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What is nonequilibrium?
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An other setting: defects

d

ξ ! d

ξ

see Mark Hindmarsh’ talk

Strings appear as 
topological defects
in field theory.
Nonequilibrium QFT 
accounts for their decay.



The classical approach
Define a lattice field theory,
Solve the 2nd order
Klein-Gordon (or Maxwell)
equations(Here we have introduced the dimensionless time-step at, which should be chosen much smaller than a, and n denotes

the lattice site vectors.) The equation of motion to be solved numerically is the following:

Φn(t + at) + Φn(t − at) − 2Φn(t) − a2

t

a2

∑

i(Φn+̂i(t) + Φn−̂i(t) − 2Φn(t))

+ a2
t (−Φn + Φ3

n − h) = 0. (2.5)

The initial conditions for Eq.(2.5) were chosen as

Φ̇n(t = 0) = 0, Φn(t = 0) = Φ0 + ξΦ1. (2.6)

The random variable ξ is distributed evenly on the interval (−1/2, 1/2). Therefore the starting OP-value is Φ0. The
energy density E/Na2 is controlled through the magnitude of Φ1. In this study we have chosen Φ0 = 0.815 and
Φ1 = 4/

√
6. The latter corresponds to a temperature value Ti = 0.57 in the metastable equilibrium (from Eq.(4.5)).

This value is much below the critical temperature of the system (Tc # 1.5Ti). It has been checked that at this energy
density all other choices of Φ0 > 0, for fixed h, find a unique metastable equilibrium.

Eq.(2.5) was solved with a = 1 and with typical at values in the range (0.01-0.09). It has been checked that
the statistical characteristics of the time evolution is not sensitive to the variation of at, though the “release” time
(the moment of the transition from metastability to the true ground state) in any single run with given initial
conditions might change considerably under the variation of at/a. Three lattice sizes were systematically explored:
N = 64, 128, 256. Several single runs were performed also for N = 512 and N = 1000 with the aim to analyze in
more detail some self-averaging physical quantities on different portions of the trajectory under the assumption of the
ergodicity of the system. The magnetic field h inducing the transition was varied in the range h ∈ −(0, 0.08)/

√
6. For

the reconstruction of the effective potential felt by the OP also positive values were chosen up to h = 0.5/
√

6. The
smaller the value of |h| was fixed, the longer the “release” times have grown on the average. For this reason also the
runs were prolongated with decreasing |h|, and for the smallest |h| the length of a run reached up to (106 − 107)|m|−1

until the transition took place.
For a careful comparison of our transition statistics with the generally used statistical nucleation theory, and also

for understanding the systematics of its change when h has been diminished a large number of (h, N) pairs were
used in this analysis. Altogether 24 422 transition events have been recorded (for N = 64: 16 908, N = 128: 2 903,
N = 256: 4 411). For the largest systems at the smallest h the event rate was 1-2/day/ 400 MHz-processor.

III. TIME-HISTORY OF THE ORDER PARAMETER

A typical OP-history is displayed in Fig.1. In the same figure we show also the history of the OP mean square
(MS)-fluctuation (〈Φ2〉 − 〈Φ〉2) and of its third moment (〈(Φ − 〈Φ〉)3〉). The evolution of the non-zero k modes is
demonstrated in Fig.2, where the averaged kinetic energy content of the |k| < 2.5 and |k| > 2.5 regions is followed.
Although the separation value is somewhat arbitrary, namely it divides into two nearly equal groups the spatial
frequencies available in the lattice system, the figure demonstrates the most important features of the evolution of the
power in the low-|k| and high-|k| modes.

In general, five qualitatively distinct parts of the trajectory can be distinguished, although some of the first three
might be missing for some initial configurations and/or magnetic field strengths.
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FIG. 1. The time evolution of the order parameter, its MS fluctuation and the third moment. The example is selected from
runs on a N = 512 lattice with h = −0.04/

√
6 external source strength.

Initial condition: 
the field value is sampled from an ensemble 
that reproduces the n-point functions.
Evolution of the ensemble gives the n-point
functions at a later time.
This evolution is NONPERTURBATIVE

see Jan Smit’s talk

?
•continuum limit

•Bose-Einstein

•fermions
•physical cutoff !



The kinetic approach

Particles (balls) collide and interact
with a precalculated cross section.

Thermalization of gluons at RHIC including gg ↔ ggg interactions 3

Figure 1. Transverse momentum spectrum in the central region at different times obtained
from the simulation with gg ↔ ggg (left panel) and from the simulation without gg ↔ ggg
collisions (right panel).

Figure 2 shows the cross sections of various gluonic interactions and the corresponding
transport cross sections. The latter might be taken as a characteristic for momentum
degradation. While σgg→gg is significantly larger than σgg→ggg, its transport cross section
is smaller than that of typical gg → ggg collision. Inspecting the fraction of the transport
cross sections to the total cross sections we realize that the distribution of the collision
angle in gg → ggg processes is almost isotropic, while the gg → gg collisions are much
more forward peaked. Taking the contribution of ggg → gg collision to the equilibration
into account, the total inelastic interactions are the dominant processes compared to the
elastic collisions. Besides the kinetic scatterings plasma instabilities of the gluon field may
also have contribution to a very early and fast momentum equilibration [ 10]. The latter
should be further quantified.

We have also performed simulations when the momentum cutoff for the initial minijets
is taken smaller. It turns out that for the more dense system at p0 = 1.3−1.5 GeV (being
in line with the measured dET /dy) the full equilibrium comes slightly sooner at 1 − 2
fm/c. The timescale tends to saturate at smaller p0. These results will be presented in a
sequent paper.

Taking p0 = 1.4 GeV for the initial minijets we simulate the parton evolution for
noncentral collisions at RHIC energy in order to calculate the elliptic flow parameter v2.
Figure 3 shows the time evolution of v2 extracted in the central rapidity for various impact
parameter b. These calculations are still preliminary and no exhaustive tests have been
finished. We see that v2 increases with time and saturates at late times, 3 ∼ 5 fm/c.
The larger the initial space anisotropy is, the larger is the generated v2. The results
give us strong indication that an early pressure is being built up. The symbols in Fig.
3 mark the time from which the energy density in the central region decreases below 1
Gev/fm3. Therefore after this time the system can be hardly described by the dynamics
among partons. If we take the v2 values at the marked times as the contribution from the
partonic phase, one realizes that they lie well in the region covered by the experimental

with gg➙ggg with gg➙gg only
Example: Parton thermalisation Greiner,Xu 2005

Coherence is lost between collisions.
Gradient expansion has been used. What does justify it?

see also MM Müller’s talk



Initial value problem in QFT
NONEQUILIBRIUM FIELD THEORY

The 2PI effective action

Cornwall, Jackiw, Tomboulis 1974 ; Calzetta, Hu 1988

Ivanov, Knoll, Voskresensky 1988 ;

