Dark linteractions and

the Lattice

Enrico Rinaldi

Direct Detection

Prodiuction át Colliders

Indirect Detection

Direct Detection

Productión á Colliders

Indirect Detection

Direct Detection

Production át Colliders

Indirect Detection

Direct Detection

Production at Colliders

Indirect Detection

SM

What is Dark Matter?

Lattice Strong Dynamics

\checkmark LLNL P. Vranas (M. Buchoff, C. Schroeder, E. Berkowitz [Jülich])
, ANL X.-Y. Jin, J. Osborn
\checkmark BNL M. Lin, E.R.
\checkmark RBRC E. Neil, S. Syritsyn, E.R.
\checkmark Colorado A. Hasenfratz, (E. Neil)
\checkmark Edinburgh O. Witzel
\checkmark Bern D. Schaich
\checkmark UC Davis J. Kiskis
\checkmark Yale T. Appelquist, G. Fleming, A. Gasbarro
\checkmark Boston R. Brower, C. Rebbi, E. Weinberg
\checkmark Oregon G. Kribs

Lattice Strong Dynamics

\checkmark LLNL P. Vranas (M. Buchoff, C. Schroeder, E. Berkowitz [Jülich])
\checkmark Al Strongly-interacting systems for BSM physics \checkmark BI
\checkmark RI
$\checkmark \mathrm{Cl}_{1}$
\checkmark Ec
\checkmark Br
\checkmark UI
\checkmark Ye
\checkmark Boston K. Brower, C. KeddI, E. vveinderg
\checkmark Oregon G. Kribs

Lattice Strong Dynamics

\checkmark LLNL P. Vranas (M. Buchoff, C. Schroeder, E. Berkowitz [Jülich])
\checkmark Al Strongly-interacting systems for BSM physics \checkmark BI
$\checkmark R 1$
$\checkmark C 1$
\checkmark Ec
\checkmark Br
\checkmark UI
\checkmark Ye
\checkmark Boston K. Brower, C. KeddI, E. vveinderg
\checkmark Oregon G. Kribs

Lattice Strong Dynamics

\checkmark LLNL P. Vranas (M. Buchoff, C. Schroeder, E. Berkowitz [Jülich])
\checkmark Al Strongly-interacting systems for BSM physics \checkmark BI
$\boldsymbol{r} \boldsymbol{R} \star \quad$ Strongly-coupled Composite Dark Matter
$\checkmark \mathrm{Cl}_{1}$

* Electroweak Symmetry Breaking from strong dynamics \checkmark Ec
\checkmark Br
\checkmark UI
$\checkmark Y$
\checkmark Boston K. Brower, C. KeddI, E. vveinderg
\checkmark Oregon G. Kribs

Lattice Strong Dynamics

\checkmark LLNL P. Vranas (M. Buchoff, C. Schroeder, E. Berkowitz [Jülich])
\checkmark Al Strongly-interacting systems for BSM physics \checkmark BI
rRIt Strongly-coupled Composite Dark Matter
$\checkmark \mathrm{Cl}_{1}$

* Electroweak Symmetry Breaking from strong dynamics \checkmark Ec
\checkmark Br
\checkmark UI
Axion cosmology (Buchoff, Berkowitz, ER PRD 92 (2015) 034507)
$\checkmark Y=$
\checkmark Boston K. Brower, C. KeddI, E. vveinderg
\checkmark Oregon G. Kribs

Lattice Strong Dynamics

\checkmark LLNL P. Vranas (M. Buchoff, C. Schroeder, E. Berkowitz [Jülich])
rAl Strongly-interacting systems for BSM physics \checkmark BI

マRI $\star \quad$ Strongly-coupled Composite Dark Matter $\checkmark \mathrm{Cl}_{1}$

太 Electroweak Symmetry Breaking from strong dynamics \checkmark Ec
\checkmark Bi
\checkmark U
Axion cosmology (Buchoff, Berkowitz, ER PRD 92 (2015) 034507)
\checkmark Ye Gauge-gravity duality (MCSMC - Berkowitz, ER et al. PRD (2016))
\checkmark Boston K . Brower, L. ReddI, E. vveinderg
\checkmark Oregon G. Kribs

Lattice Strong Dynamics

\checkmark LLNL P. Vranas (M. Buchoff, C. Schroeder, E. Berkowitz [Jülich])
\checkmark Al Strongly-interacting systems for BSM physics \checkmark BI
rRIt Strongly-coupled Composite Dark Matter
$\checkmark \mathrm{Cl}_{1}$
太 Electroweak Symmetry Breaking from strong dynamics \checkmark Ec
\checkmark Bi
\checkmark U
Axion cosmology (Buchoff, Berkowitz, ER PRD 92 (2015) 034507)
$\checkmark \mathbf{Y e ́}^{\boldsymbol{c}} \quad$ Gauge-gravity duality (MCSMC - Berkowitz, ER et al. PRD (2016))
Holographic cosmology (LatticeHC - Southamp/Edinb/LLNL)
\checkmark Boston K . Brower, C. ReddI, E. vveinderg
\checkmark Oregon G. Kribs

nature

NATURE｜LETTER

日本浯票約

Calculation of the axion mass based on high－ temperature lattice quantum chromodynamics

S．Borsanyi，Z．Fodor，J．Guenther，K．－H．Kampert，S．D．Katz，T．Kawanai，T．G．Kovacs，S．W． Mages，A．Pasztor，F．Pittler，J．Redondo，A．Ringwald \＆K．K．Szabo

