

PDW Workshop KITP, UC Santa Barbara Tuesday May 17th, 2022

Experiments on kagome CDW/Superconducting Materials

Stephen D. Wilson Professor, Materials Department University of California, Santa Barbara

Overview

- Motivation for kagome metals
- New kagome systems AV₃Sb₅ (A=K, Rb, Cs)
 - CDW order
 - Superconductivity
 - Intertwined CDW and SC order
- Other recent materials/candidates
 - New series of RV₆Sn₆ systems (R=Y, Gd-Yb)
 - Other classes
- Prospects

Collaborators

Brenden OrtizSam TeicherYuzki OeyFarnaz K.Linus KautszchGanesh PokharelImage: Sam TeicherImage: Sam Teic

Kagome lattice as promising structural motif

Fractionalized spin excitations Quantum spin liquid candidate

Kagome lattice band structure

O'Brian et al., Phys. Rev. B (2010) 0 ъ -1 -2 -3 0.5 0.5 0 k_x/π -0.5 k_v/π Dirac points vHs flat band $H = -t \sum_{\langle i,j \rangle} \left(c_i^{\dagger} c_j + \text{H.c.} \right) + V \sum_{\langle i,j \rangle} n_i n_j$

Examples in:

Fe₃Sn₂: FM Chern insulator (Ye et al., Nat. 2018) FeSn : FM 2D Dirac (Kang et al., Nat. Mat. 2020) Co₃Sn₂S₂: Magnetic Weyl (Liu et al., Nat. Phys. 2018) CoSn: Dirac (Liu et al., Nat. Comm. 2020) TbMn₆Sn₆: QAH, Chern gap (Yin et al., Nature 2020)

Electronic instabilities on kagome lattice

- Variety of interaction-driven instabilities predicted at different fillings
 - Charge density wave order
 - Bond density wave states
 - Chiral spin density waves
 - Superconductivity
- Saddles points at select fillings give rise to van Hove singularities (e.g. 5/4 electrons per band)
 - Wan-sheng Wang et al., Phys. Rev. B (2013)
 - Kiesel et al., Phys. Rev. Lett. (2013)
- Sublattice interference amplifies influence of $\rm U_1$

AV_3Sb_5 (A=K, Cs, Rb)

Kagome lattice of AV₃Sb₅ (A=K, Rb, Cs)

Ortiz et al., Physical Review Materials (2019)

- New phase found in ternary phase diagram of A-V-Sb
- Layered, exfoliable material with perfect (P6/mmm) Kagome nets of V-ions
- V-V distances are small (~2.75 Å), suggesting V-ions are nonmagnetic

Electronic structure of AV₃Sb₅

Ortiz et al., Physical Review Materials (2019)

- Initial DFT modeling shows Fermi level close to saddle points at M
- Electronic structure similar across the AV₃Sb₅ series

vHs in multiband CsV₃Sb₅

Mingu Kang et al., Nat. Phys. (2022)

Topological classification: Z2 metal

Normal state band structure categorized as Z2 topological metal Surface states reasonably close to E_F

Good agreement between DFT and observed band structure

CDW order in AV_3Sb_5 (A=K, Cs, Rb)

High temperature phase transition in AV₃Sb₅

- Quasi-2D electron transport
- High-temperature Pauli paramagnetism
- T^* anomalies in $\chi(T)$, $\rho(T)$, $C_P(T)$
- Strong MR turns on below T*

CDW state in AV₃Sb₅

Yu-Xiao Jiang et al, Nature Materials (2021)

-20

0 Bias Voltage (mV)

-40

20

40

He Zhao et al, Nature (2021)

Partial gap opening at M-point below T*

Partial gap opens at M-points, proposed nesting driven by m-type vHs Nesting alone likely insufficient (Farnaz Kaboudvand et al., APL (2022))

Bulk probe of CDW via quantum oscillations

Ortiz et al, Phys. Rev. X (2021)

- Reconstruction of V-orbits below CDW
- Light cyclotron masses in new orbits
- New orbits have $\Phi_{\rm B} = \pi$
 - Fu et al., Phys. Rev. Lett. (2021)
 - Sherstha et al., Phys. Rev. B (2022)