Define path integral along the closed time path contour

tt max

t    = 0init

Z [J,K] =
∫ ∏N

c=1Dϕc (x) exp
(
i
∫

C
d4x

[
L (x) +

Ja (x) ϕa (x)
]
+ i

2

∫

C
d4x

∫

C
d4y [ϕa (x) Kab (x, y) ϕb (y)]

)
,

W [J,K] = −i log (Z [J,K]) δW [J,K]/δJ = φ δW [J,K]/δK = (φ2 −G)/2

Γ [φ, G] = W [J,K]−
∫

C
d4x [Ja (x) φa (x)]

−1
2

∫

C
d4x

∫

C
d4y

[
Gab (x, y) Kab (x, y) + φa (x) Kab (x, y) φb (y)

]

JHWS05, Budapest
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This is the most general form to quartic order that is permitted by the symmetries. In the case

of an O(N) model a controlled expansion is enabled by the 1/N -series. It turns out that in the

limit of N → ∞ the quartic terms do not contribute and one arrives at a closed set of equations

for A, B and C. At finite N , however, one has to solve a rather complicated set equations, since

at next to leading order the quartic coefficients are involved too. Based on next-to-leading order

expansion in 1/N Bonini and Wetterich arrived at the disappointing result that the closed system

they analyzed can never reach the equilibrium, which raises questions to Boltzmann’s conjecture

[18]. The lack of thermalization is due to the infinite set of additional conserved quantities which

are not present in the exact system. Whether or not the observed irreversibility can turn to be a

driving force towards equilibrium in a more sophisticated approach remained an open question.

2.3.2 Formalisms based on the two particle irreducible effective ac-

tion

Closed time path formalism

This approach is based on the variational principle applied to the effective action. We are not

interested in the equilibrium features of the system but we are aiming at solving a quantum

initial condition problem. The definition of the effective action is based on the path integral

formalism that has to be extended to real time. This was realized by Schwinger and Keldysh

[74] by introducing the closed time path (CTP) formalism.

The CTP formalism is based on a time forward and backward unitary evolution operator

insertion in the quantum averaging formula:

〈

X̂
〉

(t) = Trρ̂(t)X̂ (t0) = TrÛ(t, t0)ρ̂(t0)Û−1(t, t0)X̂ (t0) (2.116)

with

Û(t, t′) = exp

[

−i

∫ t

t′
Ĥ(t′′)dt′′

]

. (2.117)

Thus, we have a forward and backward time evolution operator, which is merely due to the

fact that we consider the time-dependent density operator. In the path integral formalism these

two time variables form the basis of Feynman’s influence integral. This formalism has already

proved to be a useful tool in the search for the origin of irreversibility in quantum mechanics

[75]. The influence integral formalism can be further compactified by using the same notation for

the both time variables. The distiction between the time variables in the forward and backward

time integrals in the path-integral formalism is done by adding an infinitesimal imaginary shift

with opposing sign (±iε) and forming thereby an integration contour like Fig. 2.2.

Finally one arrives at the usual form of the path integral with the only difference that the
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Figure 2.2: Closed time path C for real time field theories [74]. There are two values of the time

variable for each physical time. The time ordering and the integration is carried out along this

path. Here tmax is the final time of interest in the real time evolution.

time-like integration of the Lagrangian goes along the CTP contour.

Z[J ] =

∫

Dφe
i

R

C

dx[L(x)+J(x)φ(x)]
(2.118)

The conventional path integral formalism automatically generates time ordered n-point func-

tions. Similarly the derivatives of the generating functional in the real-time path integral for-

malism yield contour-ordered n-point functions.

In the literature one finds the following standard notations for the propagators in case of real

scalars:

G>
ij(x, y) = 〈ϕi(x)ϕj(y)〉

G<
ij(x, y) = 〈ϕj(y)ϕi(x)〉

Gij(x, y) = 〈TCϕi(x)ϕj(y)〉

iG0 = (∂2 + m2)−1 (2.119)

Here we used TC to denote the contour ordered prescription of calculating the averages. For

these propagators the following identities hold

Gij(x, y) = ΘC(x0, y0)G
>
ij(x, y) + ΘC(y0, x0)G

<
ij(x, y)

G>
ij(x, y) = G<

ji(y, x)

Gij(x, y) = Gji(y, x), (2.120)

where we introduced the contour step function:

ΘC(t, t
′) =













Θ(t − t′) if both t and t′ ∈ C+

Θ(t′ − t) if both t and t′ ∈ C−

1 if t ∈ C− and t′ ∈ C+

0 if t ∈ C+ and t′ ∈ C−

, (2.121)

C+ stands for the upper (forward) branch (2.122)

C− stands for the lower (backward) branch. (2.123)
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Propagators:
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It is often more convenient to work with the symmetric propagator and the spectral function:

Fij(x, y) =
1

2

(

G>
ij(x, y) + G<

ij(x, y)
)

ρij(x, y) = i
(

G>
ij(x, y) − G<

ij(x, y)
)

, (2.124)

which obey the identites:

Gij(x, y) = Fij(x, y) −
i

2
ρij(x, y)sgnC(x0, y0) (2.125)

δC(x0, y0)ρij(x, y) = 0

δC(x0, y0)∂x0ρij(x, y) = δC(x, y). (2.126)

The last two equations are the consequences of Heisenberg’s commutation relations. Here we

introduced the contour sign and delta functions

sgnC(x0, y0) = ΘC(x0, y0) − ΘC(y0, x0) (2.127)

δC(t, t
′) =















δ(t − t′) if both t and t′ ∈ C+

−δ(t − t′) if both t and t′ ∈ C−

0 if t ∈ C− and t′ ∈ C+

0 if t ∈ C+ and t′ ∈ C−

, (2.128)

The 2PI effective action

The two particle irreducible (2PI) effective action is introduced similarly to the 1PI effective

action, with the difference of adding a source term for the composite operator φa(x)φb(y) as well

[72]:

Z [J, K] =

∫ N
∏

c=1

Dϕc (x)



exp



i

∫

C

d4x [L (x) + Ja (x) ϕa (x)] (2.129)

+
i

2

∫

C

d4x

∫

C

d4y [ϕa (x) Kab (x, y)ϕb (y)]







 , (2.130)

the subscript C refers to the closed time path (CTP) contour for the time integral. The spatial

integral is standard.

