Tutorial: Nuclear Physics
with few/many-body
methods
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issues in nuclear physics:
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TWO AIMS:
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Aim 1: Help building the bridge between Nuclear Physics and

Nuclear observables

Low-Energy QCD
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Aim 2: Connections between Nuclear Physics and e.g.
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Aim 2: Connections between Nuclear Physics and e.g.
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ADb initio methods

““Modern ab initio approaches and applications in few-nucleon physics with A = 4”
W. letdemann, G. Orlandini/ Progress in Particle and Nuclear Physics 68 (2013) 158-214

If a method enables one to obtain the observable under consideration by solving the
relevant quantum mechanical many-body equations, without any uncontrolled approximation, we consider it to be an ab
initio method. Controlled approximations, however, are allowed. In fact a controlled approximation, e.g. a limited number

of channels in a Faddeev calculation, can be increasingly improved up to the point that convergence is reached for the
observable. Such a converged result we denote as a precise ab initio result. The comparison of predse ab initio results with
nuclear data then allows an indisputable answer as to whether or not the chosen Hamiltonian appropriately describes the
nuclear dynamics. Any uncontrolled approximation in the calculation would not lead to such a clear-cut conclusion. Quite
naturally, precise ab initio results obtained with different ab initio methods but with the same Hamiltonian as input, have
to agree and are often referred to as benchmark results.

 Solution of relevant many-body QM equation for a “chosen
Hamiltonian” (the only input!)
e with approximations In a way

( —®convergence, error estimate —» )
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The framework:

Non relativistic quantum mechanics
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The task:

Solve the Schrodinger equation for a system
of A nucleons

Respect Translational/Galileian
Invariance

[H,P_]=0 [HR_1=0
Rotational invariance

[H, J1=0
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A classical ¥-invariant
hamiltonian:

H=X o2+ ZW(r)+X v

y /
2-body residual interaction
Mean field
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An invariant hamiltonian:

H=2 =2+ 2V +2 V...

21
/ 2-body potential 3-body potential

Kinetic energy in terms of A-1

conjugate momenta 71?1 of Jacobi coordinates 2;1
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- - —>»>
Jacobi coordinates ¢  12.. A1 S,
1 =
—>»>
g = distances between each particle *I" and I .
the cm of the previous (A — i) particles 4 »
S
etc. 3
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Jacobi coordinates ¢  1.2..

—>»
& = distances between each particle “i” and
the cm of the previous (A — 1) particles
> > > >
pl r1 §0 -
P, r, transformation g
|
<——>
P r )
: A §A-1

A-1

A-1
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Jacobi coordinates ¢

—>»>

:

1,2 ....

= distances between each particle “i” and

the cm of the previous (A — 1) particles

transformation

N BT e
\J

[u—

A-1

——» Invariant H

in general NON separable
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Remarks:

= When expressed in terms of Jacobi
coordinates, even a 2-body potential
becomes of “A-body nature”

B The translation invariant wave
tfunction is highly correlated (i.e.
particles are not independent) beyond the
correlation due to the dynamics
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Remarks:

= Coping with T&G invariances, as well as Paull
principle at the same time, is one of the problems
that makes difficult to extend some ab Initio
approaches to large A

(No Slater Determinants!) [
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Possible guestions:

" Can a comparison between measured
and calculated observables help
discriminating among OBEP,
Phenomenological, EFT potentials?

® Can it help discriminating between
different versions of EFT potentials?
® (Are such questions “well posed”?)
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To answer such questions one needs to

solve the Schrodinger equation with an

ab initio method and calculate several
observables
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The basic ab initio methods

Few-body: As4 FIM-body:4<A< 12,20,40..??

Structure:
Bound state
observables

Scatt. states)

Reactions:
Cross sections
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The basic ab initio methods
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The basic ab initio methods

Tomorrow !

Francesco Pederiva
Few-body: A<4

Faddeev Yakubowski (FY)
Monte Carlo methods
Diagonalization methods:

Structure:
Bound state
observables
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The basic ab initio methods

Tomorrow !

