Tutorial: Nuclear Physics with ab initio few/many-body methods

Giuseppina Orlandini

Degrees of Freedom

fundamental issues in nuclear physics:

fundamental issues in nuclear physics:

fundamental issues in nuclear physics:

TWO AIMS:

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 1: Help building the bridge between Nuclear Physics and QCD

Nuclear observables

Low-Energy QCD

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 1: Help building the bridge between Nuclear Physics and QCD

Nuclear observables

Aim 1: Help building the bridge between Nuclear Physics and QCD

Nuclear observables

Nuclear Interactions NN, 3N ...

```
"effective" degrees of freedom
protons, neutrons, pions
```


Low-Energy QCD

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 1: Help building the bridge between Nuclear Physics and QCD

Nuclear observables

Ab initio Few/Many-body Methods

Nuclear Interactions NN, 3N ...
"effective" degrees of freedom
protons, neutrons, pions

Low-Energy QCD

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 1: Help building the bridge between Nuclear Physics and QCD

"effective" degrees of freedom
protons, neutrons, pions

Low-Energy QCD

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g.

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Nuclear Astrophysics

Nuclear Physics

Abundances Nucleosynthesis (Big Bang, Stellar, Explosive)

Nuclear Astrophysics

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Nuclear Astrophysics

Nuclear Physics

Astrophysical models

Abundances Nucleosynthesis (Big Bang, Stellar, Explosive)

Nuclear Astrophysics

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Nuclear Astrophysics

Nuclear Physics

Inputs: e.g.Electroweak and hadronic processes with nuclei

Astrophysical models

Abundances Nucleosynthesis (Big Bang, Stellar, Explosive)

Nuclear Astrophysics

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Nuclear Astrophysics

Nuclear Physics

Ab initio Few/Many-body Methods

Inputs: e.g.Electroweak and hadronic processes with nuclei

Astrophysical models

Abundances Nucleosynthesis (Big Bang, Stellar, Explosive)

Nuclear Astrophysics

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Nuclear Astrophysics

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Physics beyond the standard mode

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Physics beyond the standard model

Nuclear physics

e.g. Time reversal invariance violation in Strong interactions

Physics beyond the SM

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Physics beyond the standard mode

Nuclear Physics

Measurement of Electric Dipole Moment in light nuclei

e.g. Time reversal invariance violation in Strong interactions

Physics beyond the SM

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Physics beyond the standard model

Nuclear Physics

Input: EDM of light nuclei with $/$ interaction terms added in the potential Measurement of Electric Dipole Moment in light nuclei
e.g. Time reversal invariance violation in Strong interactions

Physics beyond the SM

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Physics beyond the standard model

Nuclear Physics

Ab initio Few/Many-body Methods

Input: EDM of light nuclei with $/$ interaction terms added in the potential Measurement of Electric Dipole Moment in light nuclei

Time reversal invariance violation in Strong interactions

Physics beyond the SM

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Aim 2: Connections between Nuclear Physics and other fields e.g. Physics beyond the standard model

Measurement of Electric Dipole Moment in light nuclei
Time reversal invariance violation in Strong interactions

Physics beyond the SM

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Ab initio methods

> "Modern ab initio approaches and applications in few-nucleon physics with $\mathbf{A} \geq \mathbf{4 "}$ W. Leidemanti, G. Orlandini/Progress in Partide and Nudear Physics $68(2013) 158-214$

160

If a method enables one to obtain the observable under consideration by solving the relevant quantum mechanical many-body equations, without any uncontrolled approximation, we consider it to be an $a b$ initio method. Controlled approximations, however, are allowed. In fact a controlled approximation, e.g. a limited number of channels in a Faddeev calculation, can be increasingly improved up to the point that convergence is reached for the observable. Such a converged result we denote as a precise ab initio result. The comparison of precise ab initio results with nuclear data then allows an indisputable answer as to whether or not the chosen Hamiltonian appropriately describes the nuclear dynamics. Any uncontrolled approximation in the calculation would not lead to such a clear-cut conclusion. Quite naturally, precise ab initio results obtained with different ab initio methods but with the same Hamiltonian as input, have to agree and are often referred to as benchmark results.

