Nucleon structure from Lattice QCD

Sergey N. Syritsyn Jefferson Lab, Stony Brook University, RIKEN / BNL Research Center

Frontiers in Nuclear Physics Kavli Institute for Theoretical Physics, Santa Barbara, Sep 1, 2016

Outline

- Nucleon structure on a lattice

Methods and challenges

- Nucleon form factors

Nucleon form factors, radii, magnetic moment at nearly-physical point Strangeness in nucleon form factors
Axial vector current

- Neutron-antineutron oscillation matrix elements
- Quark momentum and spin

Quark contributions to the nucleon momentum
Nucleon spin puzzle and quark spin and angular momentum

Hadron Correlators in Lattice QCD

Lattice Field Theory \Leftrightarrow Numerical evaluation of the Path Integral

$$
\begin{gathered}
(I D+m) \cdot q=0 \\
\text { quark motion in } \\
\text { gluon background }
\end{gathered}
$$

Each quark line $=(\not D+m)^{-1} \cdot \psi$

$$
\begin{aligned}
& \langle N(T) \mathcal{O}(\tau) N(0)\rangle=\sum_{n, m} Z_{m} e^{-E_{n}(T-\tau)}\langle n| \mathcal{O}|m\rangle e^{-E_{m} \tau} Z_{n}^{*} \\
& \underset{T \rightarrow \infty}{\longrightarrow} Z_{00} e^{-M_{N} T}[\left\langle P^{\prime}\right| \mathcal{O}|P\rangle+\mathcal{O}(\underbrace{e^{-\Delta E_{10} T}, e^{-\Delta E_{10} \tau}, e^{-\Delta E_{10}(T-\tau)}}_{\text {excited states }})]
\end{aligned}
$$

Excited states contribute to correlators and may (and do) bias results

Computational Challenges in Lattice QCD

Taking limit $V \rightarrow \infty, \quad a \rightarrow 0, \quad m_{\pi} \rightarrow m_{\pi}^{\text {phys }}$ is challenging

- MC noise is determined by the lightest degree of freedom

$$
\left|\left(I D+m_{q}\right)_{x, y}^{-1}\right| \sim e^{-\frac{1}{2} m_{\pi}|x-y|}
$$

for N quarks, \quad Noise $\sim \exp \left[-\frac{N m_{\pi}}{2} t\right]$
for nucleons, $\quad \frac{\text { Signal }}{\text { Noise }} \sim \exp \left[-\left(m_{N}-\frac{3}{2} m_{\pi}\right) t\right]$
[Lepage (1989)]

- finite volume effects

$$
\text { require box size } \quad L \gtrsim(4 \ldots 6) \cdot \frac{1}{m_{\pi}}
$$

as $m_{\pi} \rightarrow$ physical, excited states become denser
Excited state corrections to the ground state:

$$
\sim \mathcal{O}\left(\left|Z_{10}\right|^{2} e^{-\Delta E_{10} T}\right)
$$

Addressing excited states requires
(e) Multi-state fits
(e) Variational methods

Nucleon Electromagnetic Form Factors

$$
\langle P+q| \bar{q} \gamma^{\mu} q|P\rangle=\bar{U}_{P+q}\left[F_{1}\left(Q^{2}\right) \gamma^{\mu}+F_{2}\left(Q^{2}\right) \frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{N}}\right] U_{P}
$$

○ JLab@12GeV : explore form factors at $\mathrm{Q}^{2} \geqslant 10 \mathrm{GeV}^{2}$

- $\left(F_{1} / F_{2}\right)$ scaling at $\mathrm{Q}^{2}->\infty$
- $\left(G_{E} / G_{M}\right)$ dependence up to $Q^{2}=18 \mathrm{GeV}^{2}$
- u-, d-flavor contributions to form factorsProton radius puzzle: 7σ difference
- JLab pRAD experiment
- MUSE@PSI : $\mathrm{e}^{ \pm} / \mu^{ \pm}$-scattering off the proton

[Research Mgmt. Plan for SBS(JLab Hall A)]

Nucleon (p-n) Form Factors vs Pheno

$$
\langle P+q| \bar{q} \gamma^{\mu} q|P\rangle=\bar{U}_{P+q}\left[F_{1}\left(Q^{2}\right) \gamma^{\mu}+F_{2}\left(Q^{2}\right) \frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{N}}\right] U_{P}
$$