Affiliations I Contributions｜Gorresponding author
Neture 539，69－71（03 November 2016）doi：10．1038／nature20115
Received 26 June 2016 ｜Accepted 12 September 2016 ｜Published orline 02 November 2016

```
싼 PDF © Citation Firir Reprints Q Righte \＆permissions（
```

Unlike the electroweak sector of the standard model of particle physics，quantum chromodynamics（QCD）is surprisingly symmetric under time reversal．As there is no obvious reason for QCD being so symmetric，this phenomenon poses a theoretical problem，often referred to as the strong CP problem．The most attractive solution for this ${ }^{1}$ requires the

Editor＇s summary
العربئ
Ca culations that need to connider the theory of quantum ehroncedynation，which desarizes hyw the strong interation holds quarks together，are daunting because of the nonlinearity of the strong force．．．

Associated links
News I Kews
Partide plysiss：Axions exposed by Lorbate
chromodynamics

（9）About ths Attention Score

wivid sueved bNisetik
matter
 foc．－

Scinaxx ErsterStestarief für Dunkle Meterie－Teikhen

－ 18 rems zutes
110 rews xutes
2 mps
16 twoctur
zlacgen isen
Anaghion Nateis．

Garsel um Durkle Matprie
 Exshurgewinim jom

Calcu ation of the axion mass based on high－te mnerature lattice quantum

Axion Dark Matter

- Axions were originally proposed to deal with the Strong-CP problem
- They also form a plausible DM candidate
- The axion energy density requires nonperturbative QCD input
- Being sought in ADMX (LLNL, UW) \& CAST-IAXO (CERN) with large discovery potential in the next few years

- Requiring $\Omega_{a} \leq \Omega_{\text {cDm }}$ yields a lower bound on the axion mass today

Axion Dark Matter

- Axions were originally proposed to deal with the Strong-CP problem
- They also form a plausible DM candidate
- The axion energy density requires nonperturbative QCD input
 on the axion mass today

Constraints from lattice simulations

$$
m_{a}^{2} f_{a}^{2}=\left.\frac{\partial^{2} F}{\partial \theta^{2}}\right|_{\theta=0}
$$

Non-perturbative calculation of QCD topology at finite temperature

- Pure gauge SU(3) topological susceptibility \Leftrightarrow compatible with model predictions, but large non-perturbative effects
[Kitano\&Yamada, 1506.00370][Borsanyi et al., 1508.06917][Frison et al.,1606.07175]

[Berkowitz, Buchoff, ER., 1505.07455]
- is QCD topological susceptibility at high-T well described by models? \Rightarrow light fermions importantly affect the vacuum
[Trunin et al., 1510.02265][Petreczky et al., 1606.03145][Borsanyi et al., 1606.07494]

[Bonati et al., 1512.06746]

Constraints from lattice simulations

$$
m_{a}^{2} f_{a}^{2}=\left.\frac{\partial^{2} F}{\partial \theta^{2}}\right|_{\theta=0}
$$

Non-perturbative calculation of QCD topology at finite temperature

- Pure gauge SU(3) topological susceptibility \Leftrightarrow compatible with model predictions, but large non-perturbative effects
[Kitano\&Yamada, 1506.00370][Borsanyi et al., 1508.06917][Frison et al.,1606.07175]

[Berkowitz, Buchoff, ER., 1505.07455]
- is QCD topological susceptibility at high-T well described by models? \Rightarrow light fermions importantly affect the vacuum
[Trunin et al., 1510.02265][Petreczky et al., 1606.03145][Borsanyi et al., 1606.07494]

Great effort to control all systematic lattice effects in order to impact experiments.
This direction has started only 1 year ago!

[Bonati et al., 1512.06746]

Axion mass lower bound

$$
m_{a}^{2} f_{a}^{2}=\left.\frac{\partial^{2} F}{\partial \theta^{2}}\right|_{\theta=0}
$$

Axion mass lower bound

$$
m_{a}^{2} f_{a}^{2}=\left.\frac{\partial^{2} F}{\partial \theta^{2}}\right|_{\theta=0}
$$

Axion mass lower bound

$$
m_{a}^{2} f_{a}^{2}=\left.\frac{\partial^{2} F}{\partial \theta^{2}}\right|_{\theta=0}
$$

Axion mass lower bound

$$
m_{a}^{2} f_{a}^{2}=\left.\frac{\partial^{2} F}{\partial \theta^{2}}\right|_{\theta=0}
$$

Axion mass lower bound

$$
m_{a}^{2} f_{a}^{2}=\left.\frac{\partial^{2} F}{\partial \theta^{2}}\right|_{\theta=0}
$$

A very familiar picture

The Standard Model of particles

A very familiar picture

The Standard Model of particles

Mesons, Baryons and Glueballs

Composite Dark Matter

Composite Dark Matter

- Dark Matter is a composite object

Composite Dark Matter

- Dark Matter is a composite object

Composite Dark Matter

- Dark Matter is a composite object
- Interesting and complicated internal structure
* Properties dictated by strong dynamics
- Self-interactions are natural

Composite Dark Matter

- Dark Matter is a composite object
- Interesting and complicated internal structure
- Properties dictated by strong dynamics
+ Self-interactions are natural

Composite Dark Matter

- Dark Matter is a composite object
- Interesting and complicated internal structure
* Properties dictated by strong dynamics
- Self-interactions are natural
- Composite object is neutral
- Constituents may interact with Standard Model particles