- Solution of relevant many-body QM equation for a "chosen Hamiltonian" (the only input!)
- with approximations improvable in a controlled way (\rightarrow convergence, error estimate \longrightarrow benchmark)

[^0]
The framework:

Non relativistic quantum mechanics
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

The task:

Solve the Schrödinger equation for a system of A nucleons
Respect Translational/Galileian invariance

$$
\begin{gathered}
{\left[\mathrm{H}, \overrightarrow{\mathrm{P}}_{\mathrm{cm}}\right]=0 \quad\left[\mathrm{H}, \overrightarrow{\mathrm{R}}_{\mathrm{cm}}\right]=\mathbf{0}} \\
\text { Rotational invariance } \\
{[\mathbf{H}, \overrightarrow{\mathrm{J}}]=\mathbf{0}}
\end{gathered}
$$

A classical Trinvariant hamiltonian:

$$
H=\sum_{i}^{A} \frac{p_{i}^{2}}{2 m}+\sum W(r)+\sum_{\text {2-body residual interaction }}
$$

Mean field
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

An invariant hamiltonian:

Kinetic energy in terms of A-1
conjugate momenta π_{l} of Jacobi coordinates ζ_{l}
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Jacobi coordinates
 1,2 A-1

= distances between each particle "i" and the cm of the previous ($\mathrm{A}-\mathrm{i}$) particles

$$
\begin{aligned}
& \text { Jacobi coordinates } \vec{\xi}_{i} \quad 1,2 \ldots . \text { A-1 } \\
& \text { = distances between each particle " } \mathrm{i} \text { " and } \\
& \text { the } \mathrm{cm} \text { of the previous }(\mathrm{A}-\mathrm{i}) \text { particles } \\
& \text { etc. } \\
& 3
\end{aligned}
$$

Jacobi coordinates $\vec{\xi}$
 1,2 A-1

= distances between each particle " i " and the cm of the previous $(\mathrm{A}-\mathrm{i})$ particles

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Remarks:

- When expressed in terms of Jacobi coordinates, even a 2-body potential becomes of "A-body nature"
- The translation invariant wave function is highly correlated (i.e. particles are not independent) beyond the correlation due to the dynamics

Remarks:

- Coping with T\&G invariances, as well as Pauli principle at the same time, is one of the problems that makes difficult to extend some ab initio approaches to large A
(No Slater Determinants!)

Possible questions:

- Can a comparison between measured and calculated observables help discriminating among OBEP, Phenomenological, EFT potentials?
- Can it help discriminating between different versions of EFT potentials?
- (Are such questions "well posed"?)

To answer such questions one needs to solve the Schrödinger equation with an ab initio method and calculate several observables

The basic ab initio methods

Few-body: As4
F/M-body:4<A< 12,20,40..??
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

The basic ab initio methods

Few-body: A ≤ 4
F/M-body:4<A< 12,20,40..??

Faddeev Yakubowski (FY)
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

The basic ab initio methods

Few-body: A ≤ 4
F/M-body:4<A< 12,20,40..??

Faddeev Yakubowski (FY)
Diagonalization methods:
Hyperspherical Harmonics (HH)
Gaussians (GEM, SVM)
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

The basic ab initio methods

[^1]
The basic ab initio methods

Few-body: A ≤ 4

Faddeev Yakubowski (FY) Monte Carlo methods
Bound state
observables
Diagonalization methods: Hyperspherical Harmonics (HH)

Gaussians (GEM, SVM)
No Core Shell Model (NCSM)
Effective interaction HH (EIHH)
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

The basic ab initio methods

Few-body: As4

Faddeev Yakubowski (FY) Monte Carlo methods
Bound state
observables
Diagonalization methods: Hyperspherical Harmonics (HH)

Gaussians (GEM, SVM)
??Coupled Cluster (CC)??
No Core Shell Model (NCSM)
Effective interaction HH (EIHH)
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

HH: A nice alternative to the HO basis, inspired by the 2-body problem:

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

HH: A nice alternative to the HO basis, inspired by the 2-body problem:

$$
\mathrm{T} \sim \Delta_{\mathrm{r}}-\mathrm{L}^{2} / \mathrm{r}^{2}
$$

the good basis are spherical harmonics $Y_{\mathrm{Im}}(\theta, \phi)$ eigenfunctions of angular momentum L^{2}

EXTEND THAT IDEA TO A>2
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

HYPERSPHERICAL COORDINATES

[^2]
HOW ARE HYPERRADIUS ρ AND HYPERANGLES α ' DEFINED ???