Lattice calculations with $\mathrm{m} \pi=149 \mathrm{MeV}$ [J.Green, SNS, et al 1209.1687; PLB734:290] vs phenomenology [W.M.Alberico et al, PRC79:065204(2009)]

Elastic scattering with electromagnetic probes $e^{ \pm}, \mu^{ \pm}$

Proton Form Factors vs Pheno (conn. only)

$$
\langle P+q| \bar{q} \gamma^{\mu} q|P\rangle=\bar{U}_{P+q}\left[F_{1}\left(Q^{2}\right) \gamma^{\mu}+F_{2}\left(Q^{2}\right) \frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{N}}\right] U_{P}
$$

Lattice calculations with $\mathrm{m} \pi=149 \mathrm{MeV}$ [J.Green, SNS, et al 1209.1687; PLB734:290] vs phenomenology
[W.M.Alberico et al, PRC79:065204(2009)]

Elastic scattering with electromagnetic probes $e^{ \pm}, \mu^{ \pm}$

No disconnected part! (negligible in this case)

Dirac Radius vs. m_{π} and Proton Size Puzzle

$F_{1}^{p-n}\left(Q^{2}\right)=F_{1}^{u-d}\left(Q^{2}\right) \approx 1-\frac{1}{6} Q^{2}\left\langle r_{1}^{2}\right\rangle^{u-d}+O\left(Q^{2}\right)$

ChPT predicts divergence $\sim \log m_{\pi}^{2}$

$$
G_{E p}\left(Q^{2}\right) \approx 1-\frac{1}{6} Q^{2}\left\langle r_{E}^{2}\right\rangle^{p}+O\left(Q^{4}\right)
$$

[MuSE white-paper, 1303.2160]
Issues with e-p experiments?

- underestimated combined error
- use Q^{2} fits up to $1 \mathrm{GeV}^{2}$

Dirac Radius vs. m_{π} and Proton Size Puzzle

$F_{1}^{p-n}\left(Q^{2}\right)=F_{1}^{u-d}\left(Q^{2}\right) \approx 1-\frac{1}{6} Q^{2}\left\langle r_{1}^{2}\right\rangle^{u-d}+O\left(Q^{2}\right)$

$$
G_{E p}\left(Q^{2}\right) \approx 1-\frac{1}{6} Q^{2}\left\langle r_{E}^{2}\right\rangle^{p}+O\left(Q^{4}\right)
$$

s with e-p experiments? iderestimated combined error se Q^{2} fits up to $1 \mathrm{GeV}^{2}$

Isovector Magnetic Moment vs. \mathbf{m}_{π}

$$
\begin{gathered}
\langle P+q| \bar{q} \gamma^{\mu} q|P\rangle=\bar{U}_{P+q}\left[F_{1}\left(Q^{2}\right) \gamma^{\mu}+F_{2}\left(Q^{2}\right) \frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{N}}\right] U_{P} \\
F_{2}^{u-d}\left(Q^{2}\right) \approx \kappa_{v}\left[1-\frac{1}{6} Q^{2}\left\langle r_{2}^{2}\right\rangle^{v}+\mathcal{O}\left(Q^{4}\right)\right]
\end{gathered}
$$

$m_{\pi}=149 \mathrm{MeV} N_{f}=2+1$ clover-imp.Wilson [J.R.Green, SNS et al (LHPC)]
$\mathrm{F}_{2}(0)$ value is extrapolated from $Q_{\text {min }} \approx 0.05 \mathrm{GeV}^{2} \quad F_{2}\left(Q^{2}\right)=\frac{\kappa}{\left(1+Q^{2} / M^{2}\right)^{2}}$
Larger L_{s}, smaller $Q_{\text {min }}^{2}$ are desirable
OR use twisted boundary conditions

Expansion in Boundary Conditions

Derivative of correlators w.r.t. momentum $=$ infinitesimal BC twisting
Rome method: (Phys. Lett. B 718, 589 (2012) [arXiv:1208.5914])

$\left.\frac{\partial}{\partial p_{k}} G(x, y ; \vec{p})\right|_{\vec{p}=0}=-i \sum_{z} G(x, z) \Gamma_{V}^{k} G(z, y)$
Physical point $m_{\pi}=134 \mathrm{MeV}$

