Effective Three-Body Nuclear Systems with Short-Range Interactions

Jared Vanasse

Ohio University

October 25, 2016

Jared Vanasse Effective Three-Body Nuclear Systems with Short-Range Intera

Effective (Field) Theories

- Disparate scales can be used as an expansion parameter $\lambda_1 \gg \lambda_2, Q \sim \frac{\lambda_2}{\lambda_1}$
- Only valid in regimes where Q < 1.

Example 1: For objects a height *h* above earth the gravitational potential is given by

$$\Phi(r) = -\frac{GM_Em}{R_E}\left(1 - \frac{h}{R_E} + \left(\frac{h}{R_E}\right)^2 + \cdots\right)$$

where $Q = \frac{h}{R_F}$ is a small parameter.

Example 2: For thin sheets one can use $Q = t\kappa$ where t is the thickness and κ the curvature.

 Effective (field) theories have "power counting" that organizes relative importance of terms. Gives error estimate of calculations.

Universality at Low Energies

- If r is the typical range of a short range potential. Then for small energies (E ≤ 1/r) we can approximate using contact potentials.
- This is a useful description in cold atoms, halo nuclei, low energy nuclear interactions, and etc.

- For momenta p < m_π pions can be integrated out as degrees of freedom and only nucleons and external currents are left.
- Write down all possible terms of nucleons and external currents that respect symmetries (rotational, isospin).
- Develop a power counting to organize terms by their relative importance.
- Calculate respective observables up to a given order in the power counting.

Two-Body Inputs of EFT(#)

Expansion parameter in EFT(#) $\lambda = \frac{Q}{\Lambda_{\#}}$, where $Q \sim p \sim \frac{1}{a_1}$ and $\Lambda_{\#} \sim m_{\pi}$ Two-body inputs for EFT(#):

- ► LO scattering lengths in a₁ (³S₁) and a₀ (¹S₀) non-perturbative
- NLO range corrections r₁ and r₀ perturbative
- N²LO SD-mixing term perturbative
- ▶ N^2LO isospin splitting Δ_s in *nn* and *np* a_0 perturbative
- $N^{3}LO$ shape parameter corrections s_{1} and s_{0} perturbative
- ▶ $N^{3}LO$ two-body P-wave contributions $({}^{3}P_{J}, {}^{1}P_{1})$ perturbative

Total of **4** NNLO two-body parameters, ignoring SD and Δ_s . Total of **12** N³LO two-body parameters.

The LO dressed deuteron propagator is given by a bubble sum

Doublet S-wave and Bound state

The three-body Lagrangian is

$$\begin{split} \mathcal{L}_{3} = \hat{\psi}^{\dagger} \left[\Omega - h_{2}(\Lambda) \left(i\partial_{0} + \frac{\vec{\nabla}^{2}}{6M_{N}} + \frac{\gamma_{t}^{2}}{M_{N}} \right) \right] \hat{\psi} \\ + \sum_{n=0}^{\infty} \left[\omega_{t0}^{(n)} \hat{\psi}^{\dagger} \sigma_{i} \hat{N} \hat{t}_{i} - \omega_{s0}^{(n)} \hat{\psi}^{\dagger} \tau_{a} \hat{N} \hat{s}_{a} \right] + \text{H.c..} \end{split}$$

where ψ is an auxiliary triton field. The LO triton vertex function $\mathcal{G}_0(E, p)$ is given by following coupled integral equations (Hagen, Hammer, and Platter (2013))

Inhomogeneous term is set to ${\bf 1}$ to factor three-body forces out of vertex functions.

Higher-Order Triton Vertex Function

The NLO $(\mathcal{G}_1(E, p))$ and NNLO $(\mathcal{G}_2(E, p))$ triton vertex functions are

LO Triton Propagator

Defining

The dressed triton propagator is given by the sum of diagrams

$$\equiv = = + \equiv \Sigma_0 = + \equiv \Sigma_0 = \Sigma_0 = + \cdots$$

which yields

$$i\Delta_3(E) = rac{i}{\Omega} - rac{i}{\Omega} H_{
m LO} \Sigma_0(E) rac{i}{\Omega} + \cdots \ = rac{i}{\Omega} rac{1}{1 - H_{
m LO} \Sigma_0(E)},$$

where

$$H_{\rm LO} = -\frac{8\omega_t^2}{\pi\Omega} = -\frac{8\omega_s^2}{\pi\Omega} = \frac{8\omega_t\omega_s}{\pi\Omega}.$$