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

HOW ARE HYPERRADIUS ρ AND HYPERANGLES $\alpha \alpha^{\prime}$ DEFINED ???

e.g. for 3 particles

ξ_{1}		$\rho^{2}=\xi_{1}{ }^{2}+\xi_{2}{ }^{2}$
θ_{1}		
ϕ_{1}		
ξ_{2}	\longrightarrow	
$\alpha_{1}=\theta_{1}$		
θ_{2}		$\alpha_{2}=\phi_{1}$
ϕ_{2}	$\alpha_{3}=\theta_{2}$	
$\alpha_{4}=\phi_{2}$		
	$\alpha_{5}=\operatorname{arcos}\left(\xi_{2} / \rho\right)$	

HOW ARE HYPERRADIUS ρ AND HYPERANGLES α ' DEFINED ???

e.g. for 4 particles

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

2 body: SPHERICAL HARMONICS

$$
T \sim \Delta_{\mathrm{r}}-\mathrm{L}^{2} / \mathrm{r}^{2}
$$

the good basis are $Y_{\mathrm{Im}}(\theta, \phi)$ spherical harmonics eigenfunctions of angular momentum L^{2}

A body:
 SPHERICAL HARMONICS

$$
T \sim \Delta_{\rho}-\mathbb{K}^{2} / \rho^{2}
$$

the good basis are eigenfunctions of hyperangular momentum K^{2}

[^3]
SUMMARIZING:

$$
\mathrm{H}_{\mathrm{int}}=1 / \mu\left(\Delta \rho_{\rho}-\mathbb{K}^{2} / \rho^{2}\right)+\mathrm{V}\left(\xi_{1}, \xi_{2}, \ldots \xi_{\mathrm{A}-1}\right)
$$

Hyperspherical Harmonics basis

$$
\Psi=\Sigma_{N K} L_{(N)}\left(\rho Y_{K}\left(\alpha_{1}, \ldots \alpha_{2 N}\right)\right.
$$

$$
L_{N}(\rho)=\text { Laguerre Polynomials }(\exp [-a \rho])
$$

[^4]
PROBLEM N.1 : ANTISYMMETRIZATION of HH IS NON TRIVIAL! (no Slater Determinants!)

" by hand " : cumbersome! possible only for A=3,4

SOLUTIONS

1) an algorithm based on relations between $O(N)$ and S_{N}

Novoselsky \& Katriel PRA 49 (1994) 833
Novoselsky \& Barnea PRA 51 (1995) 2777
2) an algorithm based on property of the Casimir operator of S_{N}
M. Gattobigio, A. Kievsky, M. Viviani, Phys.Rev.C, 83, 024001 (2011);
S.Deflorian, N.Barnea, W.Leidemann, G.O.i, Few-Body Syst. 54, 1879 (2013);

PROBLEM N. 2 : SLOW CONVERGENCE IN QUANTUM NUMBER [K] = \{K....\}

essentially for two reasons

1) for increasing A the \# of quantum numbers $\{K, \ldots$ \} increases
i.e. each combination of values corresponds to a state
\longrightarrow for increasing A one has lots of states even for K small BIG MATRICES (FULL!)
2) strong short range repulsion of the potential

HOW TO SPEED UP THE CONVERGENCE?

SOLUTION:

Construct EFFECTIVE INTERACTIONS by Similarity Transformations

Suzuki-Lee (NCSM, EIHH)
Similarity Renormalization Group (NCSM, CC)

AB INITIO BOUND STATE CALCULATIONS

BE of ${ }^{4} \mathrm{He}$ ($\exp .28 .296 \mathrm{MeV}$)

TABLES

TABLE I. The expectation values (T) and (V) of kinetic and potential energise, the binding energies E_{8} in MeV and the radius in fim.