[N.Hasan, J.Green, S.Meinel et at (LHPc), Lattice 2016]

Strangeness in EM form factors

Strange quark contribution to EM: the next after light quarks

$$
\begin{aligned}
G_{E, M}^{p, \gamma} & =\frac{2}{3} G_{E, M}^{u}-\frac{1}{3}\left(G_{E, M}^{d}+G_{E, M}^{s}\right) \\
G_{E, M}^{n, \gamma} & =\frac{2}{3} G_{E, M}^{d}-\frac{1}{3}\left(G_{E, M}^{u}+G_{E, M}^{s}\right) \\
G_{E, M}^{p, Z} & =\left(1-\frac{8}{3} s_{W}^{2}\right) G_{E, M}^{u}+\left(-1+\frac{4}{3} s_{W}^{2}\right)\left(G_{E, M}^{d}+G_{E, M}^{s}\right)
\end{aligned}
$$

$G_{E, M}^{s}$ are measured e.g. in e-p elastic scattering asymmetry (SAMPLE, HAPPEX, G0, A4) from

Disconnected Contractions for Nucleon FF's

Calculation with
$\mathrm{m} \pi=319 \mathrm{MeV}$
\[\begin{gathered} (USQCD/JLab lattices)
\left|G_{E, M}^{s, u / d(d i s c)}\right| \lesssim 1 \%\left|G_{E, M}\right| \end{gathered} \]

Strange contributions to EM radii and magnetic moment of the proton

$$
\begin{aligned}
&\left(r_{E}^{2}\right)^{2}=-0.00535(89)(56)(113)(20) \mathrm{fm}^{2} \\
&\left(r_{M}^{2}\right)^{2}=-0.0147(61)(28)(34)(5) \mathrm{fm}^{2} \\
& \mu^{s}=-0.0184(45)(12)(32)(1) \mu_{N}^{\text {lat }} \\
& \text { [J. Green, S. Meinel, et al (LHPc) } \\
& \text { PRD92:031501(2014)] }
\end{aligned}
$$

Strange Form Factors : PVES vs. Lattice

HAPPEX, G0, A4 data
[PRL108:102001(2012)]
vs.
Lattice QCD ($m_{\pi}=317 \mathrm{MeV}$)
[J. Green, S. Meinel, et al (LHPc)
PRD92:031501(2014)]
$\left(G_{E}^{s}+\eta G_{M}^{s}\right) \sim \begin{aligned} & \text { Strange part in the elastic e-p scattering } \\ & \text { asymmetry (forward angles) }\end{aligned}$
$\eta=\frac{\tau G_{M}^{p}}{\epsilon G_{E}^{p}} \simeq \frac{Q^{2}}{G e V^{2}}$

Magnetic moment from strange quarks

Data for strange \& light quarks: use PQChPT-inspired linear extrapolation in $\left(\mathrm{m}_{\text {loop }}\right)^{2} \sim\left(m_{\text {light }}+m_{\text {disconn }}\right)$
[J. Green, S. Meinel, et al (LHPc) PRD92:031501(2014)]

Nucleon Axial Charge and Form Factors

$$
\langle P+q| \bar{q} \gamma^{\mu} \gamma^{5} q|P\rangle=\bar{U}_{P+q}\left[G_{A}\left(Q^{2}\right) \gamma^{\mu} \gamma^{5}+G_{P}\left(Q^{2}\right) \frac{\gamma^{5} q^{\mu}}{2 M_{N}}\right] U_{P}
$$

- Axial form factor $G_{A}\left(Q^{2}\right)$
- Interaction with neutrinos: MiniBooNEInduced pseudoscalar form factor $G_{p}\left(Q^{2}\right)$
- Charged pion electroproduction
- Muon capture (MuCAP): $g_{p} \sim G_{p}\left(Q^{2}=0.88 m_{\mu}{ }^{2}\right)$Strange axial form factor $G_{A}^{s}\left(Q^{2}\right)$: studied at MiniBooNE

[Andreev et al (muCap), PRL110:012504(2012)]

Axial Charge

Neutron β-decay, forward limit of axial form factor

$$
\langle p| \bar{u} \gamma^{\mu} \gamma^{5}|n\rangle=g_{A} \bar{u}_{p} \gamma^{\mu} \gamma^{5} u_{n}
$$

Lattice data summary
[S.Collins, LATTICE 2016]