The connected n-point Green’s functions may be obtained by taking the functional derivatives

of

W [J, K] = −i log (Z [J, K]) ,

which is now depending also on K. The 1PI effective action we obtained by a Legendre transform

of W . Now we carry out a Legendre transform with respect to K as well and arrive at

Γ [φ, G] = W [J, K] −
∫

C

d4x [Ja (x) φa (x)]

CHAPTER 2. APPROXIMATION SCHEMES TO FIELD DYNAMICS 38

It is often more convenient to work with the symmetric propagator and the spectral function:

Fij(x, y) =
1

2

(

G>
ij(x, y) + G<

ij(x, y)
)

ρij(x, y) = i
(

G>
ij(x, y) − G<

ij(x, y)
)

, (2.124)

which obey the identites:

Gij(x, y) = Fij(x, y) −
i

2
ρij(x, y)sgnC(x0, y0) (2.125)

δC(x0, y0)ρij(x, y) = 0

δC(x0, y0)∂x0ρij(x, y) = δC(x, y). (2.126)

The last two equations are the consequences of Heisenberg’s commutation relations. Here we

introduced the contour sign and delta functions

sgnC(x0, y0) = ΘC(x0, y0) − ΘC(y0, x0) (2.127)

δC(t, t
′) =















δ(t − t′) if both t and t′ ∈ C+

−δ(t − t′) if both t and t′ ∈ C−

0 if t ∈ C− and t′ ∈ C+

0 if t ∈ C+ and t′ ∈ C−

, (2.128)

The 2PI effective action

The two particle irreducible (2PI) effective action is introduced similarly to the 1PI effective

action, with the difference of adding a source term for the composite operator φa(x)φb(y) as well

[72]:
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∏
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

exp


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i

2
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The connected n-point Green’s functions may be obtained by taking the functional derivatives

of

W [J, K] = −i log (Z [J, K]) ,

which is now depending also on K. The 1PI effective action we obtained by a Legendre transform

of W . Now we carry out a Legendre transform with respect to K as well and arrive at

Γ [φ, G] = W [J, K] −
∫

C

d4x [Ja (x) φa (x)]

Aarts, Berges 2001



THERMALIZATION OF QUANTUM FIELDS 4

What is thermalization?

Thermal equilibrium:

ρ̂ = e−βĤ/Tre−βĤ
〈
X̂

〉
= TrX̂ ρ̂

Is thermalization possible in closed nonlinear system?

• Ch. Wetterich: Equilibrium is a fixed point of the evolution

• ρ −→/ e−βĤ/Tre−βĤ Unitarity!

• 〈Ĥ〉=const. uniquely determines the equilibrium ensemble.

But: 〈Ĥ2〉, 〈Ĥ3〉, . . . conserved (initial conditions)

• The quantum ensemble cannot converge to equilibrium!

• Still, the quantum average of some selected observables may converge to

the equilibrium value:

〈Φ(x)Φ(y)〉noneq −→ 〈Φ(x)Φ(y)〉thermal , as x0, y0 →∞

Is the dynamics irreversible?

Quantum 
Mechanics



Perturbation theory fails
ẍ(t) + 2γẋ(t) + m2x(t) = 0

x(t) = A sin(t
√

m2 − γ2)e−tγ

x(t) = A cos(tm)(1− tγ)
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Secular behaviour:
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A nonperturbative approach:
Let’s simulate on a lattice!

∂ϑφ(x,ϑ) = − δSE [φ]
δφ(x,ϑ)

+ η(x,ϑ)

〈η(x1,ϑ1)η(x2,ϑ2)〉 = 2δ(ϑ1 − ϑ2)δ(4)(x1 − x2)

Euclidean Langevin equation:

Langevin equation
 on the closed time path contour

∂φ(Cj)
∂ϑ

= i
∂S

∂φ(Cj)
+ ηj(ϑ)

Contour points: Cj

Parisi,Wu 1981

see Dénes Sexty’s talk

In this algorithm 
probabilities

are never used.

Reproduces the hierarchy 
of SD equations.



It really does converge in real time, too!

〈x(t)〉 〈x(t)x(t)〉c

−1

−0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2

<ϕ
(t)

>

t

Schrödinger (complex time)
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stochastic (tfinal=2)
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stochastic (tfinal=0.5)
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!

(t)
> c

t

Schrödinger (complex time)
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stochastic (tfinal=2)
stochastic (tfinal=1)

stochastic (tfinal=0.5)

Toy model: anharmonic oscillator

Comparison with Schrödinger’s equation:

ρ̂
Use the action with comlex Δt, 
with two branches 
and with     being part of the action.  ρ̂

Challenge: Is the solution unique?

Berges, S.B, 
Stamatescu, 

Sexty 2005-...



A diagrammatic approach:
the 2PI resummation

Nonequilibrium field theory Szabolcs Borsányi

= + +

!

+

G
0

= + ++
G

Figure 2: Graphical representation of the 2PI equations of motion. The upper equation shows the self

energy in the simple truncation of the scalar "4 theory at three loop order. The thick lines stand for the

self-consistent propagator (G), which is a subject of Dyson resummation (lower equation) using the free

propagator (thin lines) and this self energy.

= +
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Figure 3: Nonequilibrium interpretation of the ladder resummation. For any perturbative order there is

a time when its contribution starts being relevant. A given order may account for some finite number of

elementary collisions. After that number of elementary processes new orders will become of the same order.

The 2PI ladder resummation considers all orders and solves the problem of secularity.

other particles. One may associate a time scale # to these elementary processes. In a period of

n# , n elementary collisions occur per particle on average. Beyond this period of time diagrams

with more rungs start becoming relevant, hence higher perturbative orders are necessary. This

phenomenon, called secularity, forbids the perturbative treatment of nonequilibrium fields, and

calls for the resummation of this chain of ladders. This chain of ladders is what 2PI actually

resums.

If one now tries to calculate a four-point function out of ![Ḡ] by cutting a line, one realizes

soon that only one of the three possible channels are resummed, the Bose symmetry is broken.

This is the reason we did not define the propagator as Ḡ, the solution of the 2PI equations of

motion, but used the 1PI effective action instead to introduce the proper two-point function G in

Eq. (2.1). The difference between Ḡ and G are diagrammatically exemplified in Fig. 4. In many

cases (see Eq. (2.12)) they agree at $ ≡ 0, therefore we show a selection of $ -dependent diagrams

only. The channels missing from Ḡ can be included by solving a further (Bethe–Salpeter) equation

[25, 26, 22]. This equation follows from the definition of G without additional theoretical input.

In Fig. 5 we give its diagrammatic form, showing the NLO contribution only. One can show for

the truncations obeying Eq. (2.12), that the Bethe–Salpeter equation is the equation of motion

for % 2Ḡ($ ;x,y)/%$2 at vanishing background, which is required to carry out the derivatives in

Eq. (2.1). The four-point box contributes symmetrically in each channel to Eq. (2.1), this restores
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NONEQUILIBRIUM FIELD THEORY

Symmetries of the effective action

The 1PI effective action inherits the linear symmetries of the underlying

theory. Even if truncated

Γ2PI[φ, G[φ]]
∣∣
G[φ]=solution at φ

= Γ1PI[φ]

The implicit φ dependence in δΓ[φ,Gsolution[φ]]
δG = 0 realizes a partial

resummation to infinite orders. (two-particle reducible graph)

Truncated theroy: Γ2PI: Γ1PI:

The 2PI effective action is a tool to derive the resummed 1PI effective action.

