Recent results for *p*-shell nuclei using χ EFT NN + 3N interactions

Pieter Maris

Dept. of Physics and Astronomy lowa State University Ames, IA 50011 pmaris@iastate.edu

Frontiers in Nuclear Physics KITP, Santa Barbara,CA Nov. 4 2016

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Given a Hamiltonian operator

$$\hat{H} = \sum_{i < j} \frac{(\vec{p}_i - \vec{p}_j)^2}{2 \, m \, A} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

solve the eigenvalue problem for wave function of *A* nucleons $\hat{\mathbf{H}} \Psi(r_1, \dots, r_A) = \lambda \Psi(r_1, \dots, r_A)$

- eigenvalues λ discrete (quantized) energy levels
- ► eigenvectors: |Ψ(r₁,..., r_A)|² probability density for finding nucleons 1, ..., A at r₁, ..., r_A

- to initio habibal physico compatational onaliongeo
 - Self-bound quantum many-body problem, with 3A degrees of freedom in coordinate (or momentum) space
 - Not only 2-body interactions, but also intrinsic 3-body interactions and possibly 4- and higher N-body interactions
 - Strong interactions, with both short-range and long-range pieces
 - Uncertainty quantification for calculations needed
 - for comparisons with experiments
 - for comparisons between different methods
 - Sources of numerical uncertainty
 - statistical and round-off errors
 - systematical errors inherent to the calculational method
 - Configuration Interaction (CI) methods: finite basis space
 - Monte Carlo methods: sensitivity to the trial wave function
 - Lattice calculations: finite volume and lattice spacing
 - uncertainty of the nuclear potential

Barrett, Navrátil, Vary, Ab initio no-core shell model, PPNP69, 131 (2013)

- Expand wavefunction in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- Express Hamiltonian in basis $\langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle = H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- No-Core: all A nucleons are treated the same
- Complete basis exact result
 - caveat: complete basis is infinite dimensional
- In practice
 - truncate basis
 - study behavior of observables as function of truncation
- Computational challenge
 - construct large ($10^{10} \times 10^{10}$) sparse symmetric matrix H_{ij}
 - obtain lowest eigenvalues & -vectors corresponding to low-lying spectrum and eigenstates

Expand A-body wave function in basis functions

$$\Psi(r_1,\ldots,r_A)=\sum a_i\Phi_i(r_1,\ldots,r_A)$$

Use basis of single Slater Determinants of Single-Particle states

$$\Phi_{i}(r_{1},...,r_{A}) = \frac{1}{\sqrt{(A!)}} \begin{vmatrix} \phi_{i1}(r_{1}) & \phi_{i2}(r_{1}) & \dots & \phi_{iA}(r_{1}) \\ \phi_{i1}(r_{2}) & \phi_{i2}(r_{2}) & \dots & \phi_{iA}(r_{2}) \\ \vdots & \vdots & \vdots \\ \phi_{i1}(r_{A}) & \phi_{i2}(r_{A}) & \dots & \phi_{iA}(r_{A}) \end{vmatrix}$$

which takes care of anti-symmetrization

Single-Particle basis states $\phi_{ik}(r_k)$

- eigenstates of SU(2) operators \hat{L}^2 , \hat{S}^2 , $\hat{J}^2 = (\hat{L} + \hat{S})^2$, and \hat{J}_z with quantum numbers n, l, s, j, m
- radial wavefunctions

. . .

- Harmonic Oscillator
- Wood–Saxon basis
- Coulomb-Sturmian

Negoita, PhD thesis 2010

Caprio, Maris, Vary, PRC86, 034312 (2012) (4) (5) (4) (5)

< 17 ▶

5/37

M-scheme: Many-Body basis states eigenstates of Ĵ_z

$$\hat{\mathbf{J}}_{\mathbf{z}}|\Phi_i\rangle = M|\Phi_i\rangle = A_{k=1}^A m_{ik}|\Phi_i\rangle$$

- single run gives entire spectrum
- N_{max} truncation: Many-Body basis states satisfy

$$\sum_{k=1}^{A} \left(2 n_{ik} + I_{ik} \right) \leq N_0 + N_{\max}$$

- exact factorization of Center-of-Mass motion
- Alternatives:
 - FCI (commonly used in nuclear shell model, quantum chemistry, ...) truncation on Single-Particle basis states only
 - Importance Truncation
 - No-Core Monte-Carlo Shell Model
 - SU(3) Truncation
 - ▶ ...

