life, fT_{1/2} = 1129.6 ± 3.0 s, and the muon capture rate on ³He, $\Lambda_0 = 1496 \pm 4 \text{ s}^{-1} \rightarrow \text{precision tests of the theory}$

weak reactions of astrophysical interest such as e.g. the pp chain of the solar burning:

L_{1,A} governs the leading 3NF

$$p + p \rightarrow d + e^{+} + v_{e}$$

$$p + p + e^{-} \rightarrow d + v_{e}$$

$$p + {}^{3}He \rightarrow {}^{4}He + e^{+} + v_{e}$$

$${}^{7}Be + e^{-} \rightarrow {}^{7}Li + v_{e}$$

$${}^{8}B \rightarrow {}^{8}Be^{*} + e^{+} + v_{e}$$

Historical remarks

- Meson-exchange theory, Skyrme model, phenomenology, ... Brown, Adam, Mosconi, Ricci, Truhlik, Nakamura, Sato, Ando, Kubidera, Riska, Sauer, Friar, ...
- First derivation within chiral EFT to leading 1-loop order using TOPT Park, Min, Rho Phys. Rept. 233 (1993) 341; Park et al., Phys. Rev. C67 (2003) 055206
 - only for the threshold kinematics
 - pion-pole diagrams ignored
 - box-type diagrams neglected
 - renormalization incomplete
- Leading one-loop expressions using TOPT including pion-pole terms for general kinematics (still incomplete, e.g. no 1/m corrections)

Baroni, Girlanda, Pastore, Schiavilla, Viviani, PRC93 (2016) 015501, Erratum: PRC 93 (2016) 049902

Complete derivation to leading one-loop order using the method of UT

HK, Epelbaum, Meißner, arXiv:1610.03569

Diagonalization via Okubo

Decomposition of the Fock space \mathcal{H}

Block-diagonalization by applying unitary transformation

$$egin{aligned} & ilde{H} = U^{\dagger} H \, U = egin{pmatrix} \eta & ilde{H} \eta & 0 \ 0 & \lambda \, H\lambda \end{pmatrix} \ &V_{ ext{eff}} = \eta (ilde{H} - H_0) \eta \end{aligned}$$

 V_{eff} is E - indep. \Longrightarrow important for few-nucleon simulations

Possible parametrization by Okubo '54 $U = \begin{pmatrix} \eta(1 + A^{\dagger}A)^{-1/2} & -A^{\dagger}(1 + AA^{\dagger})^{-1/2} \\ A(1 + A^{\dagger}A)^{-1/2} & \lambda(1 + AA^{\dagger})^{-1/2} \end{pmatrix}$ With decoupling eq. $\lambda(H - [A, H] - AHA)\eta = 0$ Can be solved perturbatively within ChPT

Epelbaum, Glöckle, Meißner, '98

Unitary transformations for currents

● Step 1:
$$\tilde{H} \to \tilde{H}[a, v, s, p] = U^{\dagger}H[a, v, s, p]U$$

Okubo transf. or further strong unitary transf. are not enough to renormalize the currents

Step 2: additional (time-dependendent) unitary transformations

$$\begin{split} i\frac{\partial}{\partial t}\Psi &= H\Psi \longrightarrow i\frac{\partial}{\partial t}U(t)U^{\dagger}(t)\Psi = U(t)i\frac{\partial}{\partial t}U^{\dagger}(t)\Psi + \left(i\frac{\partial}{\partial t}U(t)\right)U^{\dagger}(t)\Psi = HU(t)U^{\dagger}(t)\Psi \\ \Psi' &= U^{\dagger}(t)\Psi \longrightarrow i\frac{\partial}{\partial t}\Psi' = \left[U^{\dagger}(t)HU(t) - U^{\dagger}(t)\left(i\frac{\partial}{\partial t}U(t)\right)\right]\Psi' \end{split}$$

Explicit time-dependence through source terms

$$\begin{split} \tilde{H}[a,v,s,p] \to U^{\dagger}[a,v]\tilde{H}[a,v,s,p]U[a,v] + \left(i\frac{\partial}{\partial t}U^{\dagger}[a,v]\right)U[a,v] \\ =: H_{\text{eff}}[a,\dot{a},v,\dot{v}] \end{split}$$

 $A^b_{\mu}(\vec{x},t) := \frac{\delta}{\delta a^{\mu,b}(\vec{x},t)} H_{\text{eff}}[a,\dot{a},v,\dot{v}]\Big|_{a=v=0}$

Due to time-derivatives (\dot{a}, \dot{v}) the currents depend on energy transfer if transformed into momentum space

Chiral symmetry constraints

Chiral symmetry transformations on the path integral level

Gasser, Leutwyler Ann. Phys. (1984) 142: $v_{\mu} = \frac{1}{2} (r_{\mu} + l_{\mu})$ and $a_{\mu} = \frac{1}{2} (r_{\mu} - l_{\mu})$

 $\langle 0_{\text{out}}|0_{\text{in}}\rangle_{a,v,s,p} = \exp\left(i\,Z[a,v,s,p]\right) = \exp\left(i\,Z[a',v',s',p']\right) = \langle 0_{\text{out}}|0_{\text{in}}\rangle_{a',v',s',p'}$

 $\begin{aligned} r_{\mu} &\to r'_{\mu} = R r_{\mu} R^{\dagger} + i R \partial_{\mu} R^{\dagger} ,\\ l_{\mu} &\to l'_{\mu} = L l_{\mu} L^{\dagger} + i L \partial_{\mu} L^{\dagger} ,\\ s + i p &\to s' + i p' = R(s + i p) L^{\dagger} ,\\ s - i p &\to s' - i p' = L(s - i p) R^{\dagger} . \end{aligned}$

Chiral $SU(2)_L \times SU(2)_R$ rotation does not change the generating functional \longrightarrow Ward identities