Models for charge density wave state

Undistorted CsV₃Sb₅

- Two likely distortion modes in kagome plane
 - "Star of David" (-*M*, *M*, *M*)
 - "Tri-Hexagonal" (*M*, *M*, *M*)
- DFT favors "Tri-Hexagonal"
 - ~10 meV/unit cell below SoD
 - Hengxin et al. PRL (2021)
- Modulation along c-axis can arise from phasing of Q in-plane or mixture of two distortion types

3D CDW-coupled distortion in CsV₃Sb₅

Structure of the CDW state in CsV₃Sb₅

- Inversion symmetry preserved
 - Second harmonic generation data
- Modulation between strongly distorted TrH and weakly distorted SoD layers
- Average structure
 - 2 domains included
 - Likely missing twinning effects due to subtle orthorhombic distortion

Indications of both SoD and TrH in ARPES

- Photoemission resolves band folding near K and M points
- Folding suggestive of both SoD and TrH models
- Consistent with 3Q=(*L*,*L*,*L*) order (but both are 2x2x2 cells)

Out-of-plane modulation suffers from local minima

- Others: Q. Chen et al., arXiv (2022) + Haoxiang Li et al., PRX (2021)
- Out-of-plane modulation depends on growth/disorder + thermal history
- Quenching vs slow cooling
- Irreversible changes after thermal cycling

3D CDW-coupled distortion in (K,Rb)V₃Sb₅

Unconventional behavior in CDW

ρ^{инε} (10⁻³ μΩ cm) _k $\mu_0 H(T)$

Yu et al., PRB (2021)

- Extraordinarily large AHE
 - Yang et al., Science Advances (2020)
- AHE appears coincident with CDW Yu et al., Phys. Rev. B (2021)

Kenney et al., J. Phys. Cond. Matt. (2021)

- Weak depolarization consistent with nuclear moments
- μsR measurements performed by Mike Graf at Boston College

Hints of TRSB in AV₃Sb₅

800

2600

2800

Nana Shumiya et al., Phys. Rev. B. (2021)

Not observed in other studies of KV₃Sb₅ (Hong Li et al., Nat. Phys. (2022))

No signature of CDW superlattice coupling to pulsed field unpublished

3000 3200 3400

Sigma DSO time (1e-5 s)

3800

3600

4000

(0.5,0.5,0.25) 61 shots

Other hints of TRSB in AV₃Sb₅

Scanning optical studies cont.

- CsV₃Sb₅ shows birefringence domains with mixed CD character
- Birefringence domains remain static on thermal cycles
- Some evolution in CD signal upon thermal cycling

Yishuai Xu et al., arXiv:2204.10116

Variety of flux phases predicted

Xilin Feng et al., Phys. Rev. B (2021)

Also: Lin and Nandkishore Phys. Rev. B. (2021) Park, Ye, and Balents., Phys. Rev. B (2021)

- Chiral flux states
 - Orbital antiferromagnets
- Primary and secondary orders
 - Real and "imaginary" CDW states

SC in AV_3Sb_5 (A=K, Cs, Rb)

Superconductivity in optimized AV₃Sb₅

SC state in AV₃Sb₅

• Evidence for multiband, multigap superconductivity

 Isotropic, gap and singlet pairing

- **TDO measurements***⁷* Weiyin Duan et al., Sci. China Phys. Mech. Astr.. (2021).
- NMR measurements: Chao Mu et al., Chin. Phys. Lett. (2021)

+ others...