Jared Vanasse Effective Three-Body Nuclear Systems with Short-Range Intera

Higher-Order Triton Propagator

Defining the functions

The NNLO triton propagator is

Jared Vanasse Effective Three-Body Nuclear Systems with Short-Range Intera

Properly Renormalized Vertex Function

- Three-body forces are fit to ensure triton propagator has pole at triton binding energy.
- Triton wavefunction renormalization given by the residue of the triton propagator about the pole.
- LO triton wavefunction renormlization is

$$Z_{\psi}^{\mathrm{LO}} = rac{\pi}{\Sigma_0'(B)}.$$

- NNLO three-body, h₂ force fit to doublet S-wave nd scattering length
- ► Total of **2** three-body inputs at NNLO.

$$\equiv \Sigma_0 \equiv = = + = +$$

Triton Charge Form Factor

Charge form factor of triton at LO given by three diagrams

Charge form factor gives

$$F_C(Q^2) = Z\left(1 - \frac{\langle r_C^2 \rangle}{6}Q^2 + \cdots\right)$$

LO EFT(#) magnetic form factor is given by replacing Coulomb photons with magnetically coupled photons

$$\mathcal{L}_m = \hat{N}^{\dagger} (\kappa_0 + \tau_3 \kappa_1) \boldsymbol{\sigma} \cdot \mathbf{B} \hat{N}$$

Magnetic form factor gives

$$F_m(Q^2) = \mu \left(1 - rac{\langle r_m^2 \rangle}{6} Q^2 + \cdots
ight)$$

Triton Charge Radius

LO EFT(#) $r_C = 2.1 \pm .6$ fm (Platter and Hammer (2005)) NLO EFT(#) $r_C = 1.6 \pm .2$ fm (Kirscher et *al.* (2005)) NNLO EFT(#) $r_C = 1.62 \pm .03$ fm (Vanasse (2016))

Partly work in progress (Vanasse (2016)).

Observable	LO	NLO	NNLO	Exp.
³ H: <i>r_C</i> [fm]	1.14(19)	1.59(8)	1.62(3)	1.5978(40)
³ He: <i>r_C</i> [fm]	1.26(21)	1.72(8)	1.74(3)	1.7753(54)
³ H: <i>r_m</i> [fm]	1.49(22)	WIP	-	1.840(181)
³ He: <i>r_m</i> [fm]	1.58(24)	WIP	_	1.965(153)
³ H: $\mu_m [\mu_N]$	2.75(92)	WIP	_	2.98
³ He: $\mu_m [\mu_N]$	-1.87(62)	WIP	_	-2.13

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1 - 1/a_0}{1/a_1 + 1/a_0}$ Wigner-breaking all orders:

	Unitary	Wigner	$\mathcal{O}(\delta)$	δ all orders
LO EFT(∦)	1.10	1.22	1.08/1.19	1.14/1.26
$\mathcal{O}(r)$	1.42	1.66	1.58/1.70	1.59/1.72
Experiment				1.5978(40)/1.775(5)

Table: ³H/³He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$\mu_{(^{3}\mathrm{H})} = \mu_{p} = 2.79 \frac{e}{2M_{N}}$$
, $\mu_{(^{3}\mathrm{He})} = \mu_{n} = -1.91 \frac{e}{2M_{N}}$

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1 - 1/a_0}{1/a_1 + 1/a_0}$ Wigner-breaking all orders:

	Unitary	Wigner	$\mathcal{O}(\delta)$	δ all orders
LO EFT(∦)	1.10	1.22	1.08/1.19	1.14/1.26
$\mathcal{O}(r)$	1.42	1.66	1.58/1.70	1.59/1.72
Experiment				1.5978(40)/1.775(5)

Table: ³H/³He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$\mu_{(^{3}\mathrm{H})} = \mu_{p} = 2.79 \frac{e}{2M_{N}}$$
, $\mu_{(^{3}\mathrm{He})} = \mu_{n} = -1.91 \frac{e}{2M_{N}}$

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1 - 1/a_0}{1/a_1 + 1/a_0}$ Wigner-breaking all orders:

	Unitary	Wigner	$\mathcal{O}(\delta)$	δ all orders
LO EFT(∦)	1.10	1.22	1.08/1.19	1.14/1.26
$\mathcal{O}(r)$	1.42	1.66	1.58/1.70	1.59/1.72
Experiment				1.5978(40)/1.775(5)

Table: ³H/³He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$\mu_{(^{3}\mathrm{H})} = \mu_{p} = 2.79 \frac{e}{2M_{N}}$$
, $\mu_{(^{3}\mathrm{He})} = \mu_{n} = -1.91 \frac{e}{2M_{N}}$

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1 - 1/a_0}{1/a_1 + 1/a_0}$ Wigner-breaking all orders:

	Unitary	Wigner	$\mathcal{O}(\delta)$	δ all orders
LO EFT(∦)	1.10	1.22	1.08/1.19	1.14/1.26
$\mathcal{O}(r)$	1.42	1.66	1.58/1.70	1.59/1.72
Experiment				1.5978(40)/1.775(5)

Table: ³H/³He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$\mu_{(^{3}\mathrm{H})} = \mu_{p} = 2.79 \frac{e}{2M_{N}}$$
, $\mu_{(^{3}\mathrm{He})} = \mu_{n} = -1.91 \frac{e}{2M_{N}}$

Wigner-limit: $a_0 = a_1$ and $r_0 = r_1$ Unitary limit: $a_0 = a_1 = \infty$ Wigner-breaking $\mathcal{O}(\delta)$: $\delta = \frac{1/a_1 - 1/a_0}{1/a_1 + 1/a_0}$ Wigner-breaking all orders:

	Unitary	Wigner	$\mathcal{O}(\delta)$	δ all orders
LO EFT(∦)	1.10	1.22	1.08/1.19	1.14/1.26
$\mathcal{O}(r)$	1.42	1.66	1.58/1.70	1.59/1.72
Experiment				1.5978(40)/1.775(5)

Table: ³H/³He charge radius in unitary and Wigner-limit (Vanasse and Phillips (2016)) arXiv:1607.08585

$$\mu_{(^{3}\mathrm{H})} = \mu_{p} = 2.79 \frac{e}{2M_{N}}$$
, $\mu_{(^{3}\mathrm{He})} = \mu_{n} = -1.91 \frac{e}{2M_{N}}$

Halo-nuclei, something different? ▶ For halo-nuclei R_{halo} > R_{core}, can expand in powers of R_{core}/R_{halo}.

- If a probe has De Broglie wavelength λ, and λ > R_{core} the structure of the core cannot be resolved and it can be treated as a fundamental degree of freedom.
- ▶ Breakdown scales of halo-EFT set by E_{\star} (first excited state energy of core), B_{c-n} (one neutron separation energy of core), and m_{π}

Halo-Nuclei

http://www.nupecc.org/report97/report97.pdf

Halo Trimer Vertex Function

 LO halo-nuclei vertex function given by (Hagen, Hammer, and Platter (2013))

- S-wave interactions in both two and three-body sector
- Nearly identical to pionless EFT
- Differences from pionless EFT: core is spin-0, three-body force chosen differently, and parameters will have different values

- ► LO interactions are non-perturbative and reproduce neutron-neutron scattering length a_{nn} and neutron-core scattering length a_{cn}.
- NLO interactions are perurbative corrections from the neutron-neutron effective range ρ_{nn} and neutron-core effective range ρ_{cn}.
- LO and NLO three-body force both fit to two-neutron halo nucleus binding energy.

Calculation of LO halo-nuclei charge radius nearly identical to triton charge radius calculation. In Unitary limit and equal mass limit it is found

Authors	$mE_{3B}\left\langle r_{c}^{2} ight angle$
Vanasse	.224
Hagen et al.	.265

Using analytical techniques in (Braaten and Hammer (2006)) it can be shown that $mE_{3B} \langle r_c^2 \rangle = (1 + s_0^2)/9 \approx .224$ in the unitary and equal mass limit. Changing a single factor in the code of Hagen et al. they would also obtain .224.

(Vanasse (2016)) arXiv:1609.08552

Nucleus	$\left< r_C^2 \right>_0 \mathrm{fm}^2$	$\left< r_C^2 \right>_{0+1} \mathrm{fm}^2$	$\langle r_C^2 \rangle$ -Exp. fm ²
¹¹ Li	0.744(275)	0.774(106)	1.171(120) [6] 1.104(85) [5] 0.82(11) [1, 2]
¹⁴ Be	0.126(98)	0.134(81)	—
²² C	$0.520^{+\infty}_{-0.274}$	$0.530^{+\infty}_{-0.283}$	

Table: LO and NLO halo-EFT predicitions for charge radii of two-neutron halo nuclei. Included are existing experimental results. The NLO results use the naturalness estimate $\rho_{cn} \sim 1/m_{\pi} \sim 1.4$ fm for the NLO prediction, where ρ_{cn} is the effective range for *cn* scattering.