Method	(T)	(V)	Eb	$\sqrt{\left(r^{2}\right)}$
FY	102.39(5)	-128.33(10)	-25.94(5)	$1.485(3)$
CRCGU	102.30	-188.20	-25.90	1.482
SVM	102.35	-188.27	-25.92	1.486
HH	102.4	-188.34	-25.90(1)	1.483
GFMC	102.3(1.0)	$-18.25(1.0)$	-25.93(2)	$1.490(5)$
NGSM	103.35	-129.45	-25.80(20)	1.485
EIHH	1008(9)	-13.7(9)	-25.94(10)	1.486

from H.Kamada et al. (18 auhors 7 groups) PRC 64 (2001) 044001

No core shell model

FIG. 1 (color online). Dependence of ${ }^{6} \mathrm{He}$ excitation energies on the size of the HO basis $N_{\max } \hbar \Omega$.
S. Baroni, P.Navratil and S. Quaglioni PRL 110, 022505 (2013)

The basic ab initio methods

Few-body $(A \leq 4)$
Few-body $(4<A<12,20,40 ? ?$

Faddeev Yakubowski (FY)
Diagonalization methods: Hyperspherical Harmonics (HH)

Gaussians (GEM, SVM)

Monte Carlo methods (GFMC,AFDMC)
??Coupled Cluster (CC)?? No Core Shell Model (NCSM) Effective interaction HH (EIHH)
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

The basic ab initio methods

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Benchmark calculation of $n-{ }^{3} \mathrm{H}$ and $\mathrm{p}-{ }^{3} \mathrm{He}$ scattering

3 methods: FY momentum space, FY configuration space, HH Kohn variational

M. Viviani, A. Deltuva, R. Lazauskas, J. Carbonell, A. C. Fonseca, A.

Kievsky, L.E. Marcucci, and S. Rosati Phys. Rev. C 84, 054010 (2011)

Benchmark calculation of $n-{ }^{3} \mathrm{H}$ and $\mathrm{p}-{ }^{3} \mathrm{He}$ scattering

3 different potentials

M. Viviani, A. Deltuva, R. Lazauskas, J. Carbonell, A. C. Fonseca, A.

Kievsky, L.E. Marcucci, and S. Rosati Phys. Rev. C 84, 054010 (2011)
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

A_{y} puzzle:

n - d elastic scattering with polarized neutrons

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

$$
\begin{aligned}
& \text { "备y plozrale" } \\
& \text { remplins } \\
& \text { viich Fir }{ }^{1 / 2} \\
& \text { potenticiss! }
\end{aligned}
$$

J. Golak, R. Skibinski, K. Topolnicki, H. Witala,a, E. Epelbaum, H. Krebs, H. Kamada, Ulf-G. Meissner, V. Bernard, P. Maris, J. Vary, S. Binder, A. Calci, K. Hebeler8, J. Langhammer, R. Roth, A.Nogga, S. Liebig, and D. Minossi

Eur. Phys. J. A (2014) 50: 177

Why are there so few methods for reactions?
 Why are they limited to $A=3,4 ?$

Account for the

 asymptotic conditions in the w.f. for positive energies(scattering many-body problem!)
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Channels:

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Before reaching the

 asymptotics condition all those channels interfere
FY equations:

n compact integral equations (coupled Lippmann-Schwinger-like equations):

- for $A=3 \quad n=3$
- for $A=4 \quad n=28$
- for $A=5$ n too many !!!

Today:

- FY: $\mathrm{A}=3$ cross sections at energies where all channels $(1+2,1+1+1)$ contribute
- FY: $A=41$ cross sections at energies where all channels $(1+3,2+2$, $1+1+2$) contribute

Bochum-Cracow school: (Gloeckle, Witala Golak Elster Nogga...) Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, Deltuva....) Conf. Space: (Carbonell, Lazauskas...)

Alternative approach:

- Configuration space
- Based on Kohn variational principle
- Correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...