Axial Charge

Neutron β-decay, forward limit of axial form factor $G_{A}\left(Q^{2}\right) \longrightarrow G_{A}(0)=g_{A}$

$$
\langle p| \bar{u} \gamma^{\mu} \gamma^{5}|n\rangle=g_{A} \bar{u}_{p} \gamma^{\mu} \gamma^{5} u_{n}
$$

Nucleon Axial Form Factor $\mathrm{G}_{\mathrm{A}}\left(\mathrm{Q}^{2}\right)$

$$
\langle P+q| \bar{q} \gamma^{\mu} \gamma^{5} q|P\rangle=\bar{U}_{P+q}\left[G_{A}\left(Q^{2}\right) \gamma^{\mu} \gamma^{5}+G_{P}\left(Q^{2}\right) \frac{\gamma^{5} q^{\mu}}{2 M_{N}}\right] U_{P}
$$

[C.Alexandrou (ETMC), 1303.5979]

Nucleon Axial Radius

- v-scattering off p, n,nuclei
- $\pi^{ \pm}$electroproduction
- v-scattering off ${ }^{16} \mathrm{O},{ }^{12} \mathrm{C}$
$G_{A}\left(Q^{2}\right) \simeq \frac{g_{A}}{\left(1+Q^{2} / M_{A}^{2}\right)^{2}}$
- 5% discrepancy between averages of v-scattering and $\pi^{ \pm}$production [V.Bernard et al, JPhysG28:R1-35(2001)]
- Reliance on dipole fits leads to underestimated errors [B.Bhattacharya, R.Hill, G.Paz, PRD]

Nucleon Pseudoscalar Form Factor $\mathrm{Gp}_{\mathrm{p}}\left(\mathrm{Q}^{2}\right)$

- Is Gp dominated by the pion pole?

G_{p} Form Factor and μ-capture

Muon-capture coupling $g_{P}^{*}=\frac{m_{\mu}}{m_{N}} g_{P}\left(0.88 m_{\mu}^{2}\right)$
$\mathrm{N}_{\mathrm{f}}=2$ calculation with Wilson-Clover fermions
[G.Bali et al (RQCD), PRD91:054501]
pion-pole extrapolation to extract $g_{p}{ }^{*}$

$$
\frac{m_{\mu}}{m_{N}} g_{P}\left(Q^{2}\right)=\frac{b_{1}}{Q^{2}+m_{\pi}^{2}}+b_{2}+b_{3} Q^{2}
$$

Fit \& exptrapolation to phys.point
$g_{P}^{*}\left(m_{\pi}^{2}\right)=\frac{a_{1}}{a_{2}+m_{\pi}^{2}} \longrightarrow 8.40(40)$

Agrees with MuCap result [PRL 110:012504]

$$
g_{P}^{*}=8.06(55)
$$

Strangeness in the Axial form factor

Light-strange Mixing in Axial Structure

$$
\begin{aligned}
\left(\begin{array}{c}
A_{\mu}^{R, u-d} \\
A_{\mu}^{R, u+d} \\
A_{\mu}^{R, s}
\end{array}\right) & =\left(\begin{array}{ccc}
Z_{A}^{3,3} & 0 & 0 \\
0 & Z_{A}^{u+d, u+d} & Z_{A}^{u+d, s} \\
0 & Z_{A}^{s, u+d} & Z_{A}^{s, s}
\end{array}\right)\left(\begin{array}{c}
A_{\mu}^{u-d} \\
A_{\mu}^{u+d} \\
A_{\mu}^{s}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0.8623(1)(71) & 0 & 0 \\
0 & 0.8662(26)(45) & 0.0067(8)(5) \\
0 & 0.0029(10)(5) & 0.9126(11)(98)
\end{array}\right)\left(\begin{array}{c}
A_{\mu}^{u-d} \\
A_{\mu}^{u+d} \\
A_{\mu}^{s}
\end{array}\right)
\end{aligned}
$$

Light-strange Mixing in Axial Structure

Neutron-Antineutron Oscillations

Motivation for searches :

- Baryon number must be violated for baryogenesis (Sakharov's conditions)

N->Nbar transition : $\Delta B=2$
Proton decay: $\Delta B=1$
Which one (or both?) realized in nature?
- Nuclear matter stability