(Vanasse (2016)) arXiv:1609.08552

Nucleus	$\left< r_M^2 \right>_0 \mathrm{fm}^2$	$\left< r_M^2 \right>_{0+1} \mathrm{fm}^2$	$\langle r_M^2 \rangle$ -Exp. fm ²
¹¹ Li	5.76 ± 2.13	6.05 ± 0.83	5.34 ± 0.15 [4]
¹⁴ Be	1.23 ± 0.96	1.34 ± 0.81	4.24 ± 2.42 [4]
			2.90 ± 2.25 [4]
²² C	$9.00^{+\infty}_{-5.01}$	$9.22^{+\infty}_{-5.16}$	21.1 ± 9.7 [3, 7]
			$3.77 \pm 0.61 [3, 8]$

Table: LO and NLO halo-EFT predicitions for mater radii of two-neutron halo nuclei. Included are existing experimental results. The NLO results use the naturalness estimate $\rho_{cn} \sim 1/m_{\pi} \sim 1.4$ fm for the NLO prediction, where ρ_{cn} is the effective range for *cn* scattering.

nd Scattering Results

(Margaryan, Springer, and Vanasse (2015)) arXiv:1510.07598

$$A_{y} = \frac{\frac{d\sigma}{d\Omega\uparrow}^{(N^{3}LO)} - \frac{d\sigma}{d\Omega\downarrow}^{(N^{3}LO)}}{2\frac{d\sigma}{d\Omega}^{(NNLO)}}$$

- At N³LO new three-body force occurs that cancels in numerator of A_y.
- Position of maximum of A_y is determined by minimum of scattering cross section which is only reproduced well at NNLO.
- ► A_y is dominated by ³P_J two-body interactions, while two-body SD-mixing contribution is negligible.
- Two-body P-wave interaction LECs fit to phase shifts via

$$T^{^{3}P_{J}}(p) = \frac{M_{N}p}{4\pi}\delta^{^{3}P_{J}}(p)$$

Conclusions and Future directions

- ► Charge radii of ³H and ³He reproduced well at NNLO in EFT(*#*).
- ► Magnetic moments reproduced within errors at LO in EFT(*#*).
- Wigner-symmetry gives good expansion for charge radii and is interesting limit for magnetic moments of ³H and ³He.
- Reproduce analytical results in unitary and equal mass limit for charge radii of halo nuclei. Should be used as benchmark for all such calculations.
- Further theoretical and experimental work is necessary in halo-nuclei to measure charge-radii and reduce error in other measurements. Determine value for ρ_{cn}.
- Add resonant two-body *P*-wave interactions to investigate ⁶He and ¹⁷B two-neutron halo-nuclei

 H. Esbensen, K. Hagino, P. Mueller, and H. Sagawa. Charge radius and dipole response of Li-11. *Phys. Rev.*, C76:024302, 2007.

[2] T. Nakamura et al.

Observation of Strong Low-Lying E-1 Strength in the Two-Neutron Halo Nucleus Li-11.

Phys. Rev. Lett., 96:252502, 2006.

[3] A. Ozawa et al.

Measurements of interaction cross sections for light neutron-rich nuclei at relativistic energies and determination of effective matter radii.

Nucl. Phys., A691:599-617, 2001.

 [4] A. Ozawa, T. Suzuki, and I. Tanihata. Nuclear size and related topics. *Nucl. Phys.*, A693:32–62, 2001. [5] M. Puchalski, A. M. Moro, and K. Pachucki. Isotope Shift of the S-31/22- S-21/22 Transition in Lithium and the Nuclear Polarizability. *Phys. Rev. Lett.*, 97:133001, 2006.

[6] R. Sanchez et al.

Nuclear Charge Radii of Li-9, Li-11: The Influence of Halo Neutrons.

Phys. Rev. Lett., 96:033002, 2006.

[7] K. Tanaka et al.

Observation of a Large Reaction Cross Section in the Drip-Line Nucleus C-22.

Phys. Rev. Lett., 104:062701, 2010.

[8] Y. Togano, T. Nakamura, Y. Kondo, J. Tostevin, A. Saito, J. Gibelin, N. Orr, N. Achouri, T. Aumann, H. Baba, F. Delaunay, P. Doornenbal, N. Fukuda, J. Hwang, N. Inabe, T. Isobe, D. Kameda, D. Kanno, S. Kim, N. Kobayashi, T. Kobayashi, T. Kubo, S. Leblond, J. Lee, F. Margus, R. Minakata, T. Motobayashi, D. Murai, T. Murakami, K. Muto, T. Nakashima, N. Nakatsuka, A. Navin, S. Nishi, S. Ogoshi, H. Otsu, H. Sato, Y. Satou, Y. Shimizu, H. Suzuki, K. Takahashi, H. Takeda, S. Takeuchi, R. Tanaka, A. Tuff, M. Vandebrouck, and K. Yoneda. Interaction cross section study of the two-neutron halo nucleus

22c.

Physics Letters B, pages -, 2016.