Chiral symmetry transformations on the Hamiltonian level

There exists a unitary transformation U(R, L) such that from Schrödinger eq.

$$i\frac{\partial}{\partial t}\Psi = H_{\text{eff}}[a,v,s,p]\Psi$$
 takes the form $i\frac{\partial}{\partial t}U^{\dagger}(R,L)\Psi = H_{\text{eff}}[a',v',s',p']U^{\dagger}(R,L)\Psi$

Transformed Hamiltonian is unitary equivalent to the untransformed one

$$H_{\text{eff}}[a', \dot{a}', v', \dot{v}', s', p'] = U^{\dagger}(R, L)H_{\text{eff}}[a, \dot{a}, v, \dot{v}, s, p]U(R, L) + \left(i\frac{\partial}{\partial t}U^{\dagger}(R, L)\right)U(R, L)$$

Continuity equation

Infinitesimally we have $R = 1 + \frac{i}{2} \boldsymbol{\tau} \cdot \boldsymbol{\epsilon}_R(x)$ and $L = 1 + \frac{i}{2} \boldsymbol{\tau} \cdot \boldsymbol{\epsilon}_L(x)$

Expressed in $\epsilon_V = \frac{1}{2} \left(\epsilon_R + \epsilon_L \right)$ and $\epsilon_A = \frac{1}{2} \left(\epsilon_R - \epsilon_L \right)$ we have

$$\begin{aligned} \boldsymbol{v}_{\mu} &\to \boldsymbol{v}'_{\mu} = \boldsymbol{v}_{\mu} + \boldsymbol{v}_{\mu} \times \boldsymbol{\epsilon}_{V} + \boldsymbol{a}_{\mu} \times \boldsymbol{\epsilon}_{A} + \partial_{\mu} \boldsymbol{\epsilon}_{V} \\ \boldsymbol{a}_{\mu} &\to \boldsymbol{a}'_{\mu} = \boldsymbol{a}_{\mu} + \boldsymbol{a}_{\mu} \times \boldsymbol{\epsilon}_{V} + \boldsymbol{v}_{\mu} \times \boldsymbol{\epsilon}_{A} + \partial_{\mu} \boldsymbol{\epsilon}_{A} \end{aligned} \xrightarrow{\boldsymbol{v}_{\mu}} \begin{aligned} & \boldsymbol{v}_{\mu} &\to \boldsymbol{v}'_{\mu} = \partial_{\mu} \dot{\boldsymbol{\epsilon}}_{V} + \dots \\ & \dot{\boldsymbol{a}}_{\mu} &\to \dot{\boldsymbol{a}}'_{\mu} = \partial_{\mu} \dot{\boldsymbol{\epsilon}}_{A} + \dots \end{aligned}$$

$$H_{\text{eff}}[a', \dot{a}', v', \dot{v}', s', p'] = U^{\dagger}(R, L) H_{\text{eff}}[a, \dot{a}, v, \dot{v}, s, p] U(R, L) + \left(i\frac{\partial}{\partial t}U^{\dagger}(R, L)\right) U(R, L)$$

$$H_{\text{eff}}[a', \dot{a}', v', \dot{v}', s', p'] \text{ is a function of } \epsilon_V, \dot{\epsilon}_V, \ddot{\epsilon}_V, \epsilon_A, \dot{\epsilon}_A, \ddot{\epsilon}_A$$

$$\longrightarrow U = \exp\left(i\int d^3x \left[R_0^v(\vec{x}) \cdot \epsilon_V(\vec{x}, t) + R_1^v(\vec{x}) \cdot \dot{\epsilon}_V(\vec{x}, t) + R_0^a(\vec{x}) \cdot \epsilon_A(\vec{x}, t) + R_1^a(\vec{x}) \cdot \dot{\epsilon}_A(\vec{x}, t)\right]\right)$$

Expanding both sides in $\vec{\epsilon}_V, \vec{\epsilon}_A$, comparing the coefficients and transforming to momentum space we get the continuity equation

new terms

$$\begin{bmatrix} H_{\text{strong}}, \mathbf{A}_0(\vec{k}, 0) - \frac{\partial}{\partial k_0} \vec{k} \cdot \vec{\mathbf{A}}(\vec{k}, k_0) + \frac{\partial}{\partial k_0} \Big[H_{\text{strong}}, \mathbf{A}_0(\vec{k}, k_0) \Big] + i \frac{\partial}{\partial k_0} m_q \mathbf{P}(\vec{k}, k_0) \Big]$$
$$= \vec{k} \cdot \vec{\mathbf{A}}(\vec{k}, 0) - i m_q \mathbf{P}(\vec{k}, 0)$$

Continuity equation

The continuity eq. is invariant under the two discussed classes of unitary transformations

$$\begin{bmatrix} H_{\text{strong}}, \boldsymbol{A}_0(\vec{k}, 0) - \frac{\partial}{\partial k_0} \vec{k} \cdot \vec{\boldsymbol{A}}(\vec{k}, k_0) + \frac{\partial}{\partial k_0} \Big[H_{\text{strong}}, \boldsymbol{A}_0(\vec{k}, k_0) \Big] + i \frac{\partial}{\partial k_0} m_q \boldsymbol{P}(\vec{k}, k_0) \Big]$$
$$= \vec{k} \cdot \vec{\boldsymbol{A}}(\vec{k}, 0) - i m_q \boldsymbol{P}(\vec{k}, 0)$$

Class I: time-independent unitary transformations

 $A_{\mu}(k) \to U^{\dagger} A_{\mu}(k) U, \quad P(k) \to U^{\dagger} P(k) U, \quad H_{\text{strong}} \to U^{\dagger} H_{\text{strong}} U$