Roth, PRC79, 064324 (2009)

Abe et al, PRC86, 054301 (2012)

Dytrych et al, PRL111, 252501 (2013)

・ロト ・四ト ・ヨト ・ヨト

Ab initio nuclear structure No-Core CI Nuclear interaction NN-only Including 3NF

Intermezzo: Center-of-Mass motion

- ► Use single-particle coordinates, not relative (Jacobi) coordinates
 - straightforward to extend to many particles
 - have to separate Center-of-Mass motion from relative motion
- Center-of-Mass wavefunction factorizes for H.O. basis functions in combination with N_{max} truncation

$$\begin{array}{lll} |\Psi_{\text{total}}\rangle & = & |\phi_1\rangle \otimes \ldots \otimes |\phi_A\rangle \\ & = & |\Phi_{\text{Center-of-Mass}}\rangle \otimes |\Psi_{\text{rel}}\rangle \end{array}$$

where

$${f \hat{H}}_{
m rel} | \Psi_{
m i, \, rel}
angle \ = \ E_{
m i} | \Psi_{
m i, \, rel}
angle$$

Add Lagrange multiplier to Hamiltonian (Lawson term)

$$\hat{\mathbf{H}}_{\mathsf{rel}} \longrightarrow \hat{\mathbf{H}}_{\mathsf{rel}} + \Lambda_{\mathsf{CM}} \Big(\hat{\mathbf{H}}_{\mathsf{CM}}^{\mathsf{H.O.}} - \frac{3}{2} \hbar \omega \Big)$$

with $\hat{H}_{\mbox{\tiny rel}} = \hat{T}_{\mbox{\tiny rel}} + \hat{V}_{\mbox{\tiny rel}}$ the relative Hamiltonian

- separates states with CM excitations from states with 0s CM motion $|\Phi_{CM}\rangle = |\Phi_{0s}\rangle$

- Express Hamiltonian in basis $\langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle = H_{ij}$
- A-body problem with 2-body interaction

$$H_{ij}^{(A)} = (-1)^{\text{permutations}} \delta_{i_1, j_1} \dots \delta_{i_{(A-2)}, j_{(A-2)}} \langle a b | \hat{\mathbf{H}} | c d \rangle$$

Sparse symmetric matrix

- Obtain lowest eigenvalues using Lanczos algorithm
 - Eigenvalues: bound state spectrum
 - Eigenvectors: wavefunctions

Ab initio nuclear structure No-Core CI Nuclear interaction NN-only Including 3NF No-Core Configuration Interaction approach

- Expand wave function in basis states $|\Psi\rangle = \sum a_i |\psi_i\rangle$
- Express Hamiltonian in basis $\langle \psi_j | \hat{\mathbf{H}} | \psi_i \rangle = H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- Variational: for any finite truncation of the basis space, eigenvalue is an upper bound for the ground state energy
- Smooth approach to asymptotic value with increasing basis space
- Convergence: independence of both N_{max} and H.O. basis ħω
 - different methods

 (NCCI, CC, IM-SRG, GFMC, ...)
 using the same interaction
 should give same results within
 (statistical plus systematic)
 numerical uncertainties

Extrapolating to complete basis

Challenge: achieve numerical convergence for No-Core CI calculations using a finite amount of CPU time on current HPC systems

- ► Perform a series of calculations with increasing *N*_{max} truncation
- ► Extrapolate to infinite model space → exact results
 - Empirical: binding energy exponential in N_{max}

$$E_{\text{binding}}^{N} = E_{\text{binding}}^{\infty} + a_1 \exp(-a_2 N_{\text{max}})$$

- use 3 or 4 consecutive N_{max} values to determine $E_{\text{binding}}^{\infty}$
- use ħω and N_{max} dependence to estimate numerical error bars
 Maris, Shirokov, Vary, PRC79, 014308 (2009)
- ► Recent studies of IR and UV behavior based on S.P. asymptotics: exponentials in $\sqrt{\hbar\omega/N}$ and $\sqrt{\hbar\omega N}$ Coon *et al*, PRC86, 054002 (2012);

Furnstahl, Hagen, Papenbrock, PRC86, 031301(R) (2012); More, Ekstrom, Furnstahl, Hagen, Papenbrock, PRC87, 044326 (2013); Wendt, Forssén, Papenbrock and Säät, PRC91, 061301 (2015);

