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Some quick, rough, and possibly misinformed 
considerations to guide our thinking now that binary 

black hole simulations are merely extremely difficult.

Motivation: Doing the best science with 
data and simulations!

What do we need to do/know in order to use 
these waveforms and this data in order to get 

out the science that we claim we can do?



Goal: A users’ manual for understanding 
how to estimate when waveforms are 

“Accurate enough”
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1. A rough, pedagogical derivation of the match, 
from the viewpoint of filtering data.

2. How the match appears in a maximum likelihood 
formalism and guides us to a “minimal match” 
criteria for waveforms to be “good.”

3. Why the match is not a useful tool for estimating 
how accurate waveforms must be for science 
analyses (“parameter estimation”).



Background references
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Manual for GRASP (Gravitational Radiation Analysis 
and Simulation Package):

http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/

Textbook “Applications of Classical Physics,” 
Blandford & Thorne, Chapter 5,
“Theory of Random Processes”

http://www.pma.caltech.edu/Courses/ph136/yr2006/text.html
L. S. Finn, PRD 46, 5236 (1992)

L. S. Finn and D. E. Chernoff, PRD 47, 2198 (1993)

http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/
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Tutorial: A derivation of the match

s(t) = h(t) + n(t)

Begin: Consider data stream s 
containing noise n and a signal h:

An “observation” of this data means that we cross 
correlate the stream with some filter Q.  For now, 

leave this filter completely arbitrary:

S =

∫
∞

−∞

s(t)Q(t) dt

=

∫
∞

−∞

s̃(f)Q̃∗(f) df
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Tutorial: A derivation of the match

〈n〉 = 0

〈ñ(f)ñ∗(f ′)〉 =
1

2
Sh(|f |)δ(f − f ′)

Further progress requires some information 
about statistics of noise.

Zero mean:

Variance set by the spectral density:

Averaging over ensemble of all possible 
realizations of detector noise:

〈f(n)〉 =

∫
f(n)P (n)Dn
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Tutorial: A derivation of the match

N = S − 〈S〉

Mean value of the filtered datastream is 
now pretty obvious:

〈S〉 =

∫
∞

−∞

h̃(f)Q̃∗(f) df

Difference between filter output and mean 
filter output defines noise: 

Noise is characterized by its variance:

〈N2〉 =
1

2

∫
∞

−∞

Sh(|f |)|Q̃(f)|2df
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Tutorial: A derivation of the match
Signal to noise ratio for this general filter Q 
is now defined as the ratio of mean signal 

output to rms noise:
(

S

N

)2

=

〈S〉2

〈N2〉

To facilitate further manipulations, very 
useful to define the following inner product:

(A, B) =

∫
∞

−∞

A(f)B∗(f)Sh(|f |)df
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Tutorial: A derivation of the match

〈S〉 = (h̃/Sh, Q̃)

〈N2〉 =
1

2
(Q̃, Q̃)

With this definition,

which allows us to write the SNR as
(

S

N

)2

=
2(h̃/Sh, Q̃)2

(Q̃, Q̃)

Key question: Given that the data contains 
signal h, what is the filter Q that 

maximizes the SNR?
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Tutorial: A derivation of the match

(A, B)2 ≤ (A, A)(B, B)

Q̃(f) = h̃(f)/Sh(f)

Answer: Schwartz inequality!

with equality for A ∝ B.
So, we choose our filter to match the signal, 

modulo some weighting with noise,

(

S

N

)2

= 2

(

h̃

Sh

,
h̃

Sh

)

= 2

∫

∞

−∞

|h̃(f)|2

Sh(f)
df

yielding the “optimal” SNR:



Scott A. Hughes, MIT KITP, NR-DA, 11 Jan 2008

Tutorial: A derivation of the match
Back up: Choose filter from family of “templates” 
Ti that we hope faithfully represents the signal.  