Class II: time-dependent unitary transformations $U[a] = \exp\left(i\int d^3x Y_{\mu}(\vec{x}) \cdot a^{\mu}(\vec{x}, x_0)\right)$

$$\begin{split} \boldsymbol{A}_{\mu}(\boldsymbol{k}) &\to \boldsymbol{A}_{\mu}(\boldsymbol{k}) + i \Big[H_{\text{strong}}, \boldsymbol{Y}_{\mu}(\vec{k}) \Big] - i \, k_{0} \boldsymbol{Y}_{\mu}(\vec{k}) \\ & \longrightarrow \begin{cases} \text{lhs of cont. eq.} &\to & \text{lhs of cont. eq.} + i \Big[H_{\text{strong}}, \vec{k} \cdot \vec{\boldsymbol{Y}}(\vec{k}) \Big] \\ \text{rhs of cont. eq.} &\to & \text{rhs of cont. eq.} + i \Big[H_{\text{strong}}, \vec{k} \cdot \vec{\boldsymbol{Y}}(\vec{k}) \Big] \end{cases} \end{split}$$

Class II: time-dependent unitary transformations $U[p] = \exp\left(i \int d^3x \mathbf{Z}(\vec{x}) \cdot \mathbf{p}(\vec{x}, x_0)\right)$

$$\mathbf{P}(k) \rightarrow \mathbf{P}(k) + i \Big[H_{\text{strong}}, \mathbf{Z}(\vec{k}) \Big] - i \, k_0 \mathbf{Z}(\vec{k})$$

 $\rightarrow \begin{cases} \text{lhs of cont. eq.} \rightarrow & \text{lhs of cont. eq.} + m_q \left[H_{\text{strong}}, \mathbf{Z}(\vec{k}) \right] \\ \text{rhs of cont. eq.} \rightarrow & \text{rhs of cont. eq.} + m_q \left[H_{\text{strong}}, \mathbf{Z}(\vec{k}) \right] \end{cases}$

Four-vector constraint

Boost operator Heisenberg picture Lorentz transformation $\exp\left(-i \,\vec{e} \cdot \vec{K} \theta\right) \mathbf{A}_{\mu}^{H}(x) \exp\left(i \,\vec{e} \cdot \vec{K} \theta\right) = \Lambda_{\mu}^{\nu}(\theta) \mathbf{A}_{\nu}^{H} \left(\Lambda^{-1}(\theta) x\right)$

Infinitesimally we get $\Lambda(\theta)x = x + \theta x^{\perp} + \mathcal{O}(\theta^2)$ with $x^{\perp} = (\vec{e} \cdot \vec{x}, \vec{e} x_0)$

Linear expansion of the four-vector relation in θ leads in momentum space to

$$2\pi\delta(E_{\alpha}-E_{\beta}-k_{0})\langle\alpha|\Big[i\vec{e}\cdot\vec{K},\boldsymbol{A}_{\mu}(k)\Big]+\boldsymbol{A}_{\mu}^{\perp}(k)-\vec{e}\cdot\vec{\nabla}_{k}\Big[H_{\mathrm{strong}},\boldsymbol{A}_{\mu}(k)\Big]-\vec{e}\cdot\vec{k}\frac{\partial}{\partial k_{0}}\boldsymbol{A}_{\mu}(k)|\beta\rangle=0$$

$$\longrightarrow \left[\left[i \vec{e} \cdot \vec{K}, \mathbf{A}_{\mu}(k) \right] + \mathbf{A}_{\mu}^{\perp}(k) - \vec{e} \cdot \vec{\nabla}_{k} \left[H_{\text{strong}}, \mathbf{A}_{\mu}(k) \right] - \vec{e} \cdot \vec{k} \frac{\partial}{\partial k_{0}} \mathbf{A}_{\mu}(k) + i \left[H_{\text{strong}}, \mathbf{X}_{\mu} \right] - i k_{0} \mathbf{X}_{\mu} = 0 \right] \right]$$

 X_{μ} is an arbitrary operator satisfying $\lim_{k_0 \to E_{\beta} - E_{\alpha}} (k_0 + E_{\alpha} - E_{\beta}) \langle \beta | X_{\mu} | \alpha \rangle = 0.$

To check the four-vector relation we need to block-diagonalize it via unitary transf.

Poincare algebra gets block-diagonalized by Okubo unitary transformation Glöckle, Müller, PRC23 (1981) 1183; Krüger, Glöckle nucl-th:9712043 - special model HK, Epelbaum, Meißner, arXiv:1691217 - general proof

Straightforward calculation of effective boost operator

Four-vector constraint

Four-vector constraint is unaffected by the two discussed classes of unitary transformations

$$\left[i\vec{e}\cdot\vec{K}, \boldsymbol{A}_{\mu}(k)\right] + \boldsymbol{A}_{\mu}^{\perp}(k) - \vec{e}\cdot\vec{\nabla}_{k}\left[H_{\text{strong}}, \boldsymbol{A}_{\mu}(k)\right] - \vec{e}\cdot\vec{k}\frac{\partial}{\partial k_{0}}\boldsymbol{A}_{\mu}(k) + i\left[H_{\text{strong}}, \boldsymbol{X}_{\mu}\right] - ik_{0}\boldsymbol{X}_{\mu} = 0$$

Class I: time-independent unitary transformations

 $\boldsymbol{A}_{\mu}(k) \to U^{\dagger} \boldsymbol{A}_{\mu}(k) U, \quad \vec{K} \to U^{\dagger} \vec{K} U, \quad H_{\text{strong}} \to U^{\dagger} H_{\text{strong}} U, \quad \boldsymbol{X}_{\mu} \to U^{\dagger} \boldsymbol{X}_{\mu} U \qquad \checkmark$