Perform a series of calculations with increasing N_{max} truncation

 H.O. basis up to N_{max} = 16 and exponential extrapilation E_b = -31.49(3) MeV

Cockrell, Maris, Vary, PRC86, 034325 (2012)

• Hyperspherical harmonics up to $K_{max} = 14$: $E_b = -31.46(5)$ MeV

Vaintraub, Barnea, Gazit, PRC79, 065501 (2009)

- Increase of basis space dimension with increasing A and N_{max}
 - need calculations up to at least N_{max} = 8 for meaningful extrapolation and numerical error estimates
- More relevant measure for computational needs
 - number of nonzero matrix elements
 - Current limit 10¹³ to 10¹⁴ (Edison, Mira, Titan)

Nuclear interaction

$$\hat{\mathbf{H}}_{\mathsf{rel}} = \hat{\mathbf{T}}_{\mathsf{rel}} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

Nuclear interaction not well-determined

- In principle calculable from QCD
- Constrained by (fitted to) experimental (scattering) data

Alphabet of realistic NN potentials

- Argonne potentials
- Bonn potentials
- Chiral interactions

Most NN potentials need 3N forces for good agreement with data

. . .

Nuclear interactions from Chiral Effective Field Theory

- Strong interaction in principle calculable from lattice QCD
- Use chiral perturbation theory to obtain effective A-body interaction from QCD
 Entem and Machleidt, PRC68, 041001 (2003)
 - controlled power series expansion in Q/Λ_{χ} with $\Lambda_{\chi} \sim 1 \text{ GeV}$
 - natural hierarchy for many-body forces

 $V_{NN} \gg V_{NNN} \gg V_{NNNN}$

- In principle no free parameters in practice a few undetermined LEC's, fitted to
 - NN scattering data (plus A = 3 systems for 3NFs)
 - select light nuclei NNLO_{opt}
 - select nuclei and nuclear matter NNLO_{sat}
 - NN scattering data, plus nuclei using PETs
- Not unique
 - different choices for regulators
 - different formulations: pionless χ EFT, explicit Δ 's, ...

KITP 2016, Santa Barbara, CA

Ekström et al, PRL110, 192502 (2013)

Ekström et al, PRC91, 051301 (2015)

Shirokov et al, PLB761, 87 (2016)

• Controlled power series expansion in Q/Λ

15/37

δ [deg] 4(

20 -20 10 S₀ 20

¹P₁

10

³P₀-

³₽₄

NN potential from χ EFT up to N⁴LO

Epelbaum, Krebbs, Meißner, PRL 115 (2015); EPJ A51 (2015)

Local regulator long-range terms

$$V(r) \rightarrow V(r) \left[1 - \exp\left(-r^2/R^2\right)\right]^{4}$$

- Regulators $R_1 = 0.8$ to $R_5 = 1.2$ fm
- Reduced finite-cutoff artefacts

Chiral *NN* interaction with regulator R = 1.0 fm ($\Lambda = 600$ MeV)

- Many-body calc'ns converge rapidly at LO, NLO, and N²LO
- Convergence significantly slower at N³LO and N⁴LO
- No 3NFs included (yet) should be present at N²LO and up

- Convergence of many-body calculation for RMS radius slower than convergence for (ground state) energy
 - Long-range operator
 - H.O. basis function fall off like gaussians, instead of exponential
 - Nevertheless, agree with Faddeev–Yakubovsky calc'ns

Results for ⁶Li with χ EFT NN potential

LENPIC collaboration, PRC 93, 044002 (2016)

- Up to N²LO good numerical convergence
- At N³LO (and N⁴LO) convergence significantly slower
- Need to use Similarity Renormalization Group (SRG) to accelerate convergence

Challenge: achieve numerical convergence for No-Core CI calculations using a finite amount of CPU time on current HPC systems

- Use unitary transformations to renormalize interaction
 - can improve quality of results in small basis spaces
 - need to renormalize other operators as well
- Commonly used in NCSM calculations
 - Similarity Renormalization Group (SRG)
 - Okubo–Lee–Suzuki (OLS)
 - $\blacktriangleright V_{\text{low }k}, V_{\text{UCOM}}, \ldots$
- In principle, unitary transformations change the wavefunction, but should not change physical observables
- In practice, induced many-body effects are neglected ...
 - need to study effect of induced many-body forces