An interesting Astrophysical application:

Recent Planck Satellite results:

Apparent disagreement between Cosmic Microwave Background (CMB) and primordial deuterium abundance
Crucial input:
$\mathrm{d}(\mathrm{p}, \boldsymbol{\gamma})^{3} \mathrm{He}$ rate at Big Bang Nucleosynthesis (BBN) temperature range ($\mathrm{E}=30-300 \mathrm{keV}$)
Existing measurements:
unclear, new Luna experiment is planned

Disgreement becomes
 $d(p, \gamma)^{3} \mathrm{He}$ rate 10% higher than measured

if:
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Phen.NN+NNN
 + Many-body currents (however from EFT)

L.E. Marcucci, G. Mangano, A. Kievsky and M. Viviani Phys. Rev. Lett. 116, 102501 (2016)
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Nuclear spectrum

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Remarks on the problem of scattering w.f.:

- The information on wave functions is redundant, since they are not observable

Remarks on the problem of scattering w.f.:

- The information on wave functions is redundant, since they are not observable
Observables are matrix elements on w.f., namely integrals, i.e. less information is needed

Remarks on the problem of scattering w.f.:

- The information on wave functions is redundant, since they are not observable
- Observables are matrix elements on w.f., namely integrals, i.e. less information is needed Point directly to matrix elements!

The basic ab initio methods

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Integral transform (IT)

$\Phi(\sigma)=\int d \omega K(\omega, \sigma) S(\omega)$

One IS NOT able to calculate
(the quantity of direct physical meaning)
but IS able to calculate Φ (σ)
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

Integral transform (IT)

$\Phi(\sigma)=\int d \omega \quad K(\omega, \sigma) S(\omega)$

One IS NOT able to calculate S(ω)
(the quantity of direct physical meaning) but IS able to calculate (T) (σ)

In order to obtain $S(\omega)$ one needs to invert the transform Problem:
Sometimes the "inversion" of $\Phi(\sigma)$ may be problematic

Suppose we want a spectral function S(ω)

REMEMBER:

$S(\omega)$ is the observable! $S(\omega)=1 / \pi \operatorname{Im}[\Pi(\omega)]$, where

$$
\begin{aligned}
& \Pi(\omega)=\int<\left|\Theta^{\dagger}(\mathrm{t}) \Theta(0)\right|>\mathrm{e}^{\mathrm{i} \omega \mathrm{t}} \mathrm{dt} \\
& \mathrm{~S}(\omega)=1 / \pi \operatorname{Im}\left[<0\left|\Theta^{\dagger}\left(\mathrm{H}-\mathrm{E}_{0}-\omega-\imath \varepsilon\right)^{-1} \Theta\right| 0>\right]
\end{aligned}
$$

Green F. with poles on the real axis

1) integrate in d ω using delta function
2) Use $\quad \sum_{n}|n><n|=I$

$\langle 0| \Theta^{+} K\left(H-E_{0}, \sigma\right) \Theta|0\rangle$

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

The calculation of ANY transform seems to require, in principle, only the knowledge of the ground state! However,

$\mathrm{K}\left(\mathrm{H}-\mathrm{E}_{0}, \sigma\right)$ can be quite a complicate operator.

So, how to calculate this mean value?
$\Phi(\sigma)=\langle 0| \Theta^{+} \mathrm{K}\left(H-\mathrm{E}_{0}, \sigma\right) \Theta|0\rangle$

If we had to deal with a "confined" system one could represent H on bound states eigenfunctions |v>
$\langle 0| \Theta^{+} K\left(H-E_{0}, \sigma\right) \Theta|0\rangle=$
$\sum_{\mu \nu}\langle 0| \Theta^{+}|\mu\rangle\langle\mu| K\left(H_{\mu \nu}-E_{0}, \sigma\right)|v\rangle\langle v| \Theta|0\rangle$

If we had to deal with a "confined" system one could represent H on bound states eigenfunctions |v >
$\langle 0| \Theta^{+} \mathrm{K}\left(H-\mathrm{E}_{0}, \sigma\right) \Theta|0\rangle=$
$\sum_{\mu \nu}\langle 0| \Theta^{+}|\mu\rangle\langle\mu| K\left(H_{\mu \nu}-E_{0}, \sigma\right)|v\rangle\langle v| \Theta|0\rangle$
After diagonalizing $\mathrm{H}_{\mu \nu}$ the transform would be simply

$$
\left.\sum_{\lambda} \mathrm{K}\left(\varepsilon_{\lambda}-\mathrm{E}_{0}, \sigma\right)|\langle\lambda| \Theta| 0\right\rangle\left.\right|^{2}
$$