Class II: time-dependent unitary transformations $U[a] = \exp\left(i\int d^3x Y_{\mu}(\vec{x}) \cdot a^{\mu}(\vec{x}, x_0)\right)$ $A_{\mu}(k) \rightarrow A_{\mu}(k) + i\left[H_{\text{strong}}, Y_{\mu}(\vec{k})\right] - i k_0 Y_{\mu}(\vec{k})$ $X_{\mu} \rightarrow X_{\mu} - i\left[\vec{e} \cdot \vec{K}, Y_{\mu}(\vec{k})\right] + \vec{e} \cdot \vec{\nabla}_k \left[H_{\text{strong}}, Y_{\mu}(\vec{k})\right] - Y_{\mu}^{\perp}$ Using the Poincaré algebra relation $\left[\vec{e} \cdot \vec{K}, H_{\text{strong}}\right] = i \vec{e} \cdot \vec{P}$ we can rewrite $\left[i \vec{e} \cdot \vec{K}, i\left[H_{\text{strong}}, Y_{\mu}(\vec{k})\right]\right] = i\left[H_{\text{strong}}, \left[i \vec{e} \cdot \vec{K}, Y_{\mu}(\vec{k})\right]\right] - i \vec{e} \cdot \vec{k} Y_{\mu}(\vec{k})$ Multiplying out we realize that the four-vector constraint is unaffected

Four-vector constraint is unitary unambiguous and should be satisfied for any four-current

Unitary ambiguities

34 different unitary transformations are possible at the order Q

$$U_{i}(a) = \exp \left(S_{i}^{ax} - h.c.\right)$$

$$S_{1}^{ax} = \alpha_{1}^{ax} \eta A_{2,0}^{(0)} \eta H_{2,1}^{(1)} \lambda^{1} \frac{1}{E_{\pi}^{3}} H_{2,1}^{(1)} \eta,$$

$$S_{2}^{ax} = \alpha_{2}^{ax} \eta H_{2,1}^{(1)} \lambda^{1} \frac{1}{E_{\pi}^{2}} A_{2,0}^{(0)} \lambda^{1} \frac{1}{E_{\pi}} H_{2,1}^{(1)} \eta$$
...

Vertices without axial source are denoted by $H_{n,p}^{(\kappa)}$ Vertices with one axial source are denoted by $A_{n,p}^{(\kappa)}$

- n number of nucleons
- p number of pions
- a number of axial sources

High unitary ambiguity is related to appearance of the axial-vector-one-pion interaction $A_{0,1}^{(-1)}$ (30 out of 34 transformations depend on it)

Reasonable constraints come from

Perturbative renormalizability of the current

$$\begin{split} \gamma_3 &= -\frac{1}{2}, \\ \gamma_4 &= 2, \\ l_i &= l_i^r(\mu) + \gamma_i \lambda =: \frac{1}{16\pi^2} \bar{l}_i + \gamma_i \lambda + \frac{\gamma_i}{16\pi^2} \ln\left(\frac{M_\pi}{\mu}\right), \\ d_i &= d_i^r(\mu) + \frac{\beta_i}{F^2} \lambda =: \bar{d}_i + \frac{\beta_i}{F^2} \lambda + \frac{\beta_i}{16\pi^2 F^2} \ln\left(\frac{M_\pi}{\mu}\right) \end{split}$$

$$\begin{split} \beta_{15} &= \beta_{18} = \beta_{22} = \beta_{23} = 0, \\ \beta_{16} &= -\frac{1}{2}g_A + g_A^3. \end{split}$$

After renormalizing LECs l_i from $\mathcal{L}_{\pi}^{(4)}$ and d_i from $\mathcal{L}_{\pi N}^{(3)}$ and using well known β - and γ functions (*Gasser et al. Eur. Phys. J. C26 (2002), 13*) we require the current to be finite

Matching to nuclear forces

Dominance of the pion production operator at the pion-pole (axial-vector current)

Non-pole contributions

Dominance of the pion production operator at the pion-pole (three-nucleon force)

Consistent regularization of nuclear forces and currents calls for matching requirement between pion-production operators in different processes

Matching requirement is fulfilled only for particular choice of unitary phases

After renormalizability and matching requirement there are no further unitary ambiguities!

Single nucleon current up to order Q

Up to 1/m - corrections one can parametrize axial-vector current by form factors

$$\begin{split} A_{1\mathrm{N}}^{0,a} &= -\frac{G_A(-k^2)}{2m} \tau_i^a \vec{k}_i \cdot \vec{\sigma}_i + \frac{G_P(-k^2)}{8m^2} \tau_i^a k_0 \, \vec{k} \cdot \vec{\sigma}_i \,, \\ \vec{A}_{1\mathrm{N}}^a &= -\frac{G_A(-k^2)}{2} \tau_i^a \vec{\sigma}_i + \frac{G_P(-k^2)}{8m^2} \tau_i^a \vec{k} \, \vec{k} \cdot \vec{\sigma}_i + \vec{A}_{1\mathrm{N}:\,1/m,\mathrm{UT}'}^{a\,(Q)} + \vec{A}_{1\mathrm{N}:\,1/m}^{a\,(Q)} \end{split}$$

Axial and pseudoscalar formfactors are known up to two-loop order: Kaiser PRC67 (2003) 027002

$$\vec{A}_{1N:1/m,UT'}^{a\,(Q)} = -\frac{g_A k_0}{8m} \frac{\vec{k}}{k^2 + M_\pi^2} \tau_i^a \left(2(1_{(1)} + 2\bar{\beta}_9)\vec{\sigma}_i \cdot \vec{k}_i - (1 + 2\bar{\beta}_8)\vec{k} \cdot \vec{\sigma}_i \frac{p_i'^2 - p_i^2}{k^2 + M_\pi^2} \right)$$