Make the following definitions:

Then,

= 2

∫
∞

−∞

h̃(f)T̃ ∗

i (f)

Sh(f)
df ≡ 〈h|Ti〉

(so 〈N2〉 = 1)Q̃(f) =
2T̃i(f)

Sh

(

T̃i

Sh

,
T̃i

Sh

)

=
1

2

ρi ≡

(

S

N

)

Measuring h with Ti

= 2

(

h̃

Sh

,
T̃i

Sh

)
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Finally: The match!
The “SNR” between two templates in our bank 

defines the “match” between those two:

µij = 〈Ti|Tj〉 ≤ 1

Match defines fraction of optimal SNR we retain if:
1. We search for a signal proportional to 
template i using template j,
2. The signals that nature provides are 
faithfully represented by this template bank:

(

S

N

)

achieved

= 〈h|Tj〉

= µij

(

S

N

)

optimal
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More fundamental viewpoint on 
measurement

Starting point is the likelihood function:
The fundamental probability distribution that 

describes how likely it is that model fits our data.

Λ[h(!θ)] = p(!θ)P [s|h(!θ)]/P (s|0)

Prior probability that h is 
described by “parameters” θ
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More fundamental viewpoint on 
measurement

Starting point is the likelihood function:
The fundamental probability distribution that 

describes how likely it is that model fits our data.

Λ[h(!θ)] = p(!θ)P [s|h(!θ)]/P (s|0)

CAUTION: Easiest way to introduce bias or 
otherwise shoot yourself in the foot is by assuming 
a bad prior!  Best not to assume very much unless 
you have a data-motivated reason for doing so.

Prior probability that h is 
described by “parameters” θ
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More fundamental viewpoint on 
measurement

Starting point is the likelihood function:
The fundamental probability distribution that 

describes how likely it is that model fits our data.

Λ[h(!θ)] = p(!θ)P [s|h(!θ)]/P (s|0)

Probability of measuring data 
s assuming that waveform h 

with parameters θ is present.

Probability of 
measuring data s 

assuming that only 
noise is present.
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Details on probability
Given the noise statistics, key probability 

distributions here take a simple form:

P (s|0) = exp

(

−
1

2
〈s|s〉

)

P [s|h(!θ)] = P [s − h(!θ)|0]

This is the distribution for s to be pure noise!
Note Gaussian form — a happy fantasyland.

Rigorous discussion begins with distributions, brings 
in statistics of noise, and then (via theory of random 
processes), derives statistic which leads to match as 

argument of these distributions: See Finn ’92.
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Detection
“Detection”: you’re stating that it is highly likely 
that a gravitational-wave is present in the data.
Key point: You don’t necessarily care about the 

details of that wave — just that it’s there.

Formally, marginalize over waveforms

Λ =

∫
Dh Λ[h]

=

∫
Dh p(h)P (s|h)/p(s|0)

and declare we’ve made “a detection”
if Λ exceeds a threshold.
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Detection
Operationally boils down to setting a threshold on 

the signal-to-noise ratio we achieve:

As long as some template gives us SNR above 
threshold, we can have confidence in a detection.

Λ > Λthresh −→

(

S

N

)

= 〈s|Ti〉 ≈ 〈htrue|Ti〉 = (1 − ε)

(

S

N

)

opt

Λthresh →

(

S

N

)

thresh

>

(

S

N

)

thresh
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Detection
Operationally boils down to setting a threshold on 

the signal-to-noise ratio we achieve:

Λ > Λthresh −→

(

S

N

)

= 〈s|Ti〉 ≈ 〈htrue|Ti〉 = (1 − ε)

(

S

N

)

opt

Λthresh →

(

S

N

)

thresh

>

(

S

N

)

thresh

Note: Signal range cut by at most ε; volume 
covered by measurement degraded by ~3ε.
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Detection
Operationally boils down to setting a threshold on 

the signal-to-noise ratio we achieve:

Caveat: This is a discussion in Gaussian noise!  
Can’t quite be so cavalier for the “real” case ...