If we had to deal with a "confined" system one could represent H on bound states eigenfunctions |v >
$\langle 0| \Theta^{+} \mathrm{K}\left(H-\mathrm{E}_{0}, \sigma\right) \Theta|0\rangle=$
$\sum_{\mu \nu}\langle 0| \Theta^{+}|\mu\rangle\langle\mu| K\left(H_{\mu \nu}-E_{0}, \sigma\right)|v\rangle\langle v| \Theta|0\rangle$
After diagonalizing $\mathrm{H}_{\mu \nu}$ the transform would be simply

$$
\left.\Sigma_{\lambda} K\left(\varepsilon_{\lambda}-E_{0}, \sigma\right)|\langle\lambda| \Theta| 0\right\rangle\left.\right|^{2}
$$

(Up to convergence!)

However, a nucleus is NOT "confined"!
The nuclear \mathbf{H} has positive energy eigenstates and therefore, in general, CANNOT be represented on b.s. eigenfunctions |v >
(Continuum discretization approximation)

THE GOOD NEWS:

The representation of H on b.s. eigenfunctions |v > and therefore the calculation of the transform via

$$
\text { (I) }(\sigma)=\left.\left|\sum_{\lambda} K\left(\varepsilon_{\lambda}-E_{0}, \sigma\right)\right|\langle\lambda| \Theta|0\rangle\right|^{2}
$$

is allowed for specific kernels $K(\omega, \sigma)$! No approximation!

Conditions required:

1) $\int \mathrm{S}(\omega) \mathrm{d} \omega<\infty \quad\left(\Rightarrow \int \mathrm{S}(\omega) \mathrm{d} \omega=\langle 0| \Theta^{+} \Theta|0\rangle\right)$
2) $\Phi(\sigma)=\int S(\omega) K(\omega, \sigma) d \omega<\infty$
3) $K(\omega, \sigma)$ is a real positive definite function of ω

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

A side remark on the notation: in

$\Phi(\sigma)=\int d \omega K(\omega, \sigma) S(\omega)$

σ can also indicate a set of parameters $\sigma_{1}, \sigma_{2} \ldots$

Which is the best kernel?

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

Let's remember:

$\Phi(\sigma)=\int d \omega \quad K(\omega, \sigma) S(\omega)$

In order to obtain $S(\omega)$ one needs to invert the transform Problem:
Sometimes the "inversion" of $\Phi(\sigma)$ may be problematic

The Laplace Kernel:

$$
\Phi(\sigma)=\int \mathrm{e}^{-\omega \sigma} \mathrm{S}(\omega) \mathrm{d} \omega
$$

In Condensed Matter Physics:
In Nuclear Physics:
In QCD

$$
\sigma=\tau=\text { it imaginary time! }
$$

(1) (τ) is calculated with Monte Carlo Methods and then inverted with methods based on Bayesian theorem (MEM)

It is well known that the numerical inversion of the Laplace Transform can be problematic

Illustration of the problem:

Illustration of the problem:

Illustration of the problem:

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS
a "good" Kernel has to satisfy two requirements

1) one must be able to calculate the integral transform
2) one must be able to invert the transform minimizing uncertainties

The Lorentz kernel:

$$
K\left(\omega, \sigma_{1}, \sigma_{2}\right)=\left[\left(\omega-\sigma_{1}\right)^{2}+\sigma_{2}^{2}\right]^{-1}
$$

It is a representation of the δ-Function!
$\Phi\left(\sigma_{1}, \sigma_{2}\right)=\int\left[\left(\omega-\sigma_{1}\right)^{2}+\sigma_{2}^{2}\right]^{-1} S(\omega) d \omega$
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

How can one easily understand why the inversion is much less problematic?

blurred, but still distinguishable

How can one easily understand why the inversion is much less problematic?

blurred, but still distinguishable also with errors!

How can one easily understand why the inversion is much less problematic?