 $k_0/m \sim Q^4/\Lambda_b^4$ due to adopted counting for 1/m-corrections

$$\begin{split} \vec{A}_{1\mathrm{N:\,1/m^{2}}}^{a\,(Q)} &= \frac{g_{A}}{16m^{2}}\tau_{i}^{a} \left(\vec{k}\,\vec{k}\cdot\vec{\sigma}_{i}(1-2\bar{\beta}_{8})\frac{(p_{i}^{\prime\,2}-p_{i}^{2})^{2}}{(k^{2}+M_{\pi}^{2})^{2}} - 2\vec{k}\frac{(p_{i}^{\prime\,2}+p_{i}^{2})\vec{k}\cdot\vec{\sigma}_{i} - 2\bar{\beta}_{9}(p_{i}^{\prime\,2}-p_{i}^{2})\vec{k}_{i}\cdot\vec{\sigma}_{i}}{k^{2}+M_{\pi}^{2}} \\ &+ 2\,i\,[\vec{k}\times\vec{k}_{i}] + \vec{k}\,\vec{k}\cdot\vec{\sigma}_{i} - 4\,\vec{k}_{i}\,\vec{k}_{i}\cdot\vec{\sigma}_{i} + \vec{\sigma}_{i}\left(2(p_{i}^{\prime\,2}+p_{i}^{2})-k^{2}\right)\right). \end{split}$$

Well known results for axial NN current at Q⁻¹ and Q⁰ - order

$$\begin{split} A_{2N:\,1\pi}^{0,a\,(Q^{-1})} &= -\frac{ig_A \vec{q}_1 \cdot \vec{\sigma}_1 [\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2]^a}{4F_{\pi}^2 \,(q_1^2 + M_{\pi}^2)} \,+\, 1 \leftrightarrow 2 \,, \\ \vec{A}_{2N:\,1\pi}^{a\,(Q^{-1})} &= 0, \\ \vec{A}_{2N:\,1\pi}^{a\,(Q^0)} &= \frac{g_A}{2F_{\pi}^2} \frac{\vec{\sigma}_1 \cdot \vec{q}_1}{q_1^2 + M_{\pi}^2} \Big\{ \tau_1^a \Big[-4c_1 M_{\pi}^2 \frac{\vec{k}}{k^2 + M_{\pi}^2} + 2c_3 \Big(\vec{q}_1 - \frac{\vec{k} \, \vec{k} \cdot \vec{q}_1}{k^2 + M_{\pi}^2} \Big) \Big] + c_4 [\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2]^a \Big(\vec{q}_1 \times \vec{\sigma}_2 - \frac{\vec{k} \, \vec{k} \cdot \vec{q}_1 \times \vec{\sigma}_2}{k^2 + M_{\pi}^2} \Big) \\ &- \frac{\kappa_v}{4m} [\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2]^a \vec{k} \times \vec{\sigma}_2 \Big\} + 1 \leftrightarrow 2 \,, \\ \vec{A}_{2N:\,\text{cont}}^{a\,(Q^0)} &= -\frac{1}{4} D \, \tau_1^a \Big(\vec{\sigma}_1 - \frac{\vec{k} \, \vec{\sigma}_1 \cdot \vec{k}}{k^2 + M_{\pi}^2} \Big) + 1 \leftrightarrow 2 \,, \end{split}$$

Tree-level diagrams contribute to energytransfer dependent contributions

$$\begin{split} A^{0,a\ (Q)}_{2\mathrm{N}:\ 1\pi,\mathrm{UT}'} &= 0\,,\\ \vec{A}^{a\ (Q)}_{2\mathrm{N}:\ 1\pi,\mathrm{UT}'} &= -i\frac{g_A}{8F_\pi^2}\frac{k_0\vec{k}\,\vec{q}_1\cdot\vec{\sigma}_1}{(k^2+M_\pi^2)(q_1^2+M_\pi^2)} \Big([\boldsymbol{\tau}_1\times\boldsymbol{\tau}_2]^a \Big(1-\frac{2g_A^2\vec{k}\cdot\vec{q}_1}{k^2+M_\pi^2}\Big) - \frac{2g_A^2\boldsymbol{\tau}_1^a\vec{k}\cdot[\vec{q}_1\times\vec{\sigma}_2]}{k^2+M_\pi^2}\Big) + 1\leftrightarrow 2\,,\\ A^{0,a\ (Q)}_{2\mathrm{N}:\ \mathrm{cont},\ \mathrm{UT}'} &= 0,\\ \vec{A}^{a\ (Q)}_{2\mathrm{N}:\ \mathrm{cont},\ \mathrm{UT}'} &= -i\,k_0\vec{k}\frac{g_AC_T\vec{k}\cdot\vec{\sigma}_1[\boldsymbol{\tau}_1\times\boldsymbol{\tau}_2]^a}{(k^2+M_\pi^2)^2} + 1\leftrightarrow 2\,. \end{split}$$

Off-shell effects proportional to energy transfer are important for frameindependent investigations and also for checking the continuity equation and four-current relations

1/m-corrections to axial NN current

$$- \frac{1-2\bar{\beta}_8}{k^2+M_\pi^2} \Big(C_S \vec{k} \cdot \vec{q_2} \vec{k} \cdot \vec{\sigma}_1 + C_T (\vec{k} \cdot \vec{q_2} \vec{k} \cdot \vec{\sigma}_2 + 2i \, \vec{k} \cdot \vec{k}_1 \vec{k} \cdot \vec{\sigma}_1 \times \vec{\sigma}_2) \Big) \Big\} + 1 \leftrightarrow 2.$$