Francesco Pederiva
Few-body: A<4

Faddeev Yakubowski (FY)
Monte Carlo methods
Diagonalization methods:

??Coupled Cluster (CC)??
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HH: A nice alternative to the HO basis,
Inspired by the 2-body problem:

spherical
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HH: A nice alternative to the HO basis,
inspired by the 2-body problem:

— —> —»
b g
1 2
— > —»
ho=p +V (1)
2 u spherical

T~A - L2/ r?

the good basis are spherical harmonics Y, _ (6, ¢)
eigenfunctions of angular momentum L?

EXTEND THAT IDEA TO A>2

G. Orlandini — Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB



SPHERICAL COORDINATES

transform !

.

Q ©

radius »

angles
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HOW ARE RADIUS » AND ANGLES o' DEFINED ?7?
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HOW ARE

e.g. for 3 particles

[\

S D Y & D Jvw

transform
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RADIUS ) AND ANGLES o' DEFINED ?7?
—»
5,
] =
—>»>
S,
p2 — &1 2 + 22
3

G. Orlandini — Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB



HOW ARE RADIUS » AND ANGLES o DEFINED ?7?

»
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e.g. for 4 particles D
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2 body: SPHERICAL HARMONICS
T~A - L% r?

the good basisare Y _ (6, ¢) spherical harmonics

eigenfunctions of angular momentum L?

A body: SPHERICAL HARMONICS
T~A - Ip 2
the good basis are = spherical harmonics
eigenfunctions of angular momentum K?
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SUMMARIZING:

H. = U (A - Ip*)+ V(E,E ,....E, )

Hyperspherical Harmonics basis

(p) = Laguerre Polynomials (exp[-ap])
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PROBLEM N.1: ANTISYMMETRIZATION of HH IS NON TRIVIAL !
(no Slater Determinants!)

“by hand ” : cumbersome! possible only for A=3,4

SOLUTIONS

1) an algorithm based on relations between O(N) and S

Novoselsky & Katriel PRA 49 (1994) 833
Novoselsky & Barnea PRA51 (1995) 2777

2) an algorithm based on property of the Casimir operator of S

M. Gattobigio, A. Kievsky, M. Viviani, Phys.Rev.C, 83, 024001 (2011);
S.Deflorian, N.Barnea, W.Leidemann, G.O.i, Few-Body Syst. 54, 1879 (2013),
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PROBLEM N.2 : SLOW CONVERGENCE IN QUANTUM NUMBER [K] = {K....}

essentially for two reasons

1) for increasing A the # of quantum numbers {K, .... }increases
l.e. each combination of values corresponds to a state

— > for increasing A one has lots of states even for K small

BIG MATRICES (FULL!)

2) strong short range repulsion of the potential
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HOW TO SPEED UP THE CONVERGENCE?

SOLUTION:

Construct EFFECTIVE INTERACTIONS by Similarity Transformations

Suzuki-Lee (NCSM, EIHH)
imilarity I?enormalization (-roup (NCSM, CC)
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AB INITIO CALCULATIONS

BE of ‘He (exp. 28.296 MeV)

TABLES
TAELE [ The expectation valuss (T) and (V) of kinetic and potential ensrgiss, the hinding

energies Ey in MeV and the radius in fm.
Mathod {T) v E. i)

FY 102.39(5) -178.33(10) -25.94(5) 1.435(3)
CRCGV 102.30 128.20 -25.90 1.482
SVM 102.35 12807 -25.92 1 436
HH 10244 178,34 -25.90(1 1.483

GFMC 102.3(1.0] -178.25(1.0) -25.93(2) 1.430(5)
{ [} 103.35 129 45 -25.30( 20) 1.485
EIHH 100.8(9 -1 76.7(9) -25.944(10] 1 486

from H.Kamada et al. (18 auhors 7 groups) PRC 64 (2001) 044001
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No core shell model

(i)
He
SRG-N'LO A=2.02 fm '
hQ = 16 MeV

12hi2 Expt

FIG. 1 (color online). Dependence of “He excitation energies
on the size of the HO basis Ny hil.
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Few-body (A<4) Few-body (4<A< 12,20,40?"