Composite Dark Matter

- Dark Matter is a composite object
- Interesting and complicated internal structure
* Properties dictated by strong dynamics
- Self-interactions are natural
- Composite object is neutral

Chance to observe them
in experiments and give the correct relic abundance

- Constituents may interact with Standard Model particles

Composite Dark Matter

- Dark Matter is a composite object
- Interesting and complicated internal structure
+ Properties dictated by strong dynamics
Similar to QCD
- Self-interactions are natural
+ Composite object is neutral

Chance to observe them
in experiments and give the correct relic abundance

- Constituents may interact with Standard Model particles

Natural features of Composite Dark Matter

Natural features of Composite Dark Matter

Natural features of Composite Dark Matter

> Neutrality follows naturally from confinement into singlet objects wrt. SM charges

Natural features of Composite Dark Matter

Natural features of Composite Dark Matter

Importance of lattice field theory simulations

\uparrow lattice simulations are needed to solve the strong dynamics

- naturally suited for models where dark fermion masses are comparable to the confinement scale
\checkmark controllable systematic errors and room for improvement
- Naive dimensional analysis and EFT approaches can miss important non-perturbative contributions
\star NDA is not precise enough when confronting experimental results and might not work for certain situations: there are uncontrolled theoretical errors

Models for Composite Dark Matter

\star Pion-like (dark quark-antiquark)
\uparrow pNGB DM [Hietanen et al., 1308.4130]

- Quirky DM [Kribs et al.,0909.2034]
- Ectocolor DM [Buckley\&Neii, 1209.6054]
- SIMP [Hochberg et al., 1411.3727]

七 Minimal SU(2) [Lewis, 1610. 10068]

Models for Composite Dark Matter

\star Pion-like (dark quark-antiquark)

- pNGB DM [Hietanen et al., 1308.4130]
- Quirky DM [Kribs et al.,0909.2034]
- Ectocolor DM [Buckley\&Neil, 1209.6054]
- SIMP [Hochberg et al., 1411.3727]
- Minimal SU(2) [Lewis, 1610. 10068]
\star Baryon-like (multiple quarks)
- "Technibaryons" [LSD, 1301.1693]
- Stealth DM [LSD, 1503.04203-1503.04205]
- One-family WTC [LatKM, 1510.07373]
- Sextet CH [LatHC, 1601.03302]

Models for Composite Dark Matter

\star Pion-like (dark quark-antiquark)

- pNGB DM [Hietanen et al., 1308.4130]
- Quirky DM [Kribs et al.,0909.2034]
- Ectocolor DM [Buckley\&Neil,1209.6054]
- SIMP [Hochberg et al., 1411.3727]

↔ Minimal SU(2) [Lewis, 1610.10068]

* Baryon-like (multiple quarks)
- "Technibaryons" [LSD,1301.1693]
- Stealth DM [LSD, 1503.04203-1503.04205]
- One-family WTC [LatKMI, 1510.07373]
- Sextet CH [LatHC, 1601.03302]
\star Glueball-like (only gluons)
\downarrow SUNonia [Boddy et al., 1402.3629] [Soni, 1602.00714]

Models for Composite Dark Matter

\star Pion-like (dark quark-antiquark)

- pNGB DM [Hietanen et al., 1308.4130]
- Quirky DM [Kribs et al.,0909.2034]
- Ectocolor DM [Buckley\&Neil,1209.6054]
\uparrow SIMP [Hochberg et al., 1411.3727]
↔ Minimal SU(2) [Lewis, 1610.10068]
* Glueball-like (only gluons)
\uparrow SUNonia [Boddy et al., 1402.3629] [Soni, 1602.00714]
* Dark Nuclei [Detmold et al.,1406.2276-1406.4116]
\star Baryon-like (multiple quarks)
- "Technibaryons" [LSD, 1301.1693]
- Stealth DM [LSD, 1503.04203-1503.04205]
- One-family WTC [LatKMI, 1510.07373]
- Sextet CH [LatHC, 1601.03302]

Models for Composite Dark Matter

\star Pion-like (dark quark-antiquark)

- pNGB DM [Hietanen et al., 1308.4130]
- Quirky DM [Kribs et al.,0909.2034]
- Ectocolor DM [Buckley\&Neil,1209.6054]
- SIMP [Hochberg et al., 1411.3727]
- Minimal SU(2) [Lewis, 1610.10068]
\star Glueball-like (only gluons)
\downarrow SUNonia [Boddy et al., 1402.3629] [Soni, 1602.00714]
* Dark Nuclei [Detmold et al.,1406.2276-1406.4116]

太 Baryon-like (multiple quarks)
† "Technibaryons" [LSD, 1301.1693]

- Stealth DM [LSD, 1503.04203-1503.04205]
- One-family WTC [LatKMI, 1510.07373]
- Sextet CH [LatHC, 1601.03302]