JHWS05, Budapest

NONEQUILIBRIUM FIELD THEORY

Renormalization (φ4 theory)

van Hees, Knoll 2002 ; Blaizot, Iancu, Reinosa 2003 ;

Berges, Borsanyi, Reinosa, Serreau 2004

Relevant operators in Γint: G · G G · φ2 φ4

Counterterms:
+ +

Renormalization conditions (φ4, tadpole+basketball/sunset)

VR = δ2iG−1
R [φR]

δφRφR

∣∣∣
φR=0

p=0=⇒ −4!g2
R

δ2Γ[φR, GR[φR]]
δφR(x)φR(y)

∣∣∣
φR=0

≡ iG−1
R [φR]|φR=0 identity

Γ(4) ≡ δ4Γ[φR,GR[φR]]
δφRδφRδφRδφR

∣∣∣
φR=φR,0

p=0=⇒ −4!g2
R
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The 2PI effective action

NONEQUILIBRIUM FIELD THEORY

The 2PI effective action

Cornwall, Jackiw, Tomboulis 1974 ; Calzetta, Hu 1988

Ivanov, Knoll, Voskresensky 1988 ;

Define path integral along the closed time path contour

tt max

t    = 0init

Z [J,K] =
∫ ∏N

c=1Dϕc (x) exp
(
i
∫

C
d4x

[
L (x) +

Ja (x) ϕa (x)
]
+ i

2

∫

C
d4x

∫

C
d4y [ϕa (x) Kab (x, y) ϕb (y)]

)
,

W [J,K] = −i log (Z [J,K]) δW [J,K]/δJ = φ δW [J,K]/δK = (φ2 −G)/2

Γ [φ, G] = W [J,K]−
∫

C
d4x [Ja (x) φa (x)]

−1
2

∫

C
d4x

∫

C
d4y

[
Gab (x, y) Kab (x, y) + φa (x) Kab (x, y) φb (y)

]
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JHWS05, Budapest

1st Legendre transform: effective action (1PI diagrams)
2nd Legendre transform: 2PI effective action (2PI diagrams)

Cornwall,Jackiw, Tomboulis 1974, 
Calzetta,Hu 1988; 

Ivanov,Knoll,Voskresensky 1988
Cooper at al (2PI,BVA) 2000

Result:  ladder resummation,
no overcounting



NONEQUILIBRIUM FIELD THEORY

2PI equations of motion

(a)
δΓ[φ,G]
δφa(x) = −Ja (x)−

∫

C
d4y [Kab (x, y) φb (y)] != 0

(b)
δΓ[φ,G]

δGab(x,y) = −1
2Kab (x, y) != 0 → Gab(x, y;φ) = 〈TCϕ̂(x)ϕ̂(y)〉c

Decomposition:

Γb [φ, G] = S [φ] + i
2trC

[
log

[
G−1

]]
+ i

2trC
[
G−1

0 G
]
+ Γint [φ, G] + const

Γf [ψ, D] = S [ψ]− itrC
[
log

[
D−1

]]
− itrC

[
D−1

0 D
]
+ Γint [ψ, D] + const

With Σf(x, y) ≡ 2iδΓint[G]
δG(y,x) Σs(x, y) ≡ −iδΓint[D]

δD(y,x)

(∂2
x + m2)Gab(x, y) =

∫

C
d4zΣab (x, z;G, D) Gbc (z, y) + δC(x, y)δab,

(∂/x + imf)Dij(x, y) =
∫

C
d4zΣik(x, z;G, D)Dkj(z, y) + δ4

C(x, y)δij

← equivalent to Kadanoff–Baym equations
JHWS05, Budapest

Equations of Motion
are the stationarity conditions:
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Time explicite equations

We consider the real and imaginary part of the propagator:

Dij(x, y) = Fij(x, y)−
i

2
ρij(x, y)sgnc(x

0, y0)

For fermionic fields:

(i∂/−m− Σ0) F (x, y) =

x0Z
dzΣρ(x, z)F (z, y)−

y0Z
dzΣF (x, z)ρ(z, y)

(i∂/−m− Σ0) ρ(x, y) =

x0Z

y0

dzΣρ(x, z)ρ(z, y)

For scalar fields:

“
∂2

x + m2 + Σ0,i(x)
”

Fij(x, y) =

y0Z
dzΣF

ik(x, z)ρkj(z, y)−
x0Z

dzΣρ
ik(x, z)Fkj(z, y)

“
∂2

x + m2 + Σ0,i(x)
”

ρij(x, y) =

y0Z

x0

dzΣρ
ik(x, z)ρkj(z, y)

EoM: in terms of real time propagators:

CHAPTER 2. APPROXIMATION SCHEMES TO FIELD DYNAMICS 38

It is often more convenient to work with the symmetric propagator and the spectral function:

Fij(x, y) =
1

2

(

G>
ij(x, y) + G<

ij(x, y)
)

ρij(x, y) = i
(

G>
ij(x, y) − G<

ij(x, y)
)

, (2.124)

which obey the identites:

Gij(x, y) = Fij(x, y) −
i

2
ρij(x, y)sgnC(x0, y0) (2.125)

δC(x0, y0)ρij(x, y) = 0

δC(x0, y0)∂x0ρij(x, y) = δC(x, y). (2.126)

The last two equations are the consequences of Heisenberg’s commutation relations. Here we

introduced the contour sign and delta functions

sgnC(x0, y0) = ΘC(x0, y0) − ΘC(y0, x0) (2.127)

δC(t, t
′) =















δ(t − t′) if both t and t′ ∈ C+

−δ(t − t′) if both t and t′ ∈ C−

0 if t ∈ C− and t′ ∈ C+

0 if t ∈ C+ and t′ ∈ C−

, (2.128)

The 2PI effective action

The two particle irreducible (2PI) effective action is introduced similarly to the 1PI effective

action, with the difference of adding a source term for the composite operator φa(x)φb(y) as well

[72]:

Z [J, K] =

∫ N
∏

c=1

Dϕc (x)



exp



i

∫

C

d4x [L (x) + Ja (x) ϕa (x)] (2.129)

+
i

2

∫

C

d4x

∫

C

d4y [ϕa (x) Kab (x, y)ϕb (y)]







 , (2.130)

the subscript C refers to the closed time path (CTP) contour for the time integral. The spatial

integral is standard.

