

Current status of exploiting theoretical modelling of gravity waves in data analysis

Stephen Fairhurst

Cardiff University and LIGO Scientific Collaboration

wenty ten | 350 years of nd beyond | excellence in science

Outline

- Detectors
- Source Waveforms
- Search Methods
- Input from Numerical Relativity

The LIGO Detectors

Livingston, LA 4km detector "L1"

Hanford, WA 4km detector "H1" 2km detector "H2"

Noise Sources

LIGO Sensitivities

 The initial LIGO detectors have completed five science runs, S1 - S5.

LIGO Sensitivities

- The initial LIGO detectors have completed five science runs, S1 - S5.
- S5 ended recently, having taken 1 year of coincident data at design sensitivity

Virgo

- Work has begun on enhanced LIGO
 - Approx factor of 2 improvement in sensitivity
- Advanced LIGO construction will begin this year
 - Order of magnitude more sensitive than initial detectors

Outline

- Detectors
- Source Waveforms
- Search Methods
- Input from Numerical Relativity

Coalescing Binaries

- Binary systems emit gravitational waves and slowly inspiral together.
- This have already been (indirectly) observed.

The Inspiral Waveform

- Gravitational waves are emitted as the binary inspirals.
- The waveform depends upon masses, spins, binary orientation
- Waveform can be well modelled up to the last few orbits, using the post-Newtonian formalism.
- pN fails around ISCO:

$$F_{\rm ISCO} = 220Hz \times$$

m.
C:
$$\left(\frac{20M_{\odot}}{M_{\text{total}}}\right)$$

- Following merger, the final "ringdown" can be modelled using black hole perturbation theory
- The waveform depends upon final mass and spin
 - Currently these cannot be derived from inspiral parameters

Astrophysical Rates

- Assume that the rate of coalescences is proportional to blue light luminosity
 - Follows star formation rate, supernova rate
 - Expected number of coalescences for a given search

$$N \approx 7.4 \times 10^{-3} \left(\frac{\mathcal{R}}{L_{10}^{-1} \text{ Myr}^{-1}}\right) \left(\frac{D_{\text{horizon}}}{100 \text{ Mpc}}\right)^3 \left(\frac{T}{\text{ yr}}\right)$$

- For binary neutron stars: $\mathcal{R} = 10 170 \,\mathrm{Myr}^{-1} L_{10}^{-1}$
- For binary black holes: $\mathcal{R} = 0.1 15 \,\mathrm{Myr}^{-1} L_{10}^{-1}$

LIGO range

- Expected rates
 - 1 event per few years for Enhanced LIGO
 - Several to many events per year for Advanced LIGO

Outline

- Detectors
- Source Waveforms
- Search Methods
- Input from Numerical Relativity

The Inspiral Search Pipeline

- Generate template bank
- Perform matched filter
- Require coincidence
 between detectors
- Signal consistency tests
- Interpretation of results

Search Details

- The inspiral waveform is described by masses, spins, distance, sky location, orientation.
- For non-spinning waveforms, the orbital plane does not precess, and the waveform can be written as:

$$h(t) = \left(\frac{1 \text{Mpc}}{D_{\text{eff}}}\right) A(t - t_o) \cos(\phi(t) - \phi_o)$$

- Where D_{eff} is the effective distance (\geq distance)
- D_{eff}, ϕ_o for a given detector depend upon distance, sky location, orientation relative to detector

Matched Filtering

• Define the 2 phases of the waveform

$$h_c(t) = A(t - t_o)\cos(\phi(t))$$

$$h_s(t) = A(t - t_o)\sin(\phi(t))$$

- And a normalization factor: $\sigma^2 = \int_{f_{\rm low}}^{f_{\rm high}} df \, rac{|\tilde{h}_c(f)|^2}{S_h(f)}$
- $S_h(f)$ is the noise power spectral density

Matched Filtering

- The signal to noise ratio (SNR) ρ is given by $\rho^2(t) = \rho_c^2(t) + \rho_s^2(t)$ $\rho_{c,s}(t) = \frac{1}{\sigma} \int_{f_{\text{low}}}^{f_{\text{high}}} df \, e^{2\pi i f t} \, \frac{\tilde{s}(f) \tilde{h}_{c,s}^{\star}(f)}{S_h(f)}$
- From the measured SNR, we can calculate the observed effective distance and phase:

$$D_{\rm eff} = \sigma/\rho$$

$$\phi_o = \tan^{-1}(\rho_s/\rho_c)$$

In Pictures

- We search over the mass space by employing many template waveforms with different masses.
- Place templates so that for any waveform h in the parameter space, the match is not less than some mininum value

$$Match = Max_{t_o,\phi_o,i} \frac{\langle h|h_i \rangle}{|h||h_i|}$$

- Where the inner product is

$$< a | b > = \int_{f_{\text{low}}}^{f_{\text{high}}} df \, rac{ ilde{a}(f) ilde{b}^{\star}(f)}{S_h(f)}$$