Λ > Λthresh −→

(

S

N

)

= 〈s|Ti〉 ≈ 〈htrue|Ti〉 = (1 − ε)

(

S

N

)

opt

Λthresh →

(

S

N

)

thresh

>

(

S

N

)

thresh
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Measurement
“Measurement”: you’ve decided a signal is present.  

Now you want to characterize it as accurately as 
possible: Find the h that maximizes the likelihood.

Λ[h(!θ)] = p(!θ)P [s|h(!θ)]/P (s|0)

For well characterized waveforms, this process 
means figuring out which parameters θ 

describe the waveforms in the data.

= p(!θ) exp

[

−
1

2
〈h(!θ)|h(!θ)〉 + 〈s|h(!θ)〉

]
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Measurement
“Measurement”: you’ve decided a signal is present.  

Now you want to characterize it as accurately as 
possible: Find the h that maximizes the likelihood.

Λ[h(!θ)] = p(!θ)P [s|h(!θ)]/P (s|0)

For well characterized waveforms, this process 
means figuring out which parameters θ 

describe the waveforms in the data.

= p(!θ) exp

[

−
1

2
〈h(!θ)|h(!θ)〉 + 〈s|h(!θ)〉

]

Not all measurements are parameter estimation!
Example: How do we use merger waveforms to

“test general relativity”?
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Parameter estimation
For measurements that are parameter estimation, 

find parameters that maximize the likelihood:

The parameters     that maximize Λ are presumably 
close to the true value     characterizing the signal in 

our data.  How close?  Examine distribution of δθ:

∂Λ(h)

∂θi

∣

∣

∣

∣

θi=θ̂i

= 0

θ̂
i

θ̃
i

δθ
i
≡ θ̂

i
− θ̃

i
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Parameter estimation
We would like this error to be determined 

by noise.  If it is, then

The distribution of this variable is given by

δθ
i
=

(

Γ
−1

)ij
〈

∂h

∂θj

∣

∣

∣

∣

n

〉

where
Γij =

〈

∂h

∂θi

∣

∣

∣

∣

∂h

∂θj

〉

〈δθi〉 = 0

〈δθi
δθ

j〉 =
(

Γ
−1

)ij
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Parameter estimation

The result δθ
i
=

(

Γ
−1

)ij
〈

∂h

∂θj

∣

∣

∣

∣

n

〉

assumes we have a template that exactly matches 
the waveform in our data.  A better measure of this 
error is

δθ
i
=

(

Γ
−1

)ij
(〈

∂hT

∂θj

∣

∣

∣

∣

n

〉

+

〈

∂hT

∂θj

∣

∣

∣

∣

hN − hT

〉)

where hN is nature’s waveform, hT is our template.

= δθ
i

stat + δθ
i

sys
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Accuracy goal: Systematic errors smaller 
than statistical errors.

Examine how different terms in this relation scale 
with SNR and phase error:

〈

(

δθ
i
stat

)2
〉1/2

> δθ
i
sys

[

(

Γ
−1

)ii
]1/2

>
(

Γ
−1

)ij
〈

∂h

∂θj

∣

∣

∣

∣

∆h

〉

(

Γ−1
)ij

∝ (1/SNR)2

〈

∂h

∂θj

∣

∣

∣

∣

∆h

〉

∝ (SNR)2∆Φ
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Accuracy goal: Systematic errors smaller 
than statistical errors.

So the parameter accuracy requirement
〈

(

δθ
i
stat

)2
〉1/2

> δθ
i
sys

Turns into a waveform requirement

∆Φ < 1/SNR
Bear in mind this is a very crude rule of thumb!  To 
get it, neglected parameter correlations, only 
considered SNR scaling of waveform and matrices.

Probably too optimistic:
Real requirements more stringent.
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What happens if this accuracy is not 
achieved/achievable?

That is, what if the waveforms we use to do our 
parameter estimate do not faithfully represent the 
signals that nature puts in our detectors?

Akin to using templates 
that live in this manifold
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What happens if this accuracy is not 
achieved/achievable?