The connected n-point Green’s functions may be obtained by taking the functional derivatives

of

W [J, K] = −i log (Z [J, K]) ,

which is now depending also on K. The 1PI effective action we obtained by a Legendre transform

of W . Now we carry out a Legendre transform with respect to K as well and arrive at

Γ [φ, G] = W [J, K] −
∫

C

d4x [Ja (x) φa (x)]

(or with opposite signs for the fermions)



Timescales of losing information
Nonequilibrium field theory Szabolcs Borsányi
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Figure 9: Fermion occupation number for three different momentum modes as a function of time in the

chiral quark meson model of Ref. [21].
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Figure 10: The ratio of average pressure over energy density w as a function of time. The inset shows

the early stages for two different couplings h and demonstrates that the prethermalization time is rather

independent of the interaction details.

of hydrodynamics for collision experiments [2] is the approximate isotropy of the local pressure.

More precisely, the diagonal (space-like) components of the local energy-momentum tensor have

to be approximately equal. Of particular importance is the possible isotropization far from equi-

librium. The relevant time scale for the early validity of hydrodynamics could then be set by

the isotropization time. The analysis of scalar models lead to an isotropization time given by the

comparably long characteristic damping time ∼ tdamp [30]. In gauge theories, however, there is

a weak-coupling mechanism for faster isotropization identified as plasma instabilities [34, 6, 7].

Whether this can explain the observations or whether they suggest that we have to deal with some

new form of a “strongly coupled Quark Gluon Plasma” is an important open question.

Acknowledgments

The speaker acknowledges the collaboration with Jürgen Berges, Urko Reinosa, Julien Serreau

and Christof Wetterich on related subjects and the fruitful discussions with Antal Jakovác.
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evolution of the spectrum:Nonequilibrium field theory Szabolcs Borsányi
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Figure 6.6: The time-dependent fermion quasi-particle distribution nf(t, p) as a function of

mode energy p for various times t. We have plotted the inverse slope function log(1/nf − 1),

which reduces to a straight line intersecting the origin when nf (t, p) approaches a Fermi-Dirac

distribution. This plot shows the data for run “A” of Fig. 6.2.

In Figs. 6.6 and 6.7 we show the effective quasi-particle number distributions defined as

1

2
− nf (t, p) = FV (t, t; p) (6.23)

for fermions and

1

2
+ n(t, p) = ε(t, p) Fφ(t, t; p) , (6.24)

ε(t, p) =

(
∂t∂t′Fφ(t, t′; p)

Fφ(t, t′; p)

)1/2

t=t′
(6.25)

for scalars, where ε(t, p) is the quasi-particle mode energy as discussed in 4.5.5 The curves

correspond to the initial conditions of run “A” shown in Figs. 6.2 and 6.3. One observes how

the effective fermion and boson particle numbers change with time, the former approaching

a Fermi–Dirac and the latter a Bose–Einstein distribution. To emphasize this point, we plot

the corresponding “inverse slope functions” log(1/nf − 1) and log(1/n + 1), which reduce to

straight lines for Fermi–Dirac and Bose–Einstein distributions respectively. The associated in-

verse slopes correspond to the temperature of the thermal equilibrium distributions. We see in

Figs. 6.6 and 6.7 that both inverse slope functions approach straight lines at late times. The

5Note that because of chiral symmetry there is no mass term present for the fermions and the corresponding

quasi-particle mode energy is simply p.

Linear: Fermi-Dirac statistics
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Figure 6.7: The time-dependent boson quasi-particle distribution n(t, p) as a function of mode

energy ε(t, p) (see text) for various times. In this case the inverse slope function is log(1/n + 1),

which reduces to a straight line in case of a Bose-Einstein distribution. This plot shows the data

for run “A” of Fig. 6.3.

associated temperatures for fermions and bosons are independent of time and agree very well

with each other, as shown in Fig. 6.8. For comparison, we display in Fig. 6.8 the fermion in-

verse slope function evaluated with the bosonic effective particle number, and vice versa. This

illustrates the degree of sensitivity of the inverse slope functions to the different statistics and

in turn the degree of precision with which we are able to probe thermalization.

6.2 Ising-like dynamical signatures and the end-point of

the QCD transition line

The quality of our knowledge of the phase structure of QCD at high temperature and finite

baryon density is an important benchmark for our understanding of strong interactions.

A critical end-point of the first order phase transition line in the T − µ-projection of the

QCD phase diagram was conjectured [103] to follow from the compatibility of the following

observations:

i) Lattice simulations [6] indicate that the phase transformation at zero chemical potential

with realistic quark masses is a crossover, characterized by an analytic variation of the thermo-

dynamical potential with the temperature (see Fig. 6.9a);

ii) At zero temperature there is a first order phase transition from the hadron phase to more

Linear: Bose-Einstein statistics

scalars

fermions



A growing number of studies...
Scalars:
1+1dim: Cox&Berges2000, Aarts&Berges2001,2002 (vs exact, vs classical)

Blagoev&Cooper&Dawson&Mihaila 2001 (BVA)
Berges 2002 (O(N) resummation)
Gasenzer&Pawlowski 2007 (an RG approach)

2+1dim: Juhem&Cassing&Greinen 2001 (vs transport)
3+1dim: Danielewicz 1984 (nonrelativistic, vs. kinetic theory)

Berges&Borsanyi 2005 (isotropisation, vs. transport theory)
Muller&Lindner 2005 (vs. kinetic theory) 
Berges&Serreau 2002 (parametric resonance)
Tranberg&Arrizabalaga&Smit 2004,2005 (bg field, tachionic instability)
Tranberg&Rajantie 2006 (looking for defects)
Aarts&Tranberg 2008 (inflationary)

Yukawa:
3+1dim: Berges&Borsanyi&Serreau/Wettterich 2003

Muller&Lindner 2007 (vs. kinetic theory)

Cold atoms:
1+1dim: Berges&Gasenzer(&Seco&Schmidt) 2005,2007 (vs classical)

Gasenzer&Temme 2008 (inhomogeneous)
Braunschadel&Gasenzer 2008 (vs. transport)



The final state
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Boltzmann equation
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Before equilibration:
F and ρ are related 
through n(t,ω).

G>(ω) = eβωG<(ω)

F (ω) = −i(
1
2

+ nB(ω))ρ(ω)

particle 
number

Berges,SB,Serreau 2003,
SB 2004



What is the stationary solution?
from analytics

KMS condition: F̃ (ω) = −i

(

1

2
+ nBE(ω)

)

ρ̃(ω) (22)

Sum rule:
dρ(t)

dt

∣

∣

∣

∣

t=0

= 1 (23)

Here nBE(ω) = 1/(exp(βω)− 1) is the Bose-Einstein thermal particle distri-
bution. The KMS condition can also be rewritten in the other usual form:

G̃<(ω) = e−βωG̃<(−ω) (24)

For any given Σρ one can solve Eq. (??). In order to caluculate Σρ

from a given ρ we also need F , which we get from the KMS condition (??).
(This step assumes that we know ρ on the entire time axis, which is in
numerics, only approximately true.) This defines an itereative procedure
that (if converges) will result in an F and a ρ function, which make Σρ and
ΣF also known.