No relativistic corrections to the axial NN charge

One-pion exchange contributions match to 2π – exchange 3NF at N³LO

h_i are related to TPE 3NF functions A & B

 $h_4(q_2) = \mathcal{A}^{(4)}(q_2), \quad h_5(q_2) = \mathcal{B}^{(4)}(q_2)$

$$\begin{split} h_{6}(q_{2}) &= \frac{g_{A}\left(3\left(64+128g_{A}\right)M_{\pi}+8\left(19g_{A}+3\right)q_{2}\right)}{36864\pi^{2}F_{\pi}^{6}} - \frac{g_{A}^{2}}{768\pi^{2}F_{\pi}^{6}}L(q_{2})\left(\left(8g_{A}^{2}+4\right)M_{\pi}^{2}+\left(5g_{A}^{2}+1\right)q_{2}^{2}\right)\right. \\ &+ \frac{\bar{d}_{18}g_{A}M_{\pi}^{2}}{8F_{\pi}^{4}} - \frac{g_{A}^{2}(2\bar{d}_{2}+\bar{d}_{6})\left(M_{\pi}^{2}+q_{2}^{2}\right)}{16F_{\pi}^{4}} - \frac{\bar{d}_{5}g_{A}^{2}M_{\pi}^{2}}{2F_{\pi}^{4}}, \\ h_{7}(q_{2}) &= \frac{g_{A}^{2}(2\bar{d}_{2}-\bar{d}_{6})}{16F_{\pi}^{4}}, \\ h_{8}(q_{2}) &= -\frac{g_{A}^{2}(\bar{d}_{15}-2\bar{d}_{23})}{8F_{\pi}^{4}}. \end{split}$$

$$\vec{A}_{2N:1\pi}^{a\,(Q)} = \frac{4F_{\pi}^{2}}{g_{A}} \frac{\vec{q}_{1} \cdot \vec{\sigma}_{1}}{q_{1}^{2} + M_{\pi}^{2}} \Big\{ [\boldsymbol{\tau}_{1} \times \boldsymbol{\tau}_{2}]^{a} \Big([\vec{q}_{1} \times \vec{\sigma}_{2}] h_{1}(q_{2}) + [\vec{q}_{2} \times \vec{\sigma}_{2}] h_{2}(q_{2}) \Big) + \boldsymbol{\tau}_{1}^{a} \big(\vec{q}_{1} - \vec{q}_{2} \big) h_{3}(q_{2}) \Big\} \\ + \frac{4F_{\pi}^{2}}{g_{A}} \frac{\vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{k}}{(k^{2} + M_{\pi}^{2})(q_{1}^{2} + M_{\pi}^{2})} \Big\{ \boldsymbol{\tau}_{1}^{a} h_{4}(q_{2}) + [\boldsymbol{\tau}_{1} \times \boldsymbol{\tau}_{2}]^{a} \vec{q}_{1} \cdot [\vec{q}_{2} \times \vec{\sigma}_{2}] h_{5}(q_{2}) \Big\} + 1 \leftrightarrow 2,$$

$$A_{2N:1\pi}^{0,a\,(Q)} = i \frac{4F_{\pi}^{2}}{g_{A}} \frac{q_{1} \cdot \sigma_{1}}{q_{1}^{2} + M_{\pi}^{2}} \Big\{ [\boldsymbol{\tau}_{1} \times \boldsymbol{\tau}_{2}]^{a} \left(h_{6}(q_{2}) + k^{2}h_{7}(q_{2}) \right) + \tau_{1}^{a} \, \vec{q}_{1} \cdot [\vec{q}_{2} \times \vec{\sigma}_{2}] \, h_{8}(q_{2}) \Big\} + 1 \leftrightarrow 2 \, ,$$

Two-pion exchange contributions match to $2\pi - 1\pi$ 3NF at N³LO

$$g_{2}(q_{1}) = \frac{g_{A}^{4}A(q_{1})\left(2M_{\pi}^{2} + q_{1}^{2}\right)}{128\pi F_{\pi}^{6}} + \frac{g_{A}^{4}M_{\pi}}{128\pi F_{\pi}^{6}},$$

$$g_{3}(q_{1}) = -\frac{g_{A}^{4}A(q_{1})\left((8g_{A}^{2} - 4)M_{\pi}^{2} + (3g_{A}^{2} - 1)q_{1}^{2}\right)}{256\pi F_{\pi}^{6}} - \frac{(3g_{A}^{2} - 1)g_{A}^{4}M_{\pi}}{256\pi F_{\pi}^{6}},$$

$$g_{4}(q_{1}) = -\frac{g_{A}^{4}A(q_{1})\left((2M_{\pi}^{2} + q_{1}^{2}\right)}{128\pi F_{\pi}^{6}},$$

$$g_{5}(q_{1}) = -q_{1}^{2}g_{4}(q_{1}),$$

$$g_{6}(q_{1}) = g_{8}(q_{1}) = g_{10}(q_{1}) = g_{12}(q_{1}) = 0,$$

$$g_{17}(q_{1}) = -\frac{g_{A}^{4}A(q_{1})\left(2M_{\pi}^{2} + q_{1}^{2}\right)}{128\pi F_{\pi}^{6}},$$

$$g_{7}(q_{1}) = \frac{g_{A}^{4}A(q_{1})\left(2M_{\pi}^{2} + q_{1}^{2}\right)}{128\pi F_{\pi}^{6}} + \frac{(2g_{A}^{2} + 1)g_{A}^{4}M_{\pi}}{128\pi F_{\pi}^{6}},$$

$$g_{9}(q_{1}) = \frac{g_{A}^{4}A(q_{1})\left(2M_{\pi}^{2} + q_{1}^{2}\right)}{512\pi F_{\pi}^{6}},$$

$$g_{11}(q_{1}) = -\frac{g_{A}^{4}A(q_{1})\left(4M_{\pi}^{2} + q_{1}^{2}\right)}{512\pi F_{\pi}^{6}} - \frac{g_{A}^{4}M_{\pi}}{512\pi F_{\pi}^{6}},$$

$$g_{13}(q_{1}) = -\frac{g_{A}^{4}A(q_{1})\left((8g_{A}^{2} - 4)M_{\pi}^{2} + (g_{A}^{2} + 1)q_{1}^{2}\right)}{256\pi F_{\pi}^{6}q_{1}^{2}} + \frac{g_{A}^{4}M_{\pi}\left((4 - 8g_{A}^{2})M_{\pi}^{2} + (1 - 3g_{A}^{2})q_{1}^{2}\right)}{256\pi F_{\pi}^{6}q_{1}^{2}},$$