Inversion: e.g. "regularization method" at fixed width

Numerical errors
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

Many successful applications

See reports:
V. D. Efros, W.Leidemann, G.Orlandini, N.Barnea
"The Lorentz Integral Transform (LIT) method and its applications toperturbation induced reactions" J. Phys G: Nucl. Part. Phys. 34 (2007) R459-R528

> W.Leidemann, G.Orlandini
"Modern ab initio approaches and applications in fewnucleon physicswith A \geq 4"
Progress in Particle and Nuclear Physics 68 (2013) 158-214

Some results with LIT:

Benchmark TEST on the Triton:

$S(0)$ is the Dipole Photoabsorption Cross Section

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

Ex. N.1: Inclusive electron scattering cross section on ${ }^{4} \mathrm{He}$ (longitudinal channel)

Role of complete 4-body dynamics in the final scattering state

dotted:

Plane Wave Impulse
Approximation
Dashed:
2-body force
Full: 2+3-body force
S.Bacca et al.

Phys.Rev.Lett.102:162501 (2009)
Data: Saclay + Bates 1980's

Inclusive electron scattering cross section in the longitudinal channel

Nuclear spectrum

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Role of complete 4-body dynamics in the final scattering state

dotted:

Plane Wave Impulse
Approximation
Dashed:
2-body force
Full: 2+3-body force
S.Bacca et al.

Phys.Rev.Lett.102:162501 (2009)
Data: Saclay + Bates 1980's

Inclusive electron scattering cross section in the longitudinal channel

Ex. N.2:

Monopole excitation of ${ }^{4} \mathrm{He}$ by ($\mathbf{e}, \mathbf{e}^{\prime}$) or (α, α^{\prime})

- Very narrow $\mathbf{0}^{+}$resonance in the continuum
- Transition form factor $F_{t r}(q)$ has been measured by (e,e') [($\left.\alpha, \alpha^{\prime}\right)$ has been proposed]

Nuclear spectrum

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

Ex. N.2:

Monopole excitation of ${ }^{4} \mathrm{He}$ by (e,e') or (α, α^{\prime})

- Very narrow $\mathbf{0}^{+}$resonance in the continuum
- Transition form factor $F_{t r}(q)$ has been measured by (e,e') [($\left.\alpha, \alpha^{\prime}\right)$ has been proposed]
- Using IT method (LIT) coupled with EIHH b.s. method one can calculate $F_{t r}(q)$ (separating resonance and background contributions!)
- We find large potential dependence
- We find hints for a "breathing mode" interpretation
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB
S.Bacca N.Barnea,W.Leidemann and G.O.et al. PRL 110042503 (2013)

Very large potential dependence !!!

EIHH + LIT methods
Both phenomenological and EFT potentials With and without 3-body forces
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

ENERGIES

$$
\begin{aligned}
& \text { AV18 } \\
& \mathrm{E}_{\mathrm{R}} \text { Exp. } \\
& \text { - } \\
& -9-8,9-8,8-8,7-8,6-8,5-8,4-8,3-8,2-8,1-8-7,9-7,8-7,7-7,6-7,5-7,4-7,3-7,2-7,1-7 \\
& 1^{\text {st }} \text { th. } \\
& 2^{\text {nd }} \text { th. } \\
& \text { N3LO } \\
& \text { (} p-{ }^{3} \mathrm{H} \text {) } \\
& \text { (} \mathrm{n}-{ }^{3} \mathrm{He} \text {) }
\end{aligned}
$$

Ex. N.3: E1 cross sections \& Dipole Polarizabilities

- existence of Giant Resonances of ${ }^{4} \mathrm{He},{ }^{6} \mathrm{He},{ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}$, ${ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca} .$. (recent and planned measurements of ${ }^{22} \mathrm{O}$ and ${ }^{48} \mathrm{Ca}$)
- coupling the LIT method with bound state methods (EIHH and CC) one gets the results in the following slides:

7-Body total photodisintegration with LIT method

S.Bacca et al. Phys.Lett. B603 (2004) 159-164

6-Body total photodisintegration

S. Bacca et al. PRL89(2002)052502

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

Larger A?