Open questions:	Thermal transport C. C. Zhao et al. arXiv:2102.08356	Little-Parks effect Jun Ge et al. arXiv:2201.10352
	V-shaped gap and PDW instability Hui Chen et al., Nature (2021).	Nodal SC state, μsR Z. Guguchia et al., 2202.07713v1

Interplay between CDW and SC order

TSS near E_F and potential coupling to CDW

Staged CDW order

- 1D charge stripes appear below ~60K in CsV₃Sb₅
 Coexists with 3Q order
- Also observed in RbV₃Sb₅ (rarely in KV₃Sb₅)
- Bulk vs surface effect debated

Quasi-1D quasiparticle scattering

Hints of PDW order

- Superfluid density modulated along wave vector 4a/3
 - Matching new CDW wave vector at low-T
- Little-Parks effect
 - Transition into 4e, 6e pairing states
- Reminiscent of models:
 - D. F. Agterberg et al., Phys. Rev. B 84, 014513 (2011)
 - Zhaoyu Han et al., Phys, Rev, Lett. 125, 167001 (2020)

Hole-doping to tune vHs: $CsV_3Sb_{5-x}Sn_x$

CDW T*

 $-\blacksquare$ - midpoint T_c

0.8

0.6

0.4

 $-\bullet-$ onset T_c

Preferential site substitution

NQR data show shifts at only in-plane Sb site upon Sn-doping STM identifies Sn atoms in center of kagome net hexagons DFT suggests a preference for Sn on in-plane site

CDW order in CsV₃Sb_{5-x}Sn_x

 2x2x4 order destabilized

- Highly sensitive to disorder
- Thermal history
- Switches to shortrange 2x2x2
 - Quasi-2D
- CDW correlations vanish by x=0.15

Pressure-T phase diagram of SC

- High-pressure SC-II state universal across AV₃Sb₅
- Low-pressure "double dome" in SC-I state suggestive of phase competition

CsV₃Sb_{5-x}Sn_x vs high-pressure

Sn-doping in RbV₃Sb₅ and KV₃Sb₅

• Different starting CDW states

Other potential materials

Other kagome V-Sb families

Mengzhu Shi et al., arXiv:2110.09782. (2021)

$V_6 Sb_4$

• No phase transitions under ambient pressure

RV₆Sn₆ structure

Ganesh Pokharel et al., Phys. Rev. B (2021)

- MgFe₆Ge₆ structure type
- P6/mmm space group
- $[V_3Sn2][RSn1][V_3Sn2][Sn3]$
 - L. Romaka et al. J. All. Comp. (2011)
- Ideal V kagome net
- Triangular lattice of R-site ions
- Affords independent control of R-site magnetism and V-site kagome net

DFT bandstructure of YV₆Sn₆

Ganesh Pokharel et al., Phys. Rev. B (2021)

- Flat band above ~ 0.4 above E_F
- Dirac points at K-point and saddle points at M-point close to E_F

Surface states predicted due to Z2 metal

Ganesh Pokharel et al., Phys. Rev. B (2021)

	parity prod.			invariant	
band	δ_{Γ}	$\boldsymbol{\delta}_M$	δ_{A}	δ_{L}	$(\mathbb{Z}_2; \nu_1 \nu_2 \nu_3)$
173	+	+	+	+	(0;000)
171	—	—	+	—	(1;001)
169	_	+	_	—	(1;000)

Ganesh Pokharel et al., Phys. Rev. B (2021) Shutin Peng et al., Phys. Rev. Lett. (2021)

- Qualitative agreement between DFT and ARPES
- Band structure classified as Z2 topological metal
- Surface states predicted near the M- and K-points

Nonmagnetic Y-166

- Multiband transport
 - Parameterized by two-band fits below ~150 K
- High mobility metal

- Local magnetism dominated by weak impurity fraction (~0.3 $\mu_{\text{B}}/\text{f.u.})$
- Confirms nonmagnetic V-lattice (~2.7 Å V-V)

ScV₆Sn₆

Hasitha W. Suriya Arachichige et al., arxiv:2205.04582v1

- Transition near 100 K
- Distortion with q = (1/3, 1/3, 1/3)
- Much larger distortion that 135's

Conclusions

- New classes of kagome metals as platforms for searching for new electronic phases (interplay between correlation effects and topology)
- AV₃Sb₅ (A=K, Cs, Rb)
 - Unconventional CDW state with hints of TRSB
 - CDW order arises from saddle points nested near E_F
 - Multigap SC onsets within the CDW state
 - Unconventional interplay between CDW and SC orders
- Other classes of materials under investigation by community searching for comparable phenomenology
- Exciting new directions and much left to be done