We can make a statement on the obtained solution: If we find a ρ(t) that
satisfies Eq. (??) and (??), the corresponding F (t) will solve Eq. (??).

This statement is more interesting in the opposite direction: if ρ and F are
stationary solutions of the corresponding real-time equations of motion, then
F and ρ are connected by the KMS condition (??) with some temperature
parameter. This would also mean that if a (numerical) solution of the stan-
dard equations (??) converges to time translation invariant F and ρ values
(for large x0 + y0) then than stationary solution corresponds to equilibrium
(i.e. there is a KMS condition between F and ρ). This lets us understand,
why the 2PI scheme allows the description of thermalisation. Unfortunately,
the statement in this direction does not hold in general. There can be other,
quasi-stable, non-thermal solutions, which is, in fact, a physical effect, related
to Kolmogorov turbulence []. These non-trivial solutions usually require in-
finite volume and continuum limit, they are often only approximate, even
then. Of course, in trivial truncations (e.g. Hartree) the memory integral
is absent and any factor between F̃ (ω) and ρ̃(ω) can persist. In most nu-
merically studied cases, however, the late-time KMS condition was granted
[].

We give a proof to the previous statement for (the practically feasable) low
loop orders only and then give arguments for the general case, too. Eqs. (??)
and (??) read in Fourier space:

(−p2
0 + ω2

p)F̃ (p) =

∫

dω

2π

[

Σ̃F (p)ρ̃(ω; %p)

i(p0 − ω − iε)
+

Σ̃ρ(ω; %p)F̃ (p)

i(p0 − ω + iε)

]

(25)

(−p2
0 + ω2

p)ρ̃(p) =

∫

dω

2π

[

Σ̃ρ(p)ρ̃(ω; %p)
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+

Σ̃ρ(ω; %p)ρ̃(p)

i(p0 − ω + iε)

]

, (26)
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∣

∣

∣

∣
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Σ̃F (ω) = −i

(
1
2

+ nBE(ω)
)

Σ̃ρ(ω)

then the two equations are equivalent.

There is a stationary solution that satisfies KMS.

This means late time thermalisation (if          )ΣF/ρ != 0



The sunset diagram (2→2)

with ω2
p = m2+p2+Σ0. If ρ̃ is a solution to Eq. (??) and F̃ (ω) = −iα(ω)ρ̃(ω)

and Σ̃F (ω) = −iα(ω)Σ̃ρ(ω) with any α(ω), clearly, F̃ is a solution to Eq. (??).
Any generalized KMS condition that relates F̃ to ρ̃ and also holds for the

self energies can correspond to a stationary solution. (In the Hartree approx-
imation, which is the lowest order truncation of the 2PI effective action, ΣF

and Σρ are zero, so there is a stationary solution with any α.)
Let us now consider the thermal α(ω) = nBE(ω)+1/2. In a scalar theory

with the sunset diagram Σ<(x, y) = −λ2/6 [G<(x, y)]3 we can write:

Σ<(ω, %x) = −
λ2

6

∫

dω1

2π

dω2

2π

dω3

2π
δ(ω − ω1 − ω2 − ω3)

G<(ω1, %x)G<(ω2, %x)G<(ω3, %x)

= −
λ2

6

∫

dω1

2π

dω2

2π

dω3

2π
δ(ω − ω1 − ω2 − ω3)e

−βω1−βω2−βω3

G<(−ω1, %x)G<(−ω2, %x)G<(−ω3, %x)

= −
λ2

6

∫

dω1

2π

dω2

2π

dω3

2π
δ(ω − ω1 − ω2 − ω3)e

−βω

G<(−ω1, %x)G<(−ω2, %x)G<(−ω3, %x)

= −
λ2

6

∫

dω1

2π

dω2

2π

dω3

2π
δ(−ω − ω1 − ω2 − ω3)e

−βω

G<(ω1, %x)G<(ω2, %x)G<(ω3, %x)

= Σ<(−ω, %x)e−βω (27)

It is straightforward to repeat this calculation for any of the actual diagrams
used in numerics, so far, including two-loop QED or the large-N resumma-
tion of the O(N) model, where we have similar (two-loop) diagrams in the
auxilliary field formalism.

A generic proof is also possible by relating the real time Σ< to Σ on the
Euclidean contour by an analytic continuation. This is possible, since the
Feynman-rules we use in Euclidean field theory are the Wick-rotated rules
of the Minkowsi field theory. Σ is usually a polynomial of the propagator,
as such, it preserves the analytical features of the propagator. The KMS
condition corresponds to a reflection symmetry in the imaginary time (with
respect to the line at −iβ/2). If all the propagators obey this symmetry, the
self energies do so as well. (Fermionic self energies will be antisymmetric,
the antisymmetric fermionic propagators will contribute symmetrically in
the bosonic self energies, since they appear in closed loops only.) For this
argument we do not need the any assumption about G< other than the KMS
condition and analyticity. The actual definition of Wick rotation, that one
can use to complete this proof, we detail in the next section.
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The self energy inherits the KMS condition from G.

(similar argument for any two-loop diagram)

 What we see in numerics is a genuine thermalisation.
?



Late time   is   equilibrium

4 Wick rotation

The renormalisation strategy of the Φ-derivable theories has been gradually
clarified in Refs. []. A core element in the proof of correctness of the renor-
malisation recipe detailed and used in Ref. [] is Weinberg’s theorem [] that
gives the asymptotic behaviour of (renormalised) subdiagrams. Although it
is possible to use the Källen-Lehmann representation [] of the spectral func-
tion and proceed in real time formalism [], Weinberg’s theorem applies to the
Wick rotated theory, and despite of the real-time application, we will carry
out the renormalisation in Euclidean space-time.

Let us start from G̃<(p) obeying the KMS condition (??) at some temper-
ature 1/β. The step of Wick rotation one can simply make with the following
definition of the Euclidean propagator and self enery:

GE(τ ; #p) =

∫

dω

2π
G̃<(ω, #p)eτω (28)

ΣE(τ ; #p) =

∫

dω

2π
Σ̃<(ω, #p)eτω . (29)

Using these definitions the Wick rotation is possible at any temperature
without talking about the rotation of momentum axes.

We emphasize that τ can be any complex time value with a real part:
0 < Re τ < β. The Euclidean propagator (and also the self energy) inherits
the following KMS condition: GE(τ) = G(β − τ). We extend the definition
to negative real parts: GE(τ) = −GE(τ). The sum rule (??) appears now as
dGE(τ)/dτ |τ=±0 = ∓1/2.

Let us now consider any time contour (for t = −iτ) that starts form zero,
ends at −iβ and is monotonic in imaginary time. This includes both the
CTP and the plain Euclidean contour in Fig. ??. If G< is a solution of the
real time Schwinger-Dyson equation (at any temperature), then its analytical
continuation in terms of Eq. (??) (GE) will solve the Euclidean equation:

(−∂2
τ + ω2

p)GE(τ) − δ(τ) = −

∫

dτ ′ΣE(τ − τ ′)GE(τ ′) . (30)

Here and in most of the upcoming formulae we do not indicate the spatial
momentum dependence, which plainly acts as an irrelevant index in this case.