The darkness of Composite Dark Matter

$\Rightarrow 126 \mathrm{GeV} / \mathrm{c}^{2}$

0	\square
0	

Higgs
boson

The darkness of Composite Dark Matter

$\Rightarrow 126 \mathrm{GeV} / \mathrm{c}^{2}$

0	\square
0	\square

Higgs boson

The darkness of Composite Dark Matter

[^0]
Lattice results for Composite Dark Matter

Template Models	Spectrum	Higgs	Mag. Dip.	Charge r.	Polariz.
$\mathrm{SU}(2) \mathrm{N}_{\mathrm{f}}=1$					
$\mathrm{SU}(2) \mathrm{N}_{\mathrm{f}}=2$					\cdots
SU(3) $\mathrm{N}_{\mathrm{f}}=2,6$				人	
$\mathrm{SU}(3) \mathrm{N}_{\mathrm{f}}=8$	1	3			
$\mathrm{SU}(3) \mathrm{N}_{\mathrm{f}=2}(\mathrm{~S})$					
$\mathrm{SU}(4) \mathrm{N}_{\mathrm{f}}=4$					\cdots
$\mathrm{SO}(4) \mathrm{Nf}_{\mathrm{f}}=2(\mathrm{~V})$					
$S U(N) N_{f}=0$					

Lattice results for Composite Dark Matter

Template Models	Spectrum	Higgs	Mag. Dip.	Charge r.	Polariz.
$\mathrm{SU}(2) \mathrm{Nf}_{\mathrm{f}=1}$					
$S U(2) N_{\mathrm{f}}=2$	N	,		,	,
SU(3) $\mathrm{N}_{\mathrm{f}}=2,6$,		\%	7	
$\mathrm{SU}(3) \mathrm{N}_{\mathrm{f}}=8$		3			
SU(3) $\mathrm{N}_{\mathrm{f}}=2(\mathrm{~S})$					
$\mathrm{SU}(4) \mathrm{Nf}_{\mathrm{f}}=4$		3			3
$\mathrm{SO}(4) \mathrm{Nf}_{\mathrm{f}}=2(\mathrm{~V})$					
$S U(N) N_{f}=0$					

Lattice results for Composite Dark Matter

Template Models	Spectrum	Higgs	Mag. Dip. Charge r	Polariz.
$S U(2) N_{f}=1$				
$S U(2) N_{f}=2$	1	$\xrightarrow{1}$	3	$\xrightarrow{\wedge}$
SU(3) $\mathrm{N}_{\mathrm{f}}=2,6$	1		\cdots	
$S U(3) N_{f}=8$	1			
$\operatorname{SU}(3) N_{f}=2(S)$	\wedge			
$S U(4) N_{f}=4$	1			3
$\mathrm{SO}(4) \mathrm{N}_{\mathrm{f}}=2(\mathrm{~V})$				
$S U(N) N_{f}=0$				

Uncorrelated

Paired

PRL Editors' Suggestion: Polarizability
[LSD collab., Phys. Rev. Lett. 115 (2015) 171803]

Electric field

PRD Editors' Suggestion: Higgs exchange
[LSD collab., Phys. Rev. D92 (2015) 075030]

Uncorrelated

Paired

Detecting Stealth Dark Matter Directly through Electromagnetic

PRL Polarizability.
Overview of attention for article published in Pinysical Review Letters, October 2015

"Stealth Dark Matter" Model

\downarrow New strongly-coupled SU(4) gauge sector "like" QCD with a plethora of composite states in the spectrum: all mass scales are technically natural for hadrons
\uparrow New Dark fermions: have dark color and also have electroweak charges (W/Z, γ)

- Dark fermions have electroweak breaking masses (Higgs) and electroweak preserving masses (not-Higgs)
\checkmark A global symmetry naturally stabilizes the dark lightest baryonic composite states (e.g. dark neutron)

"Stealth Dark Matter" model

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for dark fermions that do not break EW
 symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry arising when $\boldsymbol{u} \leftrightarrow \boldsymbol{d}$

"Stealth Dark Matter" model

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for dark fermions that do not break EW symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry arising when $\boldsymbol{u} \leftrightarrow \boldsymbol{d}$

"Stealth Dark Matter" model

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for dak fermions that do not break EW symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry arising when $\boldsymbol{u} \leftrightarrow \boldsymbol{d}$

$$
\begin{aligned}
& \mathcal{L} \supset y_{14}^{u}{ }_{i j} F_{1}^{i} H^{j} F_{4}^{d}+y_{14}^{d} F_{1} \cdot H^{\dagger} F_{4}^{u} \\
&-y_{23}^{d} \epsilon_{i j} F_{2}^{i} H^{j} F_{3}^{d}-y_{23}^{u} F_{2} \cdot H^{\dagger} F_{3}^{u}+\text { h.c. }
\end{aligned}
$$

"Stealth Dark Matter" model

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for da fermions that do not break EW symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry

$$
\begin{aligned}
& \mathcal{L} \supset y_{14}^{u} i_{i j} F_{1}^{i} H^{j} F_{4}^{d}+y_{14}^{d} F_{1} \cdot H^{\dagger} F_{4}^{u} \\
& -y_{23}^{d} \epsilon_{i j} F_{2}^{i} H^{j} F_{3}^{d}-y_{23}^{u} F_{2} \cdot H^{\dagger} F_{3}^{u}+\text { h.c. }
\end{aligned}
$$ arising when $\boldsymbol{u} \leftrightarrow \boldsymbol{d}$

"Stealth Dark Matter" model

- The field content of the model consists in 8 Weyl fermions
- Dark fermions interact with the SM Higgs and obtain current/chiral masses
- Introduce vector-like masses for da fermions that do not break EW symmetry
- Diagonalizing in the mass eigenbasis gives 4 Dirac fermions
- Assume custodial SU(2) symmetry arising when $\boldsymbol{u} \leftrightarrow \boldsymbol{d}$

$$
\mathcal{L} \supset M_{12} i{ }_{i j}^{i} F_{2}^{j}-M_{34}^{u} F_{3}^{u} F_{4}^{d}+M_{34}^{d} F_{3}^{d} F_{4}^{u}+h . c .
$$

$$
y_{14}^{u}=y_{14}^{d} \quad y_{23}^{u}=y_{23}^{d} \quad M_{34}^{u}=M_{34}^{d}
$$