Faddeev Yakubowski (FY)
Monte Carlo methods

Diagonalization methods:

??Coupled Cluster (CC)??

Faddeev
Yakubowski (FY)

HH Kohn-variational
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Benchmark calculation of n-*H and p-°*He scattering

FY momentum space, FY configuration space, HH Kohn variational

=
s
E
%
o,
S

60 () 60 20 0 (] 20 ( 60 120 180

M. Viviani, A. Deltuva, R. Lazauskas, J. Carbonell, A. C. Fonseca, A.
Kievsky, L.E. Marcucci, and S. Rosati Phys. Rev. C 84, 054010 (2011)
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Benchmark calculation of n-*H and p-°*He scattering

4.05 MeV
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M. Viviani, A. Deltuva, R. Lazauskas, J. Carbonell, A. C. Fonseca, A.
Kievsky, L.E. Marcucci, and S. Rosati Phys. Rev. C 84, 054010 (2011)
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Ay puzzle:

n - d elastic scattering with polarized
neutrons
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Why are there so few
methods for reactions?
Why are they limited to

A=3,4?
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Account for the
asymptotic conditions in
the w.f. for positive
energies

(scattering many-body problem!)
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Betfore reaching the
asymptotics condition
all those channels
interfere
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FY equations:

n compact integral equations

(coupled Lippmann-Schwinger-like
equations):

for A=3 n=3
for A=4 n=28
for A=5 n too many !l
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Today:

= EY: Cross sections at energies
where all channels (1+2,1+14+1)
contribute

= FY: cross sections at energies
where all channels (1+3, 2+2,
1+1+2) contribute

Bochum-Cracow school: (Gloeckle, Witala Golak Elster Nogga...)
Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, .
Conf. Space: (Carbonell, Lazauskas...)
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Alternative approach:

®= Configuration space
®= Based on Kohn variational principle
= Correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...
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An interesting Astrophysical
application:

Recent Planck Satellite results:
Apparent between Cosmic Microwave Background
(CMB) and primordial deuterium abundance

Crucial input:

d(p,y)’He rate at Big Bang Nucleosynthesis (BBN) temperature
range (E = 30-300 keV)

Existing measurements:

unclear, new Luna experiment is planned

becomes If:
d(p,y)’He rate 10% higher than measured

G. Orlandini — Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB



L.E. Marcucci, G. Mangano, A. Kievsky and M. Viviani
Phys. Rev. Lett. 116, 102501 (2016)
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Remarks on the problem
of scattering w.1.:

" The information on wave functions is redundant,
since they are not observable
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Remarks on the problem
of scattering w.1.:

" The information on wave functions is redundant,
since they are not observable

® Observables are matrix elements on w.f., namely
integrals, i.e. less information is needed
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Remarks on the problem
of scattering w.1.:

" The information on wave functions is redundant,
since they are not observable

® Observables are matrix elements on w.f., namely
integrals, i.e. less information is needed

® Point directly to matrix elements!
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Structure
Bound states

Reactions

The basic ab initio methods

Few-body (A<4) Few-body (4<A< 12,20,40?

Faddeev Yakubowski (FY)

Monte Carlo methods
Diagonalization methods:

??Coupled Cluster (CC)??

Faddeev Yakubowski (FY)

HH Kohn-variational

Integral Transforms Methods
(IT)

G. Orlandini — Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB
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Integral transform (IT)

®(c)=[dw K(w,o)

One IS NOT able to calculate
(the quantity of direct physical meaning)
but IS able to calculate @ ( 6)
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Integral transform (IT)

®(c)=[dw K(w,o)

-_l.

One IS NOT able to calculate
(the quantity of direct physical meaning)
but IS able to calculate @ ( 6)

In order to obtain one needs to invert the transform
Problem:

Sometimes the “inversion” of @ () may be problematic

G. Orlandini — Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCBS



Suppose we want a spectral function (®)

Scattering states Energies in the continum
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REMEMBER:

is the observable! =1/ Im [ ], where

=f e'®" dt

= UnIm [<0|©®(H-E -0-1)'00>]
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S(w) = E,!: [(n|©0)|” §(w — By + Eq)

® (o) = J K(w,0) do =

1) integrate in dw using delta function

2)Use 2 |n><n|=1
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® (0)

= JS((D) K(w,0) do =

!

(0] ©" K( ,6) ©]0)
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The calculation of ANY transform seems to require, in principle,
only the knowledge of the ground state!
However,

K(H-EO,G) can be quite a complicate operator.

So, how to calculate this mean value?

Y

® (0) = | (0] @ K(H-E ,06) ©]0)
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If we had to deal with a “confined” system one could
represent H on bound states eigenfunctions |v >

(0|®* K(H-EO,G) ®|0) =

2. 0] O |w u K(H -E,0)lv)v] ©]0)
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If we had to deal with a “confined” system one could
represent H on bound states eigenfunctions |v >

(0|®* K(H-EO,G) ®|0) =

2. 0] O |w u K(H -E,0)lv)v] ©]0)

After diagonalizing Huv the transform would be simply

2. K(e - E ,0) (A ©]0)|°
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If we had to deal with a “confined” system one could
represent H on bound states eigenfunctions |v >

(0]®" K(H-E ,5) ©]0) =

2. 0] O |w u K(H -E,0)lv)v] ©]0)

After diagonalizing Huv the transform would be simply

2. K(e - E ,0) (A ©]0)|°

( Up to convergence! )
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However, a nucleus is NOT “confined”!

The nuclear H has positive energy eigenstates
and therefore, in general, CANNOT be represented
on b.s. eigenfunctions |v >
(Continuum discretization approximation)
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THE GOOD NEWS:

The representation of H on b.s. eigenfunctions |v >
and therefore the calculation of the transform via

® (0)= | X, K(e,- E,,0) |1 ©[0)

is allowed for specific kernels K(w,o)!

T~a

No approximation!
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Conditions required:

1) J do < oo (:>j S(w) dm=<0|®+®|0))

2) @ (o) = I K(w,0) do < oo

3) K(w,O) is a real positive definite function of W
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A side remark on the notation: in

®(c)=[dw K(w,0)

O can also indicate a set of parameters G ,0, ....
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Which is the best kernel?
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Let's remember:

®(c)=[dw K(w,o)

-_l.

In order to obtain one needs to invert the transform
Problem:

Sometimes the “inversion” of @ () may be problematic
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The Laplace Kernel:

® () = [ e °° S(w) do

In Condensed Matter Physics: In Nuclear Physics:
In QCD

c =1t =it imaginary time!
® (7) is calculated with Monte Carlo Methods

and then inverted with methods
based on Bayesian theorem (MEM)
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®(c)=[dw e-°°

-_l.

It is well known that the numerical inversion of the Laplace Transform
can be problematic
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lllustration of the problem:

>
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()

Laplace transform

——

A




lllustration of the problem:

>

()

Laplace transform

——

Numerical errors
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lllustration of the problem:

>

()

Laplace transform

-
277

Numerical errors

- o
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a “good” Kernel has to satisfy two requirements
1) one must be able to calculate the integral transform

2) one must be able to invert the transform minimizing uncertainties
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The Lorentz kernel:

K(w,6,6)= [(@-0)+0c’]"

It is a representation
of the

d-Function !

® (G,,0)) = [ [(w- 01)2+ cszz]‘1 dw
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How can one easily understand why the inversion is
problematic?

A
4 ©
L e

transform N—
/ —- -
> G’

blurred, but still distinguishable
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How can one easily understand why the inversion is
problematic?

/\ (I) Numerical errors

- s
_ =

transform s
Y, J -
— - >
> (o)

blurred, but still distinguishable
also with errors!
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How can one easily understand why the inversion is
problematic?