$$g_{15}(q_{1}) = \frac{g_{A}^{4}A(q_{1})\left((8g_{A}^{2} - 4)M_{\pi}^{2} + (3g_{A}^{2} - 1)q_{1}^{2}\right)}{256\pi F_{\pi}^{6}}} + \frac{(3g_{A}^{2} - 1)g_{A}^{2}M_{\pi}}{256\pi F_{\pi}^{6}q_{1}^{2}},$$

$$\begin{split} \vec{A}_{2N;2\pi}^{a\,(Q)} &= \frac{2F_{\pi}^{2}}{g_{A}} \frac{\vec{k}}{k^{2} + M_{\pi}^{2}} \bigg\{ \tau_{1}^{a} \Big(-\vec{q}_{1} \cdot \vec{\sigma}_{2} \, \vec{q}_{1} \cdot \vec{k} \, g_{1}(q_{1}) + \vec{q}_{1} \cdot \vec{\sigma}_{2} \, g_{2}(q_{1}) - \vec{k} \cdot \vec{\sigma}_{2} \, g_{3}(q_{1}) \Big) + \tau_{2}^{a} \Big(-\vec{q}_{1} \cdot \vec{\sigma}_{1} \, \vec{q}_{1} \cdot \vec{k} \, g_{4}(q_{1}) \\ &- \vec{k} \cdot \vec{\sigma}_{1} \, g_{5}(q_{1}) - \vec{q}_{1} \cdot \vec{\sigma}_{2} \, \vec{q}_{1} \cdot \vec{k} \, g_{6}(q_{1}) + \vec{q}_{1} \cdot \vec{\sigma}_{2} \, g_{7}(q_{1}) + \vec{k} \cdot \vec{\sigma}_{2} \, \vec{q}_{1} \cdot \vec{k} \, g_{8}(q_{1}) - \vec{k} \cdot \vec{\sigma}_{2} \, g_{9}(q_{1}) \Big) \\ &+ \left[\tau_{1} \times \tau_{2} \right]^{a} \Big(-\vec{q}_{1} \cdot \left[\vec{\sigma}_{1} \times \vec{\sigma}_{2} \right] \vec{q}_{1} \cdot \vec{k} \, g_{10}(q_{1}) + \vec{q}_{1} \cdot \left[\vec{\sigma}_{1} \times \vec{\sigma}_{2} \right] g_{11}(q_{1}) - \vec{q}_{1} \cdot \vec{\sigma}_{2} \, \vec{q}_{1} \cdot \left[\vec{q}_{2} \times \vec{\sigma}_{1} \right] g_{12}(q_{1}) \Big) \bigg\} \\ &+ \frac{2F_{\pi}^{2}}{g_{A}} \bigg\{ \vec{q}_{1} \Big(\tau_{2}^{a} \, \vec{q}_{1} \cdot \vec{\sigma}_{1} \, g_{13}(q_{1}) + \tau_{1}^{a} \, \vec{q}_{1} \cdot \vec{\sigma}_{2} \, g_{14}(q_{1}) \Big) - \tau_{1}^{a} \, \vec{\sigma}_{2} \, g_{15}(q_{1}) - \tau_{2}^{a} \, \vec{\sigma}_{2} \, g_{16}(q_{1}) - \tau_{2}^{a} \, \vec{\sigma}_{1} \, g_{17}(q_{1}) \bigg\} + 1 \leftrightarrow 2 \,, \end{split}$$

$$A_{2N:\,2\pi}^{0,a\,(Q)} = i \frac{2F_{\pi}^{2}}{g_{A}} \left\{ [\boldsymbol{\tau}_{1} \times \boldsymbol{\tau}_{2}]^{a} \vec{q_{1}} \cdot \vec{\sigma}_{2} \, g_{18}(q_{1}) + \tau_{2}^{a} \vec{q_{1}} \cdot [\vec{\sigma}_{1} \times \vec{\sigma}_{2}] g_{19}(q_{1}) \right\} + 1 \leftrightarrow 2 \,,$$

Vanishing short-range contributions for the current, after antisymmetrization

Three-nucleon current

First complete calculation of axial 3N currents

Lengthy expression for current: *HK, Epelbaum, Meißner, arXiv:1610.03569*

Vanishing charge operator

Pion-pole terms match to 4NF

Compare with Baroni et al.

Baroni et al. arXiv:1605.01620; PRC93 (2016) no. 1, 015501; Erratum PRC93 (2016) no. 4, 049902

At zero momentum transfer the result of Baroni et al. is

$$\mathbf{j}_{\pm}^{\text{N4LO}}(\text{OPE};\mathbf{k}) = \frac{g_A^5 m_\pi}{256 \pi f_\pi^4} \left[18 \tau_{2,\pm} \mathbf{k} - (\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2)_{\pm} \boldsymbol{\sigma}_1 \times \mathbf{k} \right] \boldsymbol{\sigma}_2 \cdot \mathbf{k} \frac{1}{\omega_k^2} + (1 \rightleftharpoons 2) , \qquad (5)$$
$$\mathbf{j}_{\pm}^{\text{N4LO}}(\text{MPE};\mathbf{k}) = \frac{g_A^3}{32 \pi f_\pi^4} \tau_{2,\pm} \left[W_1(k) \,\boldsymbol{\sigma}_1 + W_2(k) \,\mathbf{k} \,\boldsymbol{\sigma}_1 \cdot \mathbf{k} + Z_1(k) \left(2 \,\mathbf{k} \,\boldsymbol{\sigma}_2 \cdot \mathbf{k} \frac{1}{\omega_k^2} - \boldsymbol{\sigma}_2 \right) \right] \\ + \frac{g_A^5}{32 \pi f_\pi^4} \tau_{1,\pm} W_3(k) \left(\boldsymbol{\sigma}_2 \times \mathbf{k} \right) \times \mathbf{k} - \frac{g_A^3}{32 \pi f_\pi^4} \left(\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2 \right)_{\pm} Z_3(k) \,\boldsymbol{\sigma}_1 \times \mathbf{k} \\ \times \boldsymbol{\sigma}_2 \cdot \mathbf{k} \frac{1}{\omega_k^2} + (1 \rightleftharpoons 2) , \qquad (6)$$