Lattice Stealth Dark Matter

- Non-perturbative lattice calculations of the spectrum confirm that lightest baryon has spin zero
- The ratio of pseudoscalar (PS) to vector (V) is used as probe for different dark fermion masses
- The meson to baryon mass ratio allows us to translate LEPII bounds on charged meson to LEPII bounds on composite bosonic dark matter

- Study systematic effects due to lattice discretization and finite volume due to the relative unfamiliar nature of the system

Lattice Stealth Dark Matter

- Non-perturbative lattice calculations of the spectrum confirm that lightest baryon has spin zero
- The ratio of pseudoscalar (PS) to vector (V) is used as probe for different dark fermion masses
- The meson to baryon mass ratio allows us to translate LEPII bounds on charged meson to LEPII bounds on composite bosonic dark matter

- Study systematic effects due to lattice discretization and finite volume due to the relative unfamiliar nature of the system

Lattice Stealth Dark Matter

- Non-perturbative lattice calculations of the spectrum confirm that lightest baryon has spin zero
- The ratio of pseudoscalar (PS) to vector (V) is used as probe for different dark fermion masses
- The meson to baryon mass ratio allows us to translate LEPII bounds on charged meson to LEPII bounds on composite bosonic dark matter

- Study systematic effects due to lattice discretization and finite volume due to the relative unfamiliar nature of the system

Stealth Dark Matter at colliders

Plot by G. Kribs

Stealth Dark Matter at colliders

\downarrow Signatures are not dominated by missing energy: DM is not the lightest particle! The interactions are suppressed (form factors)

Stealth Dark Matter at colliders

Plot by G. Kribs

- Signatures are not dominated by missing energy: DM is not the lightest particle! The interactions are suppressed (form factors)
- Dark mesons production and decay give interesting signatures: the model can be constrained by collider limits!

Computing Higgs exchange

\uparrow Need to non-perturbatively evaluate the dark σ-term

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{f}\langle B| \bar{f} f|B\rangle \sum_{q}\langle a| \bar{q} q|a\rangle
$$

Computing Higgs exchange

\uparrow Need to non-perturbatively evaluate the dark σ-term

1. effective Higgs coupling with dark fermions and quark Yukawa coupling
2. dark baryon scalar form factor: need lattice input for generic DM models!
3. nucleon scalar form factor: ChPT and lattice input

Computing Higgs exchange

\downarrow Need to non-perturbatively evaluate the dark σ-term
\uparrow Effective Higgs coupling nontrivial with mixed chiral and vector-like masses

1. effective Higgs coupling with dark fermions and quark Yukawa coupling
2. dark baryon scalar form factor: need lattice input for generic DM models!
3. nucleon scalar form factor: ChPT and lattice input
$\left.y_{f} B|\bar{f} f| B\right\rangle=\left.\frac{m_{B}}{v} \sum_{f} \frac{v}{m_{f}} \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v} f_{f}^{(B)}$

$$
m_{f}(h)=m+\frac{y_{f} h}{\sqrt{2}}
$$

$$
\left.\alpha \equiv \frac{v}{m_{f}} \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v}=\frac{y v}{\sqrt{2} m+y v}
$$

Computing Higgs exchange

\downarrow Need to non-perturbatively evaluate the dark σ-term
\downarrow Effective Higgs coupling nontrivial with mixed chiral and vector-like masses
\downarrow Model-dependent answer for the cross-section

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{f}\langle B| \bar{f} f|B\rangle \sum_{q}\langle a| \bar{q} q|a\rangle
$$

1. effective Higgs coupling with dark fermions and quark Yukawa coupling
2. dark baryon scalar form factor: need lattice input for generic DM models!
3. nucleon scalar form factor: ChPT and lattice input

$$
\begin{aligned}
& m_{f}(h)=m+\frac{y_{f} h}{\sqrt{2}} \\
& Q=\left.\frac{v}{m_{f}} \frac{\partial m_{f}(h)}{\partial h}\right|_{h=v}=\frac{y v}{\sqrt{2} m+y v}
\end{aligned}
$$

Computing Higgs exchange

\uparrow Need to non-perturbatively evaluate the dark σ-term
\uparrow Effective Higgs coupling nontrivial with mixed chiral and vector-like masses
\uparrow Model-dependent answer for the cross-section
\uparrow Lattice input is necessary: compute mass and form factor (using Feynman-Hellmann)

$$
\mathcal{M}_{a}=\frac{y_{f} y_{q}}{2 m_{h}^{2}} \sum_{f}(B|\bar{f} f| B) \sum_{q}\langle a| \bar{q} q|a\rangle
$$

1. effective Higgs coupling with dark fermions and quark Yukawa coupling
2. dark baryon scalar form factor: need lattice input for generic DM models!
3. nucleon scalar form factor: ChPT and lattice input

Bounds from Higgs exchange

-Lattice results for the cross-section are compared to experimental bounds
\uparrow Coupling space in specific models can be vastly constrained

SU(4) $\mathrm{N}_{\mathrm{f}}=4$ Stealth DM
[LSD, 1402.6656-1503.04203]