In order to prove this statement let’s suppose iG̃<(ω, #p)f(ω) = ρ̃(ω, #p)
and iΣ̃<(ω, #p)f(ω) = ρ̃(ω, #p). This is a generalized KMS condition, which
corresponds to equilibrium if f(ω) = eβω − 1. The equation of motion for
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and

the last line evaluates the sunset diagram. At initial time the sunset dia-
gram evaluates to zero. If we use the thermal counterterms at initial time
the coupling constant of the tadpole term (as well as the mass term) will
have a redundant infinity in T 00, which will be removed with the elapse of
time t when the memory integral grows with the evolving time. Since the
constant T 00 cannot perform a divergent evolution it is the divergent cut-off
dependence of F that must compensate for the initial-time divergency in T 00,
hence the evolution cannot be renormalised with any counterterms.

The problem with the Gaussian initial condition can also seen as a mani-
festation of a switching-on effect. Indeed, the lower boundaries of the memory
integrals in the F -equation ?? can be sent to −∞ if we introduce a coupling
that we switch of at x0 = 0: λ(x0) = λΘ(x0). After switching on the in-
teraction, we need a different set of counterterms do renormalise a different
set of diagrams. In particular, the absence of the four-point function in the
Gaussian initial condition makes it impossible to cancel the counterterms.

The lesson from this example is that not only the equations but also the
initial conditions have to be renormalised.

3 Stationary solutions in real time

Before trying to renormalise the initial value problem let’s first discuss the
equilibrium solution in real time. For this purpose we consider the real time
contour with an initial time sent to −∞. Then the stationary (x0 + y0

independent) solution in terms of F (x− y) = F (x, y) and ρ(x− y) = ρ(x, y)
read:

(

∂2
x + m2 + Σ0

)

F (x) =

0
∫

−∞

dz4ΣF (x − z)ρ(z) −

x0
∫

−∞

dz4Σρ(x, z)F (z)(19)

(

∂2
x + m2 + Σ0

)

ρ(x) = −

x0
∫

0

dz4Σρ(x − z)ρ(z) (20)

The integrals are well defined here, since both F and ρ decay with increasing
(negative) time in their arguments, except in trivial truncations where whole
right-hand-side is absent.

These equations do not have a unique translation invariant solution. We
expect that at any finite temperature there are translation invariant solutions,
and there is no reference to the temperature here. To fix this, we fix F and
ρ as a solution of the following three equations:

ρ-equation: Eq. (??) (21)

6

KMS condition: F̃ (ω) = −i

(

1

2
+ nBE(ω)

)

ρ̃(ω) (22)

Sum rule:
dρ(t)

dt

∣

∣

∣

∣

t=0

= 1 (23)

Here nBE(ω) = 1/(exp(βω)− 1) is the Bose-Einstein thermal particle distri-
bution. The KMS condition can also be rewritten in the other usual form:

G̃<(ω) = e−βωG̃<(−ω) (24)

For any given Σρ one can solve Eq. (??). In order to caluculate Σρ

from a given ρ we also need F , which we get from the KMS condition (??).
(This step assumes that we know ρ on the entire time axis, which is in
numerics, only approximately true.) This defines an itereative procedure
that (if converges) will result in an F and a ρ function, which make Σρ and
ΣF also known.

We can make a statement on the obtained solution: If we find a ρ(t) that
satisfies Eq. (??) and (??), the corresponding F (t) will solve Eq. (??).

This statement is more interesting in the opposite direction: if ρ and F are
stationary solutions of the corresponding real-time equations of motion, then
F and ρ are connected by the KMS condition (??) with some temperature
parameter. This would also mean that if a (numerical) solution of the stan-
dard equations (??) converges to time translation invariant F and ρ values
(for large x0 + y0) then than stationary solution corresponds to equilibrium
(i.e. there is a KMS condition between F and ρ). This lets us understand,
why the 2PI scheme allows the description of thermalisation. Unfortunately,
the statement in this direction does not hold in general. There can be other,
quasi-stable, non-thermal solutions, which is, in fact, a physical effect, related
to Kolmogorov turbulence []. These non-trivial solutions usually require in-
finite volume and continuum limit, they are often only approximate, even
then. Of course, in trivial truncations (e.g. Hartree) the memory integral
is absent and any factor between F̃ (ω) and ρ̃(ω) can persist. In most nu-
merically studied cases, however, the late-time KMS condition was granted
[].

We give a proof to the previous statement for (the practically feasable) low
loop orders only and then give arguments for the general case, too. Eqs. (??)
and (??) read in Fourier space:

(−p2
0 + ω2

p)F̃ (p) =

∫

dω

2π

[

Σ̃F (p)ρ̃(ω; %p)

i(p0 − ω − iε)
+

Σ̃ρ(ω; %p)F̃ (p)

i(p0 − ω + iε)

]

(25)

(−p2
0 + ω2

p)ρ̃(p) =

∫

dω

2π

[

Σ̃ρ(p)ρ̃(ω; %p)

i(p0 − ω − iε)
+

Σ̃ρ(ω; %p)ρ̃(p)

i(p0 − ω + iε)

]

, (26)
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Figure 1: a) Real time contour (left). b) Euclidean contour (middle). c)
Closed time path contour (right).

2 Initial value problem in a field theory

Quantum field theory can be thought of as a quantum mechanical many body
system, if we discretise it on a lattice. The model is defined by the time
independent Hamiltonian Ĥ with lattice spacing (a) dependent parameters
(counterterms), which make the a → 0 limit of the observables in a canonical
ensemble based on Ĥ finite.

In quantum mechanics initial value problems are defined by the initial
density operator ρ̂. Using these two operators in addition to the (scalar)
field operator Φ̂ the Wightman function can be written as

G<(x, y) = Tr ρ̂ Φ̂("x) Û−1(x0, y0) Φ̂("y) Û(x0, y0) (1)

with the unitary time translation operator

U(t, t′) = exp
[

−i(t − t′)Ĥ
]

. (2)

The time evolution operators are calculated in terms of path integrals,
the presence of a forward and backward evolution operator is manifest in the
upper and lower branches of the real time contour (see Fig. ??). Using the
ΘC(x, y) function (which is 1 if y0 preceeds x0 on the contour, zero otherwise)
we can define further propagators:

G(x, y) = ΘC(x, y)G>(x, y) + ΘC(y, x)G>(y, x) (3)

G>(x, y) = G<(y, x) (4)

F (x, y) =
1

2
G>(x, y) +

1

2
G<(x, y) (5)

ρ(x, y) = iG>(x, y) − iG<(x, y) (6)

Unlike the time ordered propagator G the G<, F and ρ propagators are not
sensitive of which branch their arguments are on.