• Placing templates is simplified by calculating a metric on the mass space

LIGO-

 $\frac{\langle h(\mathbf{x})|h(\mathbf{x} + \mathbf{d}\mathbf{x}) \rangle}{|h(\mathbf{x})||h(\mathbf{x} + \mathbf{d}\mathbf{x})|}$

$$\frac{d>}{dt} = 1 - g_{ab}(\mathbf{x}) dx^a dx^b$$

 Allows for efficient placing of templates

The Template Bank

- Typically require a minimal match of 97%
- Equivalent to allowing a loss of
 - 3% in range
 - 10% in rate

Example template bank from S5

Coincidence between detectors

- Require that an event is seen in at least 2 detectors with similar time and masses.
 - Reduces false alarms due to environmental noise
 - Naturally account for correlations between parameters by using metric to determine coincidence windows

512

Erequency [Z56 128

64

-0.5

Life isn't Gaussian

• Time-frequency Q-scans showing excess power

Inspiral Hardware Injection

Ô.

Time [seconds]

Normalized tile energy

10

LIGO-G080005-00-Z

0.5

15

 We know how the SNR will vary over parameter space for a true signal.

- Check if it does
 - Example: loudest surviving event in S1

 $t = t_0$

The χ^2 Test

 $\chi^{2} = p \sum \left(\rho_{c,i} - \rho_{c}/p\right)^{2} + \left(\rho_{s,i} - \rho_{s}/p\right)^{2}$ i=1Injected Chirp (SNR = 9.2) Spurious Event (SNR = 8.7) 5 5 100 Hz Check the power in High freq filter tomannananan 0 MAAmmoni 0 the signal is 6 -5 -5 distributed as 5 5 - 400 Hz 512 0 8 -5 -5 Erequency [Hz] TIME TIME 5 5 - 10³ Hz 0 0 64 400 -5 -5 -0.5 0 0.5 Time [seconds] 5 5 10 15 Normalized tile energy – 1.2 k Hz 0 -5 -5

 $t = t_o$

- Signal consistency tests are sensitive to inaccuracies in the waveforms used, e.g.
 - Using non-spinning waveforms
 - Not including merger/ringdown
 - Calibration uncertainty

Example: Filtering EOB waveforms with Taylor PN templates gives increased χ^2

Search Results

Search Results

- We wind up with a list of candidate events
 - Want to see whether any are significant
 - Plot cumulative
 histogram of number
 of events vs SNR
 - Compare to background from time shifts

- When foreground stands out above background
- Example from S4 BNS search
 - Loudest few events are known to be due to instrumental or environmental origin, but we can dream ...

When do things get interesting?

- When foreground stands out above background
- Improved signal consistency or better "ranking statistic" will lower the background

- When foreground stands out above background
- Improved knowledge of waveforms will increase SNR of signals

When do things get interesting?

- When foreground stands out above background
- Improved knowledge of waveforms will increase SNR of signals
- However, more complicated template families run risk of increasing background as well!

Outline

- Detectors
- Source Waveforms
- Search Methods
- Input from numerical relativity

- We need to test the current analyses with full inspiral-merger-ringdown waveforms.
 - Have already done blind hardware injections in S5 with "made up" waveforms.
 - Would like to use the NR waveforms, I'm sure they're more accurate.

- We can perform simulations (in software) using NR waveforms, if provided in format described in "Data formats for numerical relativity waves", arXiv:0709.0093
 - Scale waveform for physical masses, distance, location, orientation
- Will run inspiral and ringdown matched filter searches, and burst "excess power" searches on same set of simulations.
- Work out which search, or combination of searches, is most sensitive.

Final Thoughts

- We are sure to learn a lot when we do NR injections, but maybe not what we expect
 - It may turn out that we don't win by match filtering for the full waveform.
 - It may be that we don't win (in some mass ranges) by matched filtering at all.
- I've focused primarily on detection, have barely touched parameter estimation.