-Some candidates can be excluded as *dominant sources of dark matter
-There is lattice evidence for universality of dark scalar form factors: includes $\mathrm{N}_{\mathrm{c}}=2,3,4,5,7$ [DeGrand et al., 1501.05665]

Bounds from Higgs exchange

-Lattice results for the cross-section are compared to experimental bounds
-Coupling space in specific models can be vastly constrained

- Some candidates can be excluded as *dominant sources of dark matter
-There is lattice evidence for universality of dark scalar form factors: includes $\mathrm{N}_{\mathrm{c}}=2,3,4,5,7$ [DeGrand et al., 1501.05665]

Bounds from Higgs exchange

-Lattice results for the cross-section are compared to experimental bounds
-Coupling space in specific models can be vastly constrained

- Some candidates can be excluded as *dominant sources of dark matter
-There is lattice evidence for universality of dark scalar form factors: includes $\mathrm{N}_{\mathrm{c}}=2,3,4,5,7$ [DeGrand et al., 1501.05665]

Photon interactions

$$
\left\langle\chi\left(p^{\prime}\right)\right| j_{\text {EM }}^{\mu}|\chi(p)\rangle=F\left(q^{2}\right) q^{\mu}
$$

Expansion at low momentum through effective operators

\boldsymbol{d} dimension $5 \boldsymbol{*}$ magnetic dipole
\rightarrow dimension $6 \Leftrightarrow$ charge radius

- dimension $7 \Leftrightarrow$ polarizability

$$
\begin{aligned}
& \frac{\left(\bar{\chi} \sigma^{\mu \nu} \chi\right) F_{\mu \nu}}{\Lambda_{\text {dark }}} \\
& \frac{(\bar{\chi} \chi) v_{\mu} \partial_{\nu} F^{\mu \nu}}{\Lambda_{\text {dark }}^{2}} \\
& \frac{(\bar{\chi} \chi) F_{\mu \nu} F^{\mu \nu}}{\Lambda_{\text {dark }}^{3}}
\end{aligned}
$$

Photon interactions

$$
\left\langle\chi\left(p^{\prime}\right)\right| j_{\mathrm{EM}}^{\mu}|\chi(p)\rangle=F\left(q^{2}\right) q^{\mu}
$$

> Expansion at low momentum through effective operators
\rightarrow dimension $6 \Leftrightarrow$ charge radius
\rightarrow dimension $5 \Leftrightarrow$ magne spin 0

$\frac{(\bar{\chi} \chi) v_{\mu} \partial_{\nu} F^{\mu \nu}}{\Lambda_{\text {dark }}^{2}}$

- dimension $7 \Leftrightarrow$ polarizability

$$
\frac{(\bar{\chi} \chi) F_{\mu \nu} F^{\mu \nu}}{\Lambda_{\mathrm{dark}}^{3}}
$$

Photon interactions

$$
\left\langle\chi\left(p^{\prime}\right)\right| j_{\mathrm{EM}}^{\mu}|\chi(p)\rangle=F\left(q^{2}\right) q^{\mu}
$$

> Expansion at low momentum through effective operators
\rightarrow dimension $5 \Leftrightarrow$ magne spin

- dimension $7 \Leftrightarrow$ polarizability

$$
\frac{(\bar{\chi} \chi) F_{\mu \nu} F^{\mu \nu}}{\Lambda_{\mathrm{dark}}^{3}}
$$

Bounds from EM moments

Mesonic and Baryonic EM form factors directly from lattice simulations

$S U(3) N_{f}=2,6$ dark fermionic baryon [LSD, 1301.1693]

* baryon similar to QCD neutron
t dark quarks with $\mathrm{Q}=\mathrm{Y}$
\star calculate connected 3pt
t scale set by DM mass
t magnetic moment dominates
* results independent of N_{f}

Bounds from EM moments

Mesonic and Baryonic EM form factors directly from lattice simulations

$S U(3) N_{f}=2,6$ dark fermionic baryon [LSD, 1301.1693]

* baryon similar to QCD neutron
\star dark quarks with $\mathrm{Q}=\mathrm{Y}$
\star calculate connected 3pt
\star scale set by DM mass
\star magnetic moment dominates
\star results independent of N_{f}

Bounds from EM moments

Mesonic and Baryonic EM form factors directly from lattice simulations

$S U(3) N_{f}=2,6$ dark fermionic baryon [LSD, 1301.1693]

* baryon similar to QCD neutron
t dark quarks with $\mathrm{Q}=\mathrm{Y}$
* calculate connected 3pt
t scale set by DM mass
* magnetic moment dominates
\star results independent of N_{f}
$M_{B}>\sim 10 \mathrm{TeV}$
pushed to $\sim 100 \mathrm{TeV}$ with new LUX

Bounds from EM moments

Mesonic and Baryonic EM form factors directly from lattice simulations

SU(2) $\mathrm{N}_{\mathrm{f}}=2 \mathrm{pNGB}$ DM
[Hietanen et al., 1308.4130]

\star DM is "mesonic" pNGB
\star calculate connected 3pt
\star use VMD with lattice ρ mass
\star scale set by $\mathrm{F}_{\mathrm{r}}=256 \mathrm{GeV}$
\star depends on isospin breaking dB
\star also couples to Higgs ($\mathrm{d}_{1}+\mathrm{d}_{2}$)

Bounds from EM moments

Mesonic and Baryonic EM form factors directly from lattice simulations

SU(2) $\mathrm{N}_{\mathrm{f}}=2 \mathrm{pNGB}$ DM
[Hietanen et al., 1308.4130]
$d_{B}=-1, d_{1}+d_{2}=1$

* DM is "mesonic" pNGB
\star calculate connected 3pt
* use VMD with lattice ρ mass
* scale set by $F_{\pi}=256 \mathrm{GeV}$
\star depends on isospin breaking dB
\star also couples to Higgs $\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)$

Bounds from EM moments

Mesonic and Baryonic EM form factors directly from lattice simulations

SU(2) $\mathrm{N}_{\mathrm{f}}=2 \mathrm{pNGB}$ DM
[Hietanen et al., 1308.4130]
$d_{B}=-1, d_{1}+d_{2}=1$

* DM is "mesonic" pNGB
\star calculate connected 3pt
* use VMD with lattice ρ mass
\star scale set by $F_{\pi}=256 \mathrm{GeV}$
* depends on isospin breaking dB
\star also couples to Higgs $\left(d_{1}+d_{2}\right)$
$\mathrm{M}_{\mathrm{B}} \sim<13 \mathrm{GeV}$ depends on dB_{B}

Computing polarizability

$$
\frac{c_{F} e^{2}}{m_{\chi}^{3}} \chi^{\star} \chi F^{\mu \alpha} F_{\alpha}^{\nu} v_{\mu} v_{\nu}
$$

Nucleus
Nucleus

Computing polarizability

$$
\frac{c_{F} e^{2}}{m_{\chi}^{3}} \chi^{\star} \chi F^{\mu \alpha} F_{\alpha}^{\nu} v_{\mu} v_{\nu}
$$

Nucleus
Nucleus

Computing polarizability

$$
\frac{c_{F} e^{2}}{m_{\chi}^{3}} \chi^{\star} \chi F^{\mu \alpha} F_{\alpha}^{\nu} v_{\mu} v_{\nu}
$$

Lattice: Polarizability of Dark Matter

- Background field method: response of neutral baryon to external electric field \mathcal{E}
- Measure the shift of the baryon mass as a function of \mathcal{E}

$$
\begin{gathered}
E_{B, 4 c}=m_{B}+2 C_{F}|\mathcal{E}|^{2}+\mathcal{O}\left(\mathcal{E}^{4}\right) \\
E_{B, 3 c}=m_{B}+\left(2 C_{F}-\frac{\mu_{B}^{2}}{8 m_{B}^{3}}\right)|\mathcal{E}|^{2}+\mathcal{O}\left(\mathcal{E}^{4}\right) \\
Z_{r}=\frac{\mathcal{E} \mu_{B}(\mathcal{E})}{2 m_{B}^{2}}
\end{gathered}
$$

$32^{3} x 64$ quenched lattices (large volume)
one lattice spacing and two masses (matched) 40 sources on 200 independent configurations multi-exponential fits with 3 states for the baryon

Lattice: Polarizability of Dark Matter

- Background field method: response of neutral baryon to external electric field \mathcal{E}
- Measure the shift of the baryon mass as a function of \mathcal{E}

$$
E_{B, 4 c}=m_{B}+2 C_{F}|\mathcal{E}|^{2}+\mathcal{O}\left(\mathcal{E}^{4}\right)
$$

$$
Z_{r}=\frac{\mathcal{E} \mu_{B}(\mathcal{E})}{2 m_{B}^{2}}
$$

$32^{3} x 64$ quenched lattices (large volume)
one lattice spacing and two masses (matched) 40 sources on 200 independent configurations multi-exponential fits with 3 states for the baryon

$$
E_{B, 3 c}=m_{B}+\left(2 C_{F}-\frac{\mu_{B}^{2}}{8 m_{B}^{3}}\right)|\mathcal{E}|^{2}+\mathcal{O}\left(\mathcal{E}^{4}\right)
$$

Lattice: Polarizability of Dark Matter

- Background field method: response of neutral baryon to external electric field \mathcal{E}
- Measure the shift of the baryon mass as a function of \mathcal{E}

Lattice: Polarizability of Dark Matter

- Background field method: response of neutral baryon to external electric field \mathcal{E}
- Measure the shift of the baryon mass as a function of \mathcal{E}

Nuclear: Rayleigh scattering

- several attempts to estimate this in the past, with increasing level of complexity in a perturbative setup
- multiple scales are probed by the momentum transfer in the virtual photons loop
- mixing operators and threshold corrections appear at leading order and interference is possible
- nuclear matrix element has non-trivial excited state structure that requires nonperturbative treatment

Nuclear: Rayleigh scattering

- several attempts to estimate this in the past, with increasing level of complexity in a perturbative setup
- multiple scales are probed by the momentum transfer in the virtual photons loop
- mixing operators and threshold corrections appear at leading order and interference is possible
- nuclear matrix element has non-trivial excited state structure that requires nonperturbative treatment

similar structure arising in double beta decay matrix elements: two-nucleon effects

Interesting nuclear physics problem!

Nuclear: Rayleigh scattering

- it is hard to extract the momentum dependence of this nuclear form factor
- similarities with the double-beta decay nuclear matrix element could suggest large uncertainties \sim orders of magnitude
- to asses the impact of uncertainties on the total cross section we start from naive dimensional analysis
- we allow a "magnitude" factor M_{F}^{A} to

$$
f_{F}^{A}=\langle A| F^{\mu \nu} F_{\mu \nu}|A\rangle
$$ change from 0.3 to 3

$$
f_{F}^{A} \sim 3 Z^{2} \alpha \frac{M_{F}^{A}}{R}
$$

$$
\left.\left.\sigma \simeq \frac{\mu_{n \chi}^{2}}{\pi A^{2}}\langle | \frac{c_{F} e^{2}}{m_{\chi}^{3}} f_{F}^{A}\right|^{2}\right\rangle
$$

Nuclear: Rayleigh scattering

- it is hard to extract the momentum dependence of this nuclear form factor
- similarities with the double-beta decay nuclear matrix element could suggest large uncertainties \sim orders of magnitude

- to asses the impact of uncertainties on the total cross section we start from naive dimensional analysis
- we allow a "magnitude" factor M_{F}^{A} to

$$
f_{F}^{A}=\langle A| F^{\mu \nu} F_{\mu \nu}|A\rangle
$$ change from 0.3 to 3

$$
f_{F}^{A} \sim 3 Z^{2} \alpha \frac{M_{F}^{A}}{R}
$$

$$
\left.\left.\sigma \simeq \frac{\mu_{n \chi}^{2}}{\pi A^{2}}\langle | \frac{c_{F} e^{2}}{m_{\chi}^{3}} f_{F}^{A}\right|^{2}\right\rangle
$$

Nuclear: Rayleigh scattering

- it is hard to extract the momentum dependence of this nuclear form factor
- similarities with the double-beta decay nuclear matrix element could suggest large uncertainties \sim orders of magnitude

- to asses the impact of uncertainties on the

$$
f_{F}^{A}=\langle A| F^{\mu \nu} F_{\mu \nu}|A\rangle
$$ total cross section we start from naive dimensional analysis

- we allow a "magnitude" factor M_{F}^{A} to

$$
f_{F}^{A} \sim 3 Z^{2} \alpha \frac{M_{F}^{A}}{R}
$$ change from 0.3 to 3

$$
\left.\left.\sigma \simeq \frac{\mu_{n \chi}^{2}}{\pi A^{2}}\langle | \frac{c_{F} e^{2}}{m_{\chi}^{3}} f_{F}^{A}\right|^{2}\right\rangle
$$

Lowest bound from EM polarizability

Electric polarizability from lattice simulations with background fields

$S U(4) N_{f}=4$ Stealth DM [LSD, 1503.04205]

$$
\sigma_{\text {nucleon }}(Z, A)=\frac{Z^{4}}{A^{2}} \frac{144 \pi \alpha^{4} \mu_{n \chi}^{2}\left(M_{F}^{A}\right)^{2}}{m_{\chi}^{6} R^{2}}\left[c_{F}\right]^{2} \quad M_{\chi}(\mathrm{GeV})
$$

[with LUX, PRL (2013)]

Lowest bound from EM polarizability

Concluding remarks

\star QCD ideas and lattice QCD techniques can be borrowed when exploring the DM landscape (BSM)
\star Composite dark matter is a viable interesting possibility with rich phenomenology
*Lattice methods can help in calculating direct detection cross sections, production rates at colliders, and selfinteraction cross sections of phenomenological relevance.
\star Dark matter constituents can carry electroweak charges and still the stable composites are currently undetectable. Stealth cross section.

Open questions and future projects

- Structure formation in galaxies $\boldsymbol{\rightarrow}$ influenced by DM scattering cross-section: hadron-hadron interactions are hard to model, but can be studied directly with lattice methods. Discussion: Can we use large-N methods?
- Colliders could produce the (lightest) dark mesons, but need to know their form factors: lattice methods can be used
- New dark sector \rightarrow deconfinement phase transition: if first order, gravitational wave signals could be soon observed
[Schwaller, 1504.07263]

Discussion: nuclear matter at large N_{c}

- Interesting to change the number of colors in a non-abelian $\mathrm{SU}(\mathrm{N})$ theory: AdS/CFT, Anthropic, Dark Matter
- Lattice simulations give us a way to test large- N_{c} predictions: already true for glueball masses, meson masses, baryon masses, baryon structure
- Situation much more uncertain for scattering properties: what is the potential between two largeN_{c} baryons or glueballs?

[lshii et al. 2007]

Discussion: nuclear matter at large N_{c}

- Interesting to change the number of colors in a non-abelian SU(N) theory: AdS/CFT, Anthropic, Dark Matter
- Lattice simulations give us a way to test large- N_{c} predictions: already true for glueball masses, meson masses, baryon masses, baryon structure
- Situation much more uncertain for scattering properties: what is the potential between two largeN_{c} baryons or glueballs?

[lshii et al. 2007]
extra

Rotor spectrum at large N

$$
\begin{aligned}
& *: M\left(N_{c}, J\right)=N_{c} m_{0}+\frac{J(J+1)}{N_{c}} B+\mathcal{O}\left(1 / N_{c}^{2}\right) \\
& \diamond: M\left(N_{c}, J\right)=N_{c} m_{0}^{(0)}+C+\frac{J(J+1)}{N_{c}} B+\mathcal{O}\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

Slide courtesy of

SU(3) polarizability vs. the PDG

- Our polarizability differs from the PDG convention:

$$
\alpha_{E}=C_{F} / \pi
$$

- Have to compare at very different masses! Expected scaling is

$$
\begin{aligned}
& \alpha_{E} \sim \frac{A}{m_{\pi}}+B \\
& m_{B} \sim C+D m_{\pi}^{2}
\end{aligned}
$$

- Qualitative agreement with expected trend! (Can't fit well - mass range too large.)

Slide courtesy of E. Neil

[^0]: [Wikipedia]