$$\begin{split} W_1(k) &= \frac{M_\pi}{2} \left(1 + g_A^2 \left(-9 + \frac{4M_\pi^2}{k^2 + 4M_\pi^2} \right) \right) + \frac{1}{2} \left((1 - 5g_A^2)k^2 + 4(1 - 2g_A^2)M_\pi^2 \right) A(k), \\ W_2(k) &= \frac{M_\pi}{2k^2(k^2 + 4M_\pi^2)} \left(\left(1 + 3g_A^2 \right)k^2 + 4\left(1 + 2g_A^2 \right)M_\pi^2 \right) - \frac{1}{2k^2} \left((-1 + g_A^2)k^2 + 4(1 + 2g_A^2)M_\pi^2 \right) A(k), \\ W_3(k) &= -\frac{1}{6M_\pi} - \frac{4}{3}A(k), \\ Z_1(k) &= 2M_\pi + 2(k^2 + 2M_\pi^2)A(k), \\ Z_3(k) &= \frac{M_\pi}{2} + \frac{1}{2}(k^2 + 4M_\pi^2)A(k). \end{split}$$

The current of Baroni et al. does not exist in the chiral limit!

 $\vec{j}_{a}^{\text{N4LO}}(\text{MPE}, \vec{q}_{1}) - \vec{A}_{2N:2\pi}^{a\,(Q)} - \vec{A}_{2N:1\pi}^{a\,(Q)} \Big|_{\alpha_{1}^{ax}=0} = -\frac{g_{A}^{5}A(q_{1})\left(\vec{\sigma}_{2}\tau_{1}^{a}q_{1}^{4} + 2\vec{q}_{1}\left(6M_{\pi}^{2} + q_{1}^{2}\right)\vec{q}_{1}\cdot\vec{\sigma}_{2}\tau_{1}^{a}\right)}{96\pi F_{\pi}^{4}q_{1}^{2}} + \text{rational function of } \vec{q}_{1} + 1 \leftrightarrow 2 .$

Two currents have different long range parts!

order	single-nucleon	two-nucle	eon three-nucleon
LO (Q^{-3})	$\vec{A}^a_{1\mathrm{N:static}},$		
NLO (Q^{-1})	$ec{A}^a_{1\mathrm{N:static}},$		
$N^2LO~(Q^0)$		$\vec{A}_{2N:1\pi}^{a},\checkmark \\ + \vec{A}_{2N:cont}^{a},\checkmark$	
$N^{3}LO(Q)$	$ec{A_{1N:static}^{a}}, + ec{A_{1N:1/m,UT'}^{a}}, + ec{A_{1N:1/m^{2}}^{a}},$	$\vec{A}_{2N:1\pi}^{a}, \\ + \vec{A}_{2N:1\pi,UT'}^{a}, \\ + \vec{A}_{2N:1\pi,1/m}^{a}, \\ + \vec{A}_{2N:2\pi}^{a}, \\ + \vec{A}_{2N:cont,UT'}^{a}, \\ + \vec{A}_{2N:cont,UT'}^{a}, \\ + \vec{A}_{2N:cont,1/m}^{a}, \\ \end{cases}$	$\vec{A}_{3N:\pi}^{a}$, + $\vec{A}_{3N:cont}^{a}$, * Baroni et al. considered only irr. diagrams of 3N current

terms not discussed by Baroni et al. 16

✓ terms on which we agree with Baroni et al. 16

order	single-nucleon	two-nucleon	three-nucleon
LO (Q^{-3})			
NLO (Q^{-1})	$A^{0,a}_{1N: UT'}, + A^{0,a}_{1N: 1/m},$	$A^{0,a}_{2\mathrm{N}:1\pi},\checkmark$	
$N^2LO~(Q^0)$			
$N^{3}LO(Q)$	$A^{0,a}_{1\mathrm{N:static,UT'}}, + A^{0,a}_{1\mathrm{N:1/m}},$	$A^{0,a}_{2N:1\pi}, + A^{0,a}_{2N:2\pi}, \checkmark + A^{0,a}_{2N:cont}, \checkmark$	

Pseudoscalar current

order	single-nucleon	two-nucleon	three-nucleon
LO (Q^{-4})	$P^a_{1\mathrm{N:static}},$		
NLO (Q^{-2})	$P^a_{1\mathrm{N:static}},$		
$\overline{\mathrm{N}^{2}\mathrm{LO}~(Q^{-1})}$		$P_{2N:1\pi}^{a}, + P_{2N:cont}^{a},$	
$N^3LO(Q^0)$	$P_{1N: \text{static}}^{a},$ + $P_{1N: 1/m, \text{UT'}}^{a},$ + $P_{1N: 1/m^{2}}^{a},$	$P_{2N:1\pi}^{a}, + P_{2N:1\pi,UT'}^{a}, + P_{2N:1\pi,1/m}^{a}, + P_{2N:2\pi}^{a}, + P_{2N:2\pi}^{a}, + P_{2N:cont,UT'}^{a}, + P_{2N:cont,UT'}^{a}, + P_{2N:cont,1/m}^{a},$	$P^{a}_{3N:\pi}, + P^{a}_{3N:\text{cont}},$

Continuity equations are verified for all currents

- Axial-vector current is analyzed up to order Q
- There is a high degree of unitary ambiguity
- Modified continuity equation and 4-vector relations are satisfied for any choice of unitary phases
- Renormalizability and matching to nuclear forces conditions lead to unique current
- Differences in long range part between our results and Baroni et al.

Outlook

- Numerical implementations
- Axial-vector current up to order Q²