That is, what if the waveforms we use to do our 
parameter estimate do not faithfully represent the 
signals that nature puts in our detectors?

to measure waveforms that 
live in this manifold.

Akin to using templates 
that live in this manifold

We can make the detection, 
we’ll estimate parameters ... 

but that estimate will be 
systematically biased.
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Bias
The bias due to displacement of these manifolds:

(Details, formalism, and numerical results, evaluated 
for LISA: Cutler and Vallisneri, arXiv:0707.2982.

Numerical results obtained by using pN order N as a 
model for extracting signal of pN order N + 1.)

δθ
i
bias =

(

Γ
−1

)ij
〈

∂hT

∂θj

∣

∣

∣

∣

hN − hT

〉

A key issue is that all of the parameter errors are 
correlated — sometimes highly.  Bias in mass or spin 

can strongly impact our inferred values of other 
parameters (e.g., sky position, distance to event).
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A (bad) example covariance matrix

No spin precession; LISA noise curve used for match; 
m1 = 3 x 106 Msun, m2 = 106 Msun; restricted 2PN.

Diagonal entries: rms δθ
Off-diagonal entries: Correlations.
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A (bad) example covariance matrix

Message: Correlations are large enough that 
a bias in one parameter is going to skew 

other parameters as well!
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Match is not enough!
Key finding of Cutler and Vallisneri:

There can be significant bias introduced by a 
“bad” waveform model even if the match is 

extremely good.

Example they considered:
— Model the true waveform as 3.5PN
— Model the template as 3PN

Compare statistical and systematic errors.  Also 
compute the match to see whether a bad result 

would have been “obvious.”
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Example
Chirp mass error:
δθstat = 10-5       δθsys = 3x10-4

Bias by a factor of 30.

Reduced mass error:
δθstat = 2x10-3       δθsys = 0.14
Bias by a factor of 70.

Sky position:
δθstat ≈ 1 degree      δθsys ≈ 1.5 degree
Inferred position is outside the “true” error 
box.
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Example
Chirp mass error:
δθstat = 10-5       δθsys = 3x10-4

Bias by a factor of 30.

Reduced mass error:
δθstat = 2x10-3       δθsys = 0.14
Bias by a factor of 70.

Sky position:
δθstat ≈ 1 degree      δθsys ≈ 1.5 degree
Inferred position is outside the “true” error 
box.

Match = 0.9999
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Why??
This counterintuitive result can be understood 
by comparing match to the parameter bias:

δθ
i
bias =

(

Γ
−1

)ij
〈

∂hT

∂θj

∣

∣

∣

∣

hN − hT

〉

match =
〈hT |hN 〉

√

〈hT |hT 〉〈hN |hN 〉

The difference is largely due to derivatives: If 
waveform is very sensitive to a parameter, the 
large derivative can compensate for the fact 

that hN and hT are nearly equal.



Scott A. Hughes, MIT KITP, NR-DA, 11 Jan 2008

Why??
This counterintuitive result can be understood 
by comparing match to the parameter bias:

δθ
i
bias =

(

Γ
−1

)ij
〈

∂hT

∂θj

∣

∣

∣

∣

hN − hT

〉

match =
〈hT |hN 〉

√

〈hT |hT 〉〈hN |hN 〉

Correlations in the covariance matrix Γij also 
play a huge role!  May have severe 

consequences when this analysis is done for 
LIGO measurements.
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Punchline:
Use the match to assess whether waveforms

are useful for detection purposes:

〈Ti|Tj〉 = 1 − ε

Tells us about SNR loss — just right to assess 
how useful templates are for a GW search.
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Punchline:
Need something much more sophisticated and 

much more complicated to assess whether 
waveforms are useful for parameter estimation!

Goal is 〈

(

δθ
i
stat

)2
〉1/2

> δθ
i
sys

[

(

Γ
−1

)ii
]1/2

>
(

Γ
−1

)ij
〈

∂h

∂θj

∣

∣

∣

∣

∆h

〉

There’s a lot more work to do ...