Decay of nuclei through (nn)-annihilation

- Probing BSM physics : $\Delta(B-L)=2$

Connections to lepton number violation $\Delta L=2$?
to neutrino mass mechanism?
unification with Majorana neutrinos ?
e.g. [R.Mohapatra, R.Marshak (1980)]

Searches for $n \rightarrow \bar{n}$ in Nuclei

Nucleus lifetime:

$$
\begin{array}{ll}
T_{d}=R \tau_{n \bar{n}}^{2} & \text { Some nuclear model dependence: } \\
R \sim 10^{23} \mathrm{~s}^{-1} & \text { e.g. } \sim 10-15 \% \text { for }{ }^{16} \mathrm{O} \\
{[\text { E.Friedman, A.Gal (2008)] }}
\end{array}
$$

Stability of nuclei :${ }^{56} \mathrm{Fe}$ [Soudan 2] $T_{d}\left({ }^{56} \mathrm{Fe}\right)>0.72 \cdot 10^{32} \mathrm{yr} \longrightarrow \tau_{n \bar{n}}>1.4 \cdot 10^{8} \mathrm{~s}$

- ${ }^{16} \mathrm{O}$ [Super-K]
$T_{d}\left({ }^{16} \mathrm{O}\right)>1.77 \cdot 10^{32} \mathrm{yr} \longrightarrow \tau_{n \bar{n}}>3.3 \cdot 10^{8} \mathrm{~s}$${ }^{2} H$ [SNO]
$T_{d}\left({ }^{2} H\right)>0.54 \cdot 10^{32} \mathrm{yr} \longrightarrow \tau_{n \bar{n}}>1.96 \cdot 10^{8} \mathrm{~s}$

Sensitivity is limited by atmospheric neutrinos

Searches for $n \rightarrow \bar{n}:$ Reactor Neutrons

Quasi-free neutrons ($\Delta E t \ll 1$) in vacuum:

$$
\begin{aligned}
& P_{n \rightarrow \bar{n}}(t) \approx(\delta m t)^{2}=\left(t / \tau_{n \bar{n}}\right)^{2} \\
& N_{\text {events }}=\mathrm{eff} \cdot \Phi_{n} \cdot T \cdot\left(\frac{1}{\tau_{n \bar{n}}}\right)^{2}\left(\frac{L}{v}\right)^{2}
\end{aligned}
$$

ILL Grenoble high-flux reactor, 1990 [M.Baldo-Ceolin et al, 1994)]

Searches for $n \rightarrow \bar{n}$: Proposed Improvements

[Phillips et al, arXiv:1410.1100]

(1) Free-neutron oscillation (similar to ILL):

Maximize oscillation Probability $\sim N_{n}{ }^{*}\left(t_{\text {tree }}\right)^{2}$

\downarrow Neutrons from spallation sources:
e.g. European Spallation source: x12 neutron flux

- Elliptic mirror for slow neutrons (reflect $\sim 70 \%$ of $v_{\perp} \leqslant 40 \mathrm{~m} / \mathrm{s}$ neutrons)
\checkmark Better mag.field shielding $(B<1 \mathrm{nT}) \Rightarrow$ longer flight time

Expected to increase sensitivity $\times \mathbf{1 0}^{2}-\mathbf{1 0}^{3} \mathrm{ILL}, \tau_{n-n} \geqslant 10^{9}-10^{10} \mathrm{~s}$

- Other proposed experiments:
\checkmark stored ultra-cold neutrons ($4-5 \mathrm{~m} / \mathrm{s}$)
\downarrow vertical cold neutron beams

Neutron \leftrightarrow Antineutron Transitions and QCD

Effective $\Delta B=2$ operator: (quark field) ${ }^{6}$
From Standard Model extensions:
interaction with a massive Majorana lepton, unified theories, etc
[T.K.Kuo, S.T.Love, PRL45:93 (1980)]
[R.N.Mohapatra, R.E.Marshak, PRL44:1316 (1980)]

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\sum_{i}\left[c_{i} \mathcal{O}_{i}^{6 q}+\text { h.c. }\right] \\
& \delta m=-\langle\bar{n}| \int d^{4} x \mathcal{L}_{\mathrm{eff}}|n\rangle=-\sum_{i} \frac{c_{i}}{M_{X}^{5}} \underbrace{\langle\bar{n}| \mathcal{O}_{i}^{6 \mathrm{q}}|n\rangle} \\
& \begin{array}{c}
\text { BSM scale suppression of } \\
\text { 6-quark Dim-9 operators } \\
\text { What is the scale for }
\end{array} \\
& \text { new physics behind } n \leftrightarrow \bar{n} ?
\end{aligned}
$$