A B b 4 B b

- drives interaction towards band-diagonal structure
- SRG shifts strength between 2-body and many-body forces
- Initial χ EFT Hamiltonian power-counting hierarchy

$$V_{NN} \gg V_{NNN} \gg V_{NNNN}$$

key issue: preserve hierarchy of many-body forces

Bogner, Furnstahl, Maris, Perry, Schwenk, Vary, NPA801, 21 (2008) Jurgenson, Nagratil, Furnstahl, PRL 103, 082501 (2009)

- Strong SRG parameter $\alpha = \lambda^{-4}$ dependence without induced 3NF
- Almost no SRG parameter $\alpha = \lambda^{-4}$ dependence with induced 3NF
- Explicit 3NF needed for agreement with experiment

Empirical extrapolation method (ground state) energies

$$E(N_{\max}) \approx E_{\infty} + a \exp(-bN_{\max})$$

Extrapolations at different SRG α and without SRG are consistent with each other to within estimated extrapolation uncertainty

Ab initio nuclear structure	No-Core CI	Nuclear interaction	NN-only	Including 3NF
Dependence o	n regulat	or <i>R</i> and SR(Anarame	ter α

P. Maris (ISU)

p-shell nuclei using χ EFT NN + 3NF KITP 2016, Santa Barbara, CA 25 / 37

Ground state energies up to N²LO for A = 3 to A = 9

N = Z Ground state energies up to N²LO

Nuclear interaction

Excitation energies ⁶Li

LENPIC collaboration, in preparation

- NLO and N²LO well converged
- SRG evolved N³LO and N⁴LO SRG also converged
- NLO and higher converged in chiral expansion?
 - reasonable agreement with data
 - only weakly dependent on regulator R

Excitation energies ⁶Li

Including N²LO 3N interaction

- ► (c_D, c_E) fitted to reproduce ground state energy ³H
- A = 3: no SRG parameter dependence
- A = 4: weak (~ 0.1 MeV) SRG parameter with explicit 3NF (negligible SRG parameter dependence without explicit 3NF)

< 🗇 🕨

- E - N

Nuclear interaction

NN-or

Including 3NF

Including N²LO 3N interaction

LENPIC collaboration, work in progress

- extrapolation uncertainty
 ~ 0.1 MeV
- dependence on SRG α \sim 0.2 MeV
- dependence on (c_D, c_E)
 ~ 0.1 MeV
- gs energy NN only
 -31.0±0.2 MeV with 3NF
 -31.4±0.3 MeV

Including 3NF

Spectrum ⁶Li up to N²LO including 3NF

- T = 1 states
 - analog states of ⁶He
 - not very well converged

Broad 2⁺

- not converged
- need to include continuum
- Excitation energy of 3⁺ state reasonably well converged, seems insensitive to higher chiral orders
- Question: does deviation from experiment decrease at N³LO?

P. Maris (ISU)

33/37

Ab initio nuclear structure No-Core CI Nuclear interaction NN-only Including 3NF

Spectrum ⁷Li up to N²LO

P. Maris (ISU)

No-Core CI

Nuclear interaction

Spectrum ¹⁰B: 1⁺ states

- Two low-lying 1⁺ levels
 - LO: well seperated
 - NLO (and higher): mix and cross, depending on basis parameters (N_{max}, ħω)
- Can be distinguished by e.g. magnetic moments
 - state with µ ~ 0.4 and E_x ~ 2 to 3 MeV
 - state with μ ~ 0.8 and E_x strongly dependent on basis

Jurgenson et al. PRC87 (2013)

< ∃ >

- At N²LO without 3NF's: lowest 1⁺ below 3⁺
- ▶ With 3NF's correct 3⁺ ground state
- ▶ Preferred LEC's: (*c*_D, *c*_E) = (6.0, -0.546)
- Numerical uncertainties hard to estimate due to mixing ...

Conclusions and Outlook

- Systematic calculations for p-shell nuclei
 - ► order-by-order in χEFT
- Same interactions also used for A = 3 and A = 4
 - Faddeev and Faddeev–Yakubovsky calculations
 - benchmark for NCCI calculations
- Same interactions also used for heavier nuclei
 - IM-SRG and CC
 - benchmark with NCCI calculations for ¹⁶O
- Uncertainty Quantification
 - many-body method dependence on basis space
 - renormalization SRG parameter dependence
 - nuclear interaction order in xEFT expansion
- Work in progress
 - UQ of excitation energies?
 - Consistent electroweak operators
 - 3NF at N³LO

伺 ト イ ヨ ト イ ヨ