Exper. LIT of the photoabsorption cross section of ${ }^{16} \mathrm{O}$ $\sigma_{\mathrm{I}}=10[\mathrm{MeV}]$

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

S. Bacca, et al.Phys.Rev.Lett. 111122502 (1913)

LIT +CC(SD) methods

N3LO EFT 2-body potential only

Other Kernels?

The Stieltjes Kernel:

$$
K(\omega, \sigma)=(\omega+\sigma)^{-1}
$$

Illustration of the problem: Same as Laplace!

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

However, it may be useful for another purpose:

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

In fact:

$$
\operatorname{Lim}_{\sigma \rightarrow 0} \Phi(\sigma)=\int S(\omega) \omega^{-1} d \omega=\alpha_{\Theta}
$$

"generalized polarizability" e.g. electric polarizability, magnetic susceptibility, compressibility etc... depending on Θ

Recent results on α_{ρ} with $\Theta=\mathbf{D}$ © (El. Dipole Polarizability)

Electric Dipole Polarizability as limit of the Stieltjes transform for σ---> 0

M.Miorelli et al. nucl.th-arXiv 1604-05381 b.s. expansion: Coupled Cluster
(non hermitian) Lanczos diagonalization
G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

A Transform with a kernel suitable for Monte Carlo methods:

[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]
combination of Sumudu kernels:

$$
\begin{aligned}
& \left.K(\omega, \sigma, P)=N \sigma \frac{\left(e^{-\mu \omega / \sigma}\right.}{\sigma}-\frac{e^{-v \omega / \sigma}}{\sigma}\right) \\
& v / \mu=b / a \quad v-\mu=\frac{\ln [b]-\ln [a]}{b-a} \quad b>a>0 \text { integer }
\end{aligned}
$$

A Transform with a kernel suitable for Monte Carlo methods:

[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]
combination of Sumudu kernels:

$$
\begin{aligned}
& \left.K(\omega, \sigma, p)=N \sigma \frac{\left(e^{-\mu \omega / \sigma}\right.}{\sigma} \frac{-e^{-v \omega / \sigma}}{\sigma}\right) \\
& v / \mu=b / a \quad v-\mu=\frac{\ln [b]-\ln [a]}{b-a} \quad b>a>0 \text { integer } \\
& K(\omega, \sigma, P) \longrightarrow \longrightarrow_{\infty} \delta(\omega-\sigma)
\end{aligned}
$$

A Transform with a kernel suitable for Monte Carlo methods:

[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]
combination of Sumudu kernels:

$$
\begin{aligned}
& \left.K(\omega, \sigma, P)=N \sigma \frac{\left(e^{-\mu \omega / \sigma}\right.}{\sigma}-\frac{\left.e^{-v \omega / \sigma}\right)}{\sigma}\right) \\
& \quad=N \Sigma_{k}^{p}(-1)^{k}\binom{k}{\mathrm{p}} \mathrm{e}^{-\tau(P, k, \sigma) \omega}
\end{aligned}
$$

Finite sum of Laplace Kernels!

A Transform with a kernel suitable for Monte Carlo methods:

[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]
combination of Sumudu kernels:

$$
\begin{gathered}
\left.K(\omega, \sigma, P)=N \sigma \frac{\left(e^{-\mu \omega / \sigma}\right.}{\sigma} \frac{-e^{-v \omega / \sigma}}{\sigma}\right) \\
=N \Sigma_{k}^{P}(-1)^{k}\binom{k}{p} e^{-\tau(P, k, \sigma) \omega} \\
\tau(P, k, \sigma)=\log (b / a)[P a /(b-a)+k] / \sigma
\end{gathered}
$$

Small width ---> large P ---> large imaginary time

Bosonic system: Liquid Helium

The transform is calculated with AFDMC and then inverted with MEM

Bosonic system: Liquid Helium

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS

Summary:

- Ab initio few-body methods help building the bridge between QCD and nuclear phenomena
- They are moving from the traditional $\mathrm{A}=2,3$ regime to larger systems
- IT methods are alternative approaches to overcome the many-body scattering problem

THANK YOU!

G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

[^0]: G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

[^1]: G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

[^2]: G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

[^3]: G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

[^4]: G. Orlandini - Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB

