Nucleon structure from Lattice QCD

Sergey N. Syritsyn Jefferson Lab, Stony Brook University, RIKEN / BNL Research Center

RIKEN BNL Research Center

Frontiers in Nuclear Physics Kavli Institute for Theoretical Physics, Santa Barbara, *Sep 1, 2016*

Outline

Nucleon structure on a lattice Methods and challenges

Nucleon form factors

Nucleon form factors, radii, magnetic moment at nearly-physical point Strangeness in nucleon form factors Axial vector current

Neutron-antineutron oscillation matrix elements

Quark momentum and spin

Quark contributions to the nucleon momentum Nucleon spin puzzle and quark spin and angular momentum

Hadron Correlators in Lattice QCD

Excited states contribute to correlators and may (and do) bias results

Nucleon Structure from Lattice QCD

Computational Challenges in Lattice QCD

Taking limit $V \to \infty$, $a \to 0$, $m_{\pi} \to m_{\pi}^{\text{phys}}$ is challenging • MC noise is determined by the lightest degree of freedom

 $|(\not D + m_q)_{x,y}^{-1}| \sim e^{-\frac{1}{2}m_\pi |x-y|}$ for N quarks, Noise $\sim \exp\left[-\frac{Nm_\pi}{2}t\right]$ for nucleons, $\frac{\text{Signal}}{\text{Noise}} \sim \exp\left[-(m_N - \frac{3}{2}m_\pi)t\right]$ [Lepage (1989)]

finite volume effects

require box size L

$$\gtrsim (4\dots 6) \cdot \frac{1}{m_{\pi}}$$

b as $m_{\pi} \rightarrow physical$, excited states become denser

Excited state corrections to the ground state: $\sim \mathcal{O}(|Z_{10}|^2 e^{-\Delta E_{10}T})$

Addressing excited states requires

- Multi-state fits
- Variational methods

Nucleon Electromagnetic Form Factors

$$\langle P+q | \bar{q}\gamma^{\mu}q | P \rangle = \bar{U}_{P+q} \Big[F_1(Q^2) \gamma^{\mu} + F_2(Q^2) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N} \Big] U_P$$

 \bigcirc JLab@12GeV : explore form factors at Q² ≥ 10 GeV²

- (F_1/F_2) scaling at Q² -> ∞
- (G_E/G_M) dependence up to Q²=18 GeV²
- *u-, d-*flavor contributions to form factors
- Proton radius puzzle: 7σ difference
 - JLab pRAD experiment
 - MUSE@PSI : e^{\pm}/μ^{\pm} -scattering off the proton

[Research Mgmt. Plan for SBS(JLab Hall A)]

Nucleon Structure from Lattice QCD

Nucleon (p-n) Form Factors vs Pheno

Sergey N. Syritsyn

Proton Form Factors vs Pheno (conn. only)

Dirac Radius vs. m_{π} and **Proton Size Puzzle**

 $G_{Ep}(Q^2) \approx 1 - \frac{1}{6}Q^2 \langle r_E^2 \rangle^p + O(Q^4)$

Issues with e-p experiments?
 underestimated combined error

• use Q^2 fits up to 1 GeV²

Dirac Radius vs. m_{π} and **Proton Size Puzzle**

Sergey N. Syritsyn

Nucleon Structure from Lattice QCD

Isovector Magnetic Moment vs. m_{π}

$$\langle P+q | \bar{q}\gamma^{\mu}q | P \rangle = \bar{U}_{P+q} \Big[F_1(Q^2) \gamma^{\mu} + F_2(Q^2) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N} \Big] U_P$$

*m*_π=149 MeV *N*_f=2+1 clover-imp.Wilson [J.R.Green, SNS et al (LHPc)]

F₂(0) value is extrapolated from $Q_{min} \approx 0.05 \text{ GeV}^2$ $F_2(Q^2) = \frac{\kappa}{(1+Q^2/M^2)^2}$ Larger L_s , smaller Q_{min}^2 are desirable

OR use twisted boundary conditions

Sergey N. Syritsyn

Nucleon Structure from Lattice QCD

Expansion in Boundary Conditions

Strangeness in EM form factors

Strange quark contribution to EM: the next after light quarks

$$G_{E,M}^{p,\gamma} = \frac{2}{3}G_{E,M}^{u} - \frac{1}{3}(G_{E,M}^{d} + G_{E,M}^{s})$$

$$G_{E,M}^{n,\gamma} = \frac{2}{3}G_{E,M}^{d} - \frac{1}{3}(G_{E,M}^{u} + G_{E,M}^{s})$$

$$G_{E,M}^{p,Z} = (1 - \frac{8}{3}s_{W}^{2})G_{E,M}^{u} + (-1 + \frac{4}{3}s_{W}^{2})(G_{E,M}^{d} + G_{E,M}^{s})$$

 $G_{E,M}^{s}$ are measured e.g. in *e*–*p* elastic scattering asymmetry (SAMPLE, HAPPEX, G0, A4) from

Disconnected Contractions for Nucleon FF's

Calculation with mπ=319 MeV (USQCD/JLab lattices)

$$|G_{E,M}^{s,u/d(disc)}| \lesssim 1\% |G_{E,M}|$$

Strange contributions to EM radii and magnetic moment of the proton

 $(r_E^2)^2 = -0.00535(89)(56)(113)(20) \text{ fm}^2$ $(r_M^2)^2 = -0.0147(61)(28)(34)(5) \text{ fm}^2$ $\mu^s = -0.0184(45)(12)(32)(1) \ \mu_N^{\text{lat}}$

[J. Green, S. Meinel, et al (LHPc) PRD92:031501(2014)]

Strange Form Factors : PVES vs. Lattice

Sergey N. Syritsyn

Magnetic moment from strange quarks

Data for strange & light quarks: use PQChPT-inspired linear extrapolation in $(m_{loop})^2 \sim (m_{light} + m_{disconn})$ [J. Green, S. Meinel, et al (LHPc) PRD92:031501(2014)]

Nucleon Axial Charge and Form Factors

$$\frac{\langle P+q|\bar{q}\gamma^{\mu}\gamma^{5}q|P\rangle}{\langle P+q|\bar{q}\gamma^{\mu}\gamma^{5}q|P\rangle} = \bar{U}_{P+q} \Big[\frac{G_{A}(Q^{2})}{\gamma^{\mu}\gamma^{5}} + \frac{G_{P}(Q^{2})}{2M_{N}} \frac{\gamma^{5}q^{\mu}}{2M_{N}} \Big] U_{P}$$

Axial form factor $G_A(Q^2)$

- Interaction with neutrinos: MiniBooNE
- Induced pseudoscalar form factor $G_P(Q^2)$
 - Charged pion electroproduction
 - Muon capture (MuCAP): $g_P \sim G_P(Q^2 = 0.88 \ m_{\mu}^2)$

Strange axial form factor G_A^s(Q²) : studied at MiniBooNE

Sergey N. Syritsyn

Axial Charge

Neutron β -decay, forward limit of axial form factor $G_A(Q^2) \longrightarrow G_A(0) = g_A$

Lattice data summary [S.Collins, LATTICE 2016] $\langle p|\bar{u}\gamma^{\mu}\gamma^{5}|n\rangle = g_{A}\bar{u}_{p}\gamma^{\mu}\gamma^{5}u_{n}$

Axial Charge

Neutron β -decay, forward limit of axial form factor $G_A(Q^2) \longrightarrow G_A(0) = g_A$

 $\langle p|\bar{u}\gamma^{\mu}\gamma^{5}|n\rangle = g_{A}\bar{u}_{p}\gamma^{\mu}\gamma^{5}u_{n}$

Nucleon Axial Form Factor G_A(Q²)

$$\langle P+q | \bar{q}\gamma^{\mu}\gamma^{5}q | P \rangle = \bar{U}_{P+q} \Big[\frac{G_A(Q^2)}{G_A(Q^2)} \gamma^{\mu}\gamma^{5} + G_P(Q^2) \frac{\gamma^{5}q^{\mu}}{2M_N} \Big] U_P$$

[C.Alexandrou (ETMC), 1303.5979]

Nucleon Axial Radius

- *v*-scattering off p,n,nuclei
- π^{\pm} electroproduction
- *v*-scattering off ¹⁶O, ¹²C

$$G_A(Q^2) \simeq \frac{g_A}{(1+Q^2/M_A^2)^2}$$

- 5% discrepancy between averages of *ν*-scattering and π[±] production [V.Bernard et al, JPhysG28:R1-35(2001)]
- Reliance on dipole fits leads to underestimated errors [B.Bhattacharya, R.Hill, G.Paz, PRD]

Nucleon Pseudoscalar Form Factor G_P(Q²)

$$\langle P+q | \bar{q}\gamma^{\mu}\gamma^{5}q | P \rangle = \bar{U}_{P+q} \left[G_{A}(Q^{2})\gamma^{\mu}\gamma^{5} + \frac{G_{P}(Q^{2})}{2M_{N}} \frac{\gamma^{5}q^{\mu}}{2M_{N}} \right] U_{P}$$

$$G_{P}(Q^{2}) \sim \frac{1}{m_{\pi}^{2} + Q^{2}}$$
• G_P at the physical point :
large excited state contributions
• Is G_P dominated by the pion pole ?

$$\int_{0}^{0} \frac{1}{0} \int_{0}^{0} \frac{1}{0} \int_{0$$

Sergey N. Syritsyn

0.1

0.2

0.3

 m_{π} [GeV]

0.4

Nucleon Structure from Lattice QCD

μ**-capture**

 $\begin{array}{ll} \mbox{Muon-capture coupling} & g_P^* = \frac{m_\mu}{m_N} g_P(0.88 m_\mu^2) \\ \mbox{N_f=2 calculation with Wilson-Clover fermions} \\ & \end{tabular} \\ & \end{tabular} \\ & \end{tabular} \end{array} \\ \begin{array}{l} \mbox{G.Bali et al (RQCD), PRD91:054501]} \end{array} \end{array}$

pion-pole extrapolation to extract g_P^* $\frac{m_\mu}{m_N}g_P(Q^2) = \frac{b_1}{Q^2 + m_\pi^2} + b_2 + b_3Q^2$

Fit & exptrapolation to phys.point

$$g_P^*(m_\pi^2) = \frac{a_1}{a_2 + m_\pi^2} \longrightarrow 8.40(40)$$

Agrees with MuCap result [PRL 110:012504]

$$g_P^* = 8.06(55)$$

Strangeness in the Axial form factor

Light-strange Mixing in Axial Structure

 $\begin{pmatrix} A_{\mu}^{R,u-d} \\ A_{\mu}^{R,u+d} \\ A_{\mu}^{R,s} \\ A_{\mu}^{R,s} \end{pmatrix} = \begin{pmatrix} Z_{A}^{3,3} & 0 & 0 \\ 0 & Z_{A}^{u+d,u+d} & Z_{A}^{u+d,s} \\ 0 & Z_{A}^{s,u+d} & Z_{A}^{s,s} \end{pmatrix} \begin{pmatrix} A_{\mu}^{u-d} \\ A_{\mu}^{\mu} \\ A_{\mu}^{s} \end{pmatrix}$ $= \begin{pmatrix} 0.8623(1)(71) & 0 & 0 \\ 0 & 0.8662(26)(45) & 0.0067(8)(5) \\ 0 & 0.0029(10)(5) & 0.9126(11)(98) \end{pmatrix} \begin{pmatrix} A_{\mu}^{u-d} \\ A_{\mu}^{u+d} \\ A_{\mu}^{s} \\ A_{\mu}^{s} \end{pmatrix}$

[J. Green et al (LHPc) LATTICE 2016]

Light-strange Mixing in Axial Structure

Neutron-Antineutron Oscillations

Motivation for searches :

 Baryon number must be violated for baryogenesis (Sakharov's conditions)
 N->Nbar transition : ΔB=2
 Proton decay: ΔB=1
 Which one (or both?) realized in nature?

Nuclear matter stability Decay of nuclei through (nn)-annihilation

Probing BSM physics : Δ(B–L)=2
 Connections to lepton number violation ΔL=2 ?
 to neutrino mass mechanism?
 unification with Majorana neutrinos ?
 e.g. [R.Mohapatra, R.Marshak (1980)]

Searches for $n\to \bar{n}~$ in Nuclei

Nucleus lifetime:

T_d :	= R'	$ au_{nar{n}}^2$
$R \sim$	1023	<i>S</i> -1

Some nuclear model dependence: e.g. ~ 10-15% for ¹⁶O [E.Friedman, A.Gal (2008)]

Stability of nuclei :

Sensitivity is limited by atmospheric neutrinos

Nucleon Structure from Lattice QCD

Searches for $n\to \bar{n}\,$: Reactor Neutrons

Quasi-free neutrons ($\Delta Et \ll 1$) in vacuum:

$$P_{n \to \bar{n}}(t) \approx (\delta m t)^2 = (t/\tau_{n\bar{n}})^2$$
$$N_{\text{events}} = \text{eff} \cdot \Phi_n \cdot T \cdot \left(\frac{1}{\tau_{n\bar{n}}}\right)^2 \left(\frac{L}{v}\right)^2$$

ILL Grenoble high-flux reactor, 1990 [M.Baldo-Ceolin et al, 1994)]

Nucleon Structure from Lattice QCD

Searches for $n\to \bar{n}\,$: Proposed Improvements

[Phillips et al, arXiv:1410.1100]

- Free-neutron oscillation (similar to ILL): Maximize oscillation Probability ~ N_n * (t_{free})²
 - ✦ Neutrons from spallation sources:
 - e.g. European Spallation source: x12 neutron flux
 - Elliptic mirror for slow neutrons (reflect ~70% of $v_{\perp} \approx 40$ m/s neutrons)
 - Better mag.field shielding $(B < 1 \text{ nT}) \Rightarrow$ longer flight time

L = 300 m Expected to increase sensitivity x**10²-10³** ILL, $\tau_{n-n} \ge 10^9$ -10¹⁰ s

- Other proposed experiments:
 - stored ultra-cold neutrons (4-5m/s)
 - vertical cold neutron beams

Neutron \leftrightarrow **Antineutron Transitions and QCD**

Effective $\Delta B=2$ operator: (quark field)⁶

From Standard Model extensions:

interaction with a massive Majorana lepton,

unified theories, etc

[T.K.Kuo, S.T.Love, PRL45:93 (1980)] [R.N.Mohapatra, R.E.Marshak, PRL44:1316 (1980)]

what is the scale for new physics behind $n \leftrightarrow \overline{n}$?

- Current experimental lower bound on $\tau_{n-\overline{n}}$ requires $M_X \gtrsim 10^2$ TeV
- baryon asymmetry puts upper bound on $\tau_{n-\overline{n}}$ in models with $\Delta B=2$ mechanism (assuming SM-only CPv) e.g. [Babu et al, PRD87:115019(2013)]

Lattice Results & Comparison to Bag Model

$$N_{\uparrow}^{(+)}(t_2) \mathcal{O}^{6q}(0) N_{\downarrow}^{(-)}(-t_1) \rangle \sim e^{-M_n(t_2+t_1)} \langle n_{\uparrow} | \mathcal{O}^{6q} | \overline{n}_{\uparrow} \rangle$$

$$t_1, t_2, t_1+t_2 \to \infty$$

On a lattice : Calculations with physical chirally symmetric quarks [SNS, M.Buchoff, J.Wasem, C.Schroeder (LATTICE 2015)]

	$\mathcal{O}^{\overline{MS}(2 \text{ GeV})}$	Bag "A"	$\frac{LQCD}{Bag "A"}$	Bag "B"	$\frac{\text{LQCD}}{\text{Bag "B"}}$	Lattice Results,
$[(RRR)_{3}]$	0	0	_	0	—	
$[(RRR)_{1}]$	45.4(5.6)	8.190	5.5	6.660	6.8	
$[R_1(LL)_0]$	44.0(4.1)	7.230	6.1	6.090	7.2	EW-singlet
$[(RR)_{1}L_{0}]$	-66.6(7.7)	-9.540	7.0	-8.160	8.1) n-n tree-iev.
$[(RR)_2 L_1]^{(1)}$	-2.12(26)	1.260	-1.7	-0.666	3.2)
$[(RR)_2 L_1]^{(2)}$	0.531(64)	-0.314	-1.7	0.167	3.2	EW non-singlet
$[(RR)_2 L_1]^{(3)}$	-1.06(13)	0.630	-1.7	-0.330	3.2) n-n at rioop
	$[10^{-5}{ m GeV}^{-6}]$	$[10^{-5}{\rm GeV}^{-6}]$]	$[10^{-5}{\rm GeV}^{-6}]$]	

Comparison to MIT Bag model results [S.Rao, R.Shrock, PLB116:238 (1982)] $n-\overline{n}$ oscillation is x(5-10) more sensitive to BSM physics and (Hopefully) will motivate new $n-\overline{n}$ experiments

Sergey N. Syritsyn

Nucleon Structure from Lattice QCD

Constraints from Post-Sphaleron Baryogenesis

Baryogenesis below the T_{EW} in quark-lepton unified model [K. Babu, et al, PRD87:115019 (2013)]

Assuming SM-only CPv the prediction

 $\tau_{n-\bar{n}} \lesssim 5 \cdot 10^{10} \text{ s}$

relying on the Bag model $n-\overline{n}$ calculation for m.e.

$$\langle \bar{n} | \mathcal{O}_{RLR}^2 | n \rangle \Big|_{bag} = (-0.34...+0.17) \cdot 10^{-5} \text{ GeV}^{-6}$$

Lattice QCD calculation yields

$$\langle \bar{n} | \mathcal{O}_{RLR}^2 | n \rangle \Big|_{LQCD} \approx 0.78(9) \cdot 10^{-5} \text{ GeV}^{-6}$$

and improves the upper bound for osc.time

$$\tau_{n-\bar{n}} \lesssim 2 \cdot 10^{10} \text{ s}$$

Summary

- Calculations near the physical point produce encouraging results Vector form factors, radii, magnetic moment
- Lattice QCD gives access to quantities hard for experiments E.g. strangeness contributions to the nucleon form factors
- Coupling of nucleons to BSM effective operators neutron-antineutron transition, proton decay, tensor charge...

Proton Spin Puzzle

EMC experiment (1989): polarized Deep-Inelastic μ -p Scattering :

Spin of Quarks

$$S_q = \frac{1}{2} \sum_q \left(\Delta q + \Delta \bar{q} \right) \approx \frac{1}{2} \cdot 0.3$$

Quark spin = 33 % of the Proton Spin

Where is the rest ?

Quark Orbital Motion?
Gluon Angular Momentum ?

structure functions from polarized beam & target

Sergey N. Syritsyn

Nucleon Structure from Lattice QCD

Proton Spin Decomposition and Sum Rule

Proton Spin Decomposition and Sum Rules

Angular momentum

$$J^{i} = \frac{1}{2} \epsilon^{ijk} \int d^{3}x \left[x^{j} T^{0k} - x^{k} T^{0j} \right]$$

Belinfante–Rosenfeld energy-momentum tensor in QCD: $T^{q}_{\mu\nu} = \bar{q} \gamma_{\{\mu} \overset{\leftrightarrow}{D}_{\nu\}} q \qquad \qquad \text{Quarks}$ $T^{\text{glue}}_{\mu\nu} = G^{a}_{\mu\lambda} G^{a}_{\nu\lambda} - \frac{1}{4} \delta_{\mu\nu} (G_{\mu\nu})^{2} \qquad \text{Gluons}$

 $\langle N(p+q) | T^{q,glue}_{\mu\nu} | N(p) \rangle \rightarrow \Big\{ A_{20}, B_{20}, C_{20} \Big\} (Q^2)$

Nucleon form factors of the EM tensor

= Mellin Moments of GPDs

$$A_{20}(Q^2) = \int dx \, x \, H(x, 0, Q^2)$$
$$B_{20}(Q^2) = \int dx \, x \, E(x, 0, Q^2)$$

Quark & Gluon Angular Momentum

$$J_{q,glue} = \frac{1}{2} \left[A_{20}^{q,glue}(0) + B_{20}^{q,glue}(0) \right]$$
 [X.Ji, PRL 78:610 (1997)]

Quark spin

$$\langle N(p)|\bar{q}\gamma^{\mu}\gamma^{5}q|N(p)\rangle = (\Delta\Sigma_{q})\left[\bar{u}_{p}\gamma^{\mu}\gamma^{5}u_{p}\right]$$

Sergey N. Syritsyn

Light Quark Angular Momenta in the Proton

Light Quark Spin

(*) not including disconnected diagrams!

Quark Orbital Angular Momentum $L_q = J_q - S_q$

Quark OAM vs Quark Anomalous Magnetization

Light Cone Wave functions: Quark OAM is required for non-zero anomalous magnetization from quarks

 $|L^u + L^d| \ll |L^u|, |L^d| \implies |\kappa^u + \kappa^d| \ll |\kappa^u|, |\kappa^d|$ (same prediction for certain TMD PDFs) [S.J.Brodsky and S.D.Drell (1980); M.Burkardt and G.Schnell (2006); X.-D.Ji, J.-P.Ma, and F.Yuan (2003)]

[J.R.Green, SNS, et al (LHPc) PRD90:074507 (2014)]