Inversion: e.g. “regularization method” at fixed width

/\ (I) Numerical errors

- s
C N

) N

—— -\ — >

o
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Many successtul
applications

See reports:

“The Lorentz Integral Transform (LIT) method and its

applications toperturbation induced reactions”
J. Phys G: Nucl. Part. Phys. 34 (2007) R459-R528

“Modern ab initio approaches and applications in few-

nucleon physicswith A = 4”
Progress in Particle and Nuclear Physics 68 (2013) 158-214
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Some results with LIT:
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Benchmark TEST on the Triton:

is the Dipole Photoabsorption Cross Section

L e e L —
J.Golak et al. Nucl. Phys. A707 (2002) 365

'

—— LIT inversion bounds
- Faddeev
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Ex. N.1:
Inclusive electron scattering
cross section on “He
(longitudinal channel)
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Inclusive electron scattering cross section
in the longitudinal channel

Role of complete

4-body dynamics in the 0p I ]
final scattering PE ey R
state 10;__,' - ‘He

60 90 120 150 180

5
0
g o ]'2—| I ! !
: '~ 10F S —
dotted: - g-_ i q=400 MeV/c
Plane Wave = oL —= ]
Impulse = 7
Approximation ;4 N3 L
A T B B T 1 0 Shrsmarne
6_—'"""'_'a"'“"_-__;""""""""'—_
2+3-body force ok b ] q=500 MeV/c]
3 :
2 . Wl
Data: Saclay + Bates 1980's OI_L.‘";;:;;.'“: 1 i
50 100 150 200 250 300 350
® [MeV]
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http://xxx.lanl.gov/abs/0903.0605
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Inclusive electron scattering cross section
in the longitudinal channel

Role of complete

4-body dynamics in the 0p I ]
final scattering PE ey R
state 10;__,' - ‘He

60 90 120 150 180

5
0
g o ]'2—| I ! !
: '~ 10F S —
dotted: - g-_ i q=400 MeV/c
Plane Wave = oL —= ]
Impulse = 7
Approximation ;4 N3 L
A T B B T 1 0 Shrsmarne
6_—'"""'_'a"'“"_-__;""""""""'—_
2+3-body force ok b ] q=500 MeV/c]
3 :
2 . Wl
Data: Saclay + Bates 1980's OI_L.‘";;:;;.'“: 1 i
50 100 150 200 250 300 350
® [MeV]
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http://xxx.lanl.gov/abs/0903.0605

Ex. N.2:

Monopole excitation of ‘He
by (e,e') or (o,0')
® Very narrow 0 resonance in the continuum
m [ransition form factor Ftr(q) has been

measured by (e,e') [(o,a') has been proposed]

G. Orlandini — Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB



A

1Elastic peak
I
|
|
|
|+ onances :
| Quasi eilastic peak

A
qZIZT g°/2m
A
g



Ex. N.2:

Monopole excitation of ‘He
by (e,e') or (o,0')

Very narrow 0" resonance in the continuum

Transition form factor Ftr(q) has been

measured by (e,e') [(o,a') has been proposed]

Using IT method (I'IT) coupled with EIHH b.s.
method one can calculate Ftr(q) (separating

resonance and background contributions!)
We find large potential dependence

We find hints for a “breathing mode”
interpretation
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S.Bacca N.Barnea,W.Leidemann and G.O.et al. PRL 110 042503 (2013)

Very large potential dependence !!!

<+ Koebschall et al. ["83]

®x  Walcher [*70]

&£ Frosch et al. ["68]
—— Hivama et al. 2004

Both phenomenological and EFT potentials
EIHH + LIT methods With and without 3-body forces
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ENERGIES

AV18
E_EXp. UIX

_._l_I_I_I_IJ_LLIJ.*u_I

9 -89-88-87-86-85-84-83-82-81 -8 -79-18-1.7-16-15-14=13-12-T1 -1

15 th. 2" th. N3LO
(p-°H) (n-*He) N2LO
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Ex. N.3:

E1 cross sections & Dipole
Polarizabilities

m existence of Giant Resonances of “*He, °He,°Li, "Li,
%0, *Ca ... (recent and planned measurements of

20 and “*°Ca)

= coupling the LIT method with bound state
methods (EIHH and CC) one gets the results in

the following slides:
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-Body total photodisintegration
with LIT method

et al.
4 ; AV4 — Phys.Lett. B603
* Ahrens et al (2004) 159-164
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-Body total photodisintegration

AV4
T
kI Tl-111
Theory:
LIT+ EIHH

£

AVY

T
BATI=I1L @ @

4

ad

L

i_i'| |=d

i
i —

£
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Larger A?
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Exper. LIT of the photoabsorption cross section of °0
G, =10 [MeV]

6

Ahrens et al. 1972

10 [Me V|

shaded area: LIT of data
(conserving the total area)

|
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L[fm™MeV~ 107

S

!II|]II[[IIII]IIII|]]

w

o

[E—

T

L L
[ 1 LIT of data
= CCSD

!Illlllllllllllllllll

LIT +CC(SD) methods

N3LO EFT 2-body
potential only
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Other Kernels?
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The Stieltjes Kernel:

K(w,o0)=(0o+0c) "
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lllustration of the problem:

Same as Laplace!

>

()

Stieltjes transform

-
277

Numerical errors

- o
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However, it may be useful
for another purpose:
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In fact:

Lim. ® (0) = J S(w) " do = o

e.qg. electric polarizability, magnetic susceptibility,
compressibility etc... depending on ®
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Recent results
on o with® =D

(El. Dipole Polarizability)
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Electric Dipole Polarizability as limit of
the Stieltjes transform for ¢ ---> 0

-20.0 -10.0 0.0 10.0 20.0

T [Z‘ﬁ. [ 1'_'-1'.-"']

M.Miorelli et al. nucl.th-arXiv 1604-05381
b.s. expansion: Coupled Cluster
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Of{a) OB Afe) Vid) Oe) ®(g) & (f) ™ (exp)

0.8

0.7 t

0.6 | - Interesting correlation
0.5 | _ with the proton charge radius

0.4

0.3 .
A

0.2 L% - - - -
21 222 23 24 25 26 27 28 29 3.0

I'ch [fm]

G. Hagen et al.
Nature Phys. 2016
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A Transform with a kernel suitable for
Monte Carlo methods:
[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]

combination of Sumudu kernels:

K(w,0, )= No(e *¥—e voo)
o o

vin=b/a v-u= In[b]-In[a] b>a >0 integer
b-a
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A Transform with a kernel suitable for
Monte Carlo methods:
[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]

combination of Sumudu kernels:

K(w,0, )= No(e *¥—e voo)
o o

vin=b/a v-u= In[b]-In[a] b>a >0 integer
b-a

Ko, o, ) >

_>w
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A Transform with a kernel suitable for
Monte Carlo methods:
[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]

combination of Sumudu kernels:

K(w,0, )= No(e *¥—e voo)
o o

_ k(k ~T( ko) ®
=NX (-D“(")e

Finite sum of Laplace Kernels!
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A Transform with a kernel suitable for
Monte Carlo methods:
[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]

combination of Sumudu kernels:

K(w,0, )= No(e *¥—e voo)
o o

_ k(k ~T( ko) ®
=NX (-D“(")e

©( ,k,0) =log (b/a) [P a/(lb—a)+k]/o

width ---> large P ---> Imaginary time
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Bosonic system: Liquid Helium

The transform is calculated with
AFDMC and then inverted with MEM
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[A.Roggero, F. Pederiva, G.O. Phys. Rev. B 88, 115138 (2013)]
Bosonic system: Liquid Helium

Data at T=1.38 K
Theory at T=0

<
o0

T~

Inversion of transform with
new kernel

©
o)

©
B

Inversion of transform\with
Laplace kernel

o]
—_
o
e
g
—
S
o
e’
(9]

o
b
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Data at T=1.38 K
Theory at T=0

X,
—
=g
—
7p!
=
8
o
—
7o)
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Summary:

® Ab initio few-body methods help building
the bridge between QCD and nuclear
phenomena

" They are moving from the traditional
A=2,3 regime to larger systems

" [T methods are alternative approaches to
overcome the many-body scattering
problem
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THANK YOU!

G. Orlandini — Frontiers in Nuclear Physics, Aug.31, 2016 Kavli @ UCSB






	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	8-LIT inclusive 1
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	38-7body
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