BN-violating eff.interactions

- Current experimental lower bound on $\tau_{n-\bar{n}}$ requires $M_{x} \approx 10^{2} \mathrm{TeV}$
- baryon asymmetry puts upper bound on $\tau_{n-\bar{n}}$ in models with $\Delta B=2$ mechanism (assuming SM-only CPv) e.g. [Babu et al, PRD87:115019(2013)]

Lattice Results \& Comparison to Bag Model

$$
\left\langle N_{\uparrow}^{(+)}\left(t_{2}\right) \mathcal{O}^{6 \mathrm{q}}(0) N_{\downarrow}^{(-)}\left(-t_{1}\right)\right\rangle \underset{t_{1}, t_{2}, t_{1}+t_{2} \rightarrow \infty}{\sim} e^{-M_{n}\left(t_{2}+t_{1}\right)}\left\langle n_{\uparrow}\right| \mathcal{O}^{6 \mathrm{q}}\left|\bar{n}_{\uparrow}\right\rangle
$$

On a lattice: Calculations with physical chirally symmetric quarks [SNS, M.Buchoff, J.Wasem, C.Schroeder (LATTICE 2015)]

	$\mathcal{O}^{\overline{M S}(2 \mathrm{GeV})}$	Bag "A"	$\frac{\mathrm{LQCD}}{\text { Bag "A" }}$	Bag "B"	$\frac{\mathrm{LQCD}}{\mathrm{Bag}} \text { "B" }$	Lattice Results, In preparation
$\left[(R R R)_{3}\right]$	0	0	-	0	-	
$\left[(R R R)_{\mathbf{1}}\right]$	45.4(5.6)	8.190	5.5	6.660	6.8	
$\left[R_{\mathbf{1}}(L L)_{\mathbf{0}}\right]$	44.0(4.1)	7.230	6.1	6.090	7.2	EW-singlet n - n tree-lev.
$\left[(R R)_{\mathbf{1}} L_{\mathbf{0}}\right]$	-66.6(7.7)	-9.540	7.0	-8.160	8.1	
$\left[(R R)_{\mathbf{2}} L_{1}\right]^{(1)}$	-2.12(26)	1.260	-1.7	-0.666	3.2	$\} \begin{gathered} \text { EW non-singlet } \\ n-\bar{n} \text { at } 1 \text { loop } \end{gathered}$
$\left[(R R)_{\mathbf{2}} L_{\mathbf{1}}\right]^{(2)}$	0.531(64)	-0.314	-1.7	0.167	3.2	
$\left[(R R)_{\mathbf{2}} L_{\mathbf{1}}\right]^{(3)}$	-1.06(13)	0.630	-1.7	-0.330	3.2	
	$\left[10^{-5} \mathrm{GeV}^{-6}\right]$	$\left[10^{-5} \mathrm{GeV}^{-6}\right]$		$\left[10^{-5} \mathrm{GeV}^{-6}\right]$		

Comparison to MIT Bag model results [S.Rao, R.Shrock, PLB116:238 (1982)]
n - \bar{n} oscillation is $x(5-10)$ more sensitive to BSM physics and (Hopefully) will motivate new $n-\bar{n}$ experiments

Constraints from Post-Sphaleron Baryogenesis

Baryogenesis below the T_{EW} in quark-lepton unified model [K. Babu, et al, PRD87:115019 (2013)]

Assuming SM-only CPv the prediction

$$
\tau_{n-\bar{n}} \lesssim 5 \cdot 10^{10} \mathrm{~s}
$$

relying on the Bag model $n-\bar{n}$ calculation for m.e.

$$
\left.\langle\bar{n}| \mathcal{O}_{R L R}^{2}|n\rangle\right|_{\text {bag }}=(-0.34 \ldots+0.17) \cdot 10^{-5} \mathrm{GeV}^{-6}
$$

Lattice QCD calculation yields

$$
\left.\langle\bar{n}| \mathcal{O}_{R L R}^{2}|n\rangle\right|_{L Q C D} \approx 0.78(9) \cdot 10^{-5} \mathrm{GeV}^{-6}
$$

and improves the upper bound for osc.time

$$
\tau_{n-\bar{n}} \lesssim 2 \cdot 10^{10} \mathrm{~s}
$$

Summary

- Calculations near the physical point produce encouraging results

Vector form factors, radii, magnetic moment

- Lattice QCD gives access to quantities hard for experiments
E.g. strangeness contributions to the nucleon form factors
- Coupling of nucleons to BSM effective operators
neutron-antineutron transition, proton decay, tensor charge...

Proton Spin Puzzle

EMC experiment (1989): polarized Deep-Inelastic $\mu-p$ Scattering :

Spin of Quarks

$$
S_{q}=\frac{1}{2} \sum_{q}(\Delta q+\Delta \bar{q}) \approx \frac{1}{2} \cdot 0.3
$$

Quark spin $=33 \%$ of the Proton Spin
Where is the rest?
Quark Orbital Motion?
Gluon Angular Momentum ?
structure functions from polarized beam \& target

$$
g_{1}(x)=\frac{1}{2} \sum_{q} e_{q}^{2}[\Delta q(x)+\Delta \bar{q}(x)]
$$

Proton Spin Decomposition and Sum Rule

Proton Spin Decomposition and Sum Rules

Angular momentum

$$
J^{i}=\frac{1}{2} \epsilon^{i j k} \int d^{3} x\left[x^{j} T^{0 k}-x^{k} T^{0 j}\right]
$$

Belinfante-Rosenfeld energy-momentum tensor in QCD:

$$
\begin{aligned}
T_{\mu \nu}^{q} & =\bar{q} \gamma_{\{\mu} \stackrel{\leftrightarrow}{D}_{\nu\}} q & & \text { Quarks } \\
T_{\mu \nu}^{\text {glue }} & =G_{\mu \lambda}^{a} G_{\nu \lambda}^{a}-\frac{1}{4} \delta_{\mu \nu}\left(G_{\mu \nu}\right)^{2} & & \text { Gluons }
\end{aligned}
$$

Nucleon form factors of the EM tensor

$$
\langle N(p+q)| T_{\mu \nu}^{q, g l u e}|N(p)\rangle \rightarrow\left\{A_{20}, B_{20}, C_{20}\right\}\left(Q^{2}\right)
$$

$=$ Mellin Moments of GPDs

$$
\begin{aligned}
A_{20}\left(Q^{2}\right) & =\int d x x H\left(x, 0, Q^{2}\right) \\
B_{20}\left(Q^{2}\right) & =\int d x x E\left(x, 0, Q^{2}\right)
\end{aligned}
$$

Quark \& Gluon Angular Momentum

$$
J_{q, \text { glue }}=\frac{1}{2}\left[A_{20}^{q, \text { glue }}(0)+B_{20}^{q, \text { glue }}(0)\right] \quad[\text { X.Ji, PRL 78:610 (1997)] }
$$

Quark spin

$$
\langle N(p)| \bar{q} \gamma^{\mu} \gamma^{5} q|N(p)\rangle=\left(\Delta \Sigma_{q}\right)\left[\bar{u}_{p} \gamma^{\mu} \gamma^{5} u_{p}\right]
$$

Light Quark Angular Momenta in the Proton

Challenges for Lattice QCD:

- "disconnected" quarks
- gluon angular momentum
- renormalization \& mixing

Light Quark Spin

(*) not including disconnected diagrams! *

Quark Orbital Angular Momentum $\mathrm{L}_{\mathrm{q}}=\mathrm{J}_{\mathrm{q}}-\mathrm{S}_{\mathrm{q}}$

Quark OAM vs Quark Anomalous Magnetization

Light Cone Wave functions: Quark OAM is required for non-zero anomalous magnetization from quarks

$$
\left|L^{u}+L^{d}\right| \ll\left|L^{u}\right|,\left|L^{d}\right| \Longrightarrow\left|\kappa^{u}+\kappa^{d}\right| \ll\left|\kappa^{u}\right|,\left|\kappa^{d}\right|
$$

[S.J.Brodsky and S.D.Drell (1980); M.Burkardt and G.Schnell (2006); X.-D.Ji, J.-P.Ma, and F.Yuan (2003)]
(same prediction for certain TMD PDFs)