The 2PI effective action, which one obtains as the second Legendre trans-
form of the generating functional W [J, K] = −i log Z[J, K] on the CTP con-
tour in the presence of one-point source J and two-point source K. The

3
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Should we believe the dynamics?
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FIG. 3. Nonequilibrium evolution of the equal-time
two-point function F (t, t; p) for N = 10 for various momenta
p. One observes a good agreement between the exact MC
(dashed) and the NLO classical result (full). The quantum
evolution is shown with dotted lines. The initial particle den-
sity is six times as high as in Figs. 1,2. At these high densi-
ties, the difference between quantum and classical evolution
is small.

In Fig. 4 we plot the function T (t, p) for plow ! 0 and
phigh ! 2pts. Initially one observes a very different be-
havior of T (t, p) for the low and high momentum modes,
indicating that the system is far from equilibrium. Note
that classical and quantum evolution agree very well for
sufficiently high initial particle number density. However,
at later times the difference between quantum and clas-
sical evolution becomes visible. The quantum evolution
approaches quantum thermal equilibrium with a momen-
tum independent inverse slope T = 4.7mR. In contrast,
in the classical limit the slope parameter remains momen-
tum dependent and the system relaxes towards classical
thermal equilibrium [17].
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FIG. 1. Unequal time two-point function F (t, 0; p = 0) at
zero momentum times the initial mass M for N = 2, 10, 20.
The full lines show results from the NLO classical evolution
and the dashed lines from the exact classical evolution (MC).
For N = 20 the NLO and exact evolution can hardly be dis-
tinguished.

result even for small values of N (note that the effective
four-point coupling is strong, λ/6N = 2.5m2

R for N = 2).
For N = 20 the exact and NLO evolution can hardly be
distinguished. A very sensitive quantity to compare is
the damping rate γ, which is obtained from an exponen-
tial fit to the envelope of F (t, 0; p = 0). The systematic
convergence of the NLO and the Monte Carlo result as a
function of 1/N can be observed in Fig. 2. The quanti-
tatively accurate description of far from equilibrium pro-
cesses within the NLO approximation of the 2PI effective
action is manifest.

Classical behavior of nonequilibrium quantum fields. In
Fig. 2 we also show the damping rate from the quantum
evolution, using the same initial conditions and parame-
ters. We observe that the damping in the quantum the-
ory differs and, in particular, is reduced compared to the
classical result. In the limit N → ∞ damping of the
unequal-time correlation function F (t, 0; p) goes to zero
since the nonlocal part of the self energies (7)–(8) van-
ishes and scattering is absent. In this limit there is no
difference between evolution in a quantum and classical
statistical field theory.

For finite N scattering is present and quantum and
classical evolution differ in general. However, the clas-
sical field approximation may be expected to become a
reliable description for the quantum theory if the num-
ber of field quanta in each field mode is sufficiently high.
We observe that increasing the initial particle number
density leads to a convergence of quantum and classical
time evolution at not too late times. In Fig. 3 we present
the time evolution of the equal-time correlation function
F (t, t; p) for several momenta p and N = 10. Here the
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FIG. 2. Nonequilibrium damping rates extracted from
F (t, 0; p = 0) shown in Fig. 1 as a function of 1/N . Open
symbols represent exact and NLO classical evolution. One
observes a rapid convergence of the 1/N expansion at NLO
to the exact MC result. The quantum results are shown with
full symbols. In the quantum theory the damping rate is re-
duced compared to the classical theory.

particle density
∫ dp

2π n0(p)/M = 1.2 is six times as high
as in Figs. 1,2 and, in contrast to the latter, quantum
and classical evolution at NLO follow each other rather
closely. For an estimate of the NLO truncation error we
also give the MC result for N = 10 showing a quantita-
tive agreement with the classical NLO evolution both at
early and later times.

Quantum versus classical equilibration. From Fig. 3
one observes that the initially highly occupied “tsunami”
modes (pts/mR = 2.5) “decay” as time proceeds and
the low momentum modes become more and more pop-
ulated. At late times the classical theory [16,8] and the
quantum theory [4,3] approach their respective thermal
equilibrium distribution. Since classical and quantum
thermal equilibrium are distinct the classical and quan-
tum time evolutions have to deviate at sufficiently late
times, irrespective of the initial particle number density
per mode. Differences in the particle number distribution
can be conveniently discussed using the inverse slope pa-
rameter T (t, p) ≡ −n(t, εp)[n(t, εp) + 1](dn/dε)−1 for a
given time-evolving particle number distribution n(t, εp)
and dispersion relation εp(t) [3]. Following Ref. [5]
we define the effective particle number as n(t, εp) +
1
2

≡ [F (t, t′; p) ∂t∂t′F (t, t′; p)]1/2|t=t′ and mode energy

by εp(t) ≡ [∂t∂t′F (t, t′; p)/F (t, t′; p)]1/2|t=t′ , which coin-
cide with the usual free-field definition for λ → 0. For
a Bose-Einstein distributed particle number the parame-
ter T (t, p) corresponds to the (momentum independent)
temperature T (t, p) = Teq. In the classical limit the in-
verse slope T (t, p) as defined above remains momentum
dependent.
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(Small enough expansion parameter => exact dynamics)

Classical 2PI vs classical simulation.

1+1 d, O(N) NLO
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Suppose you buy 2PI...
What should we think about other approaches?

Classical statistical field theory
Most modelling of Early Universe fields is based on classical 
methods: preheating, defects

Do we have a classical - quantum comparison?
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Figure 4: The evolution in time of the equal time correlator eq. (6.7) for NLO, Hartree, classical
and LO. µ is used to set the scale.

In figure 4 we show the evolution of the subtracted F (t, t,0) for the NLO, Hartree
and classical (eq. (6.7)) case. We have also included LO-1/N for comparison. The NLO
and classical agree well with each other (and settle later near the zero-temperature vev,
v2/N = 6µ2). The Hartree result is remarkably lower than the others, while the classical
approximation seems to work very well. The Hartree being lower appears to be the result
of the choice of coefficient of the local term, the choice of N . In the limit of large N we
recover the LO result, which for N = 4 overshoots compared to the classical and NLO.
Below, we will discard the LO approximation, since it is qualitatively the same as Hartree.

Figure 5 shows the evolution of the compound occupation numbers for the Hartree
approximation (green/grey) compared to the quadratic approximation (black). At early
times the agreement is very good but eventually back-reactions enter and the spinodal
growth ends. As is well known, the homogeneous Hartree approximation does not include
non-trivial scattering, and essentially no energy is re-distributed to modes of momentum
k higher than µ.
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FIG. 3. Nonequilibrium evolution of the equal-time
two-point function F (t, t; p) for N = 10 for various momenta
p. One observes a good agreement between the exact MC
(dashed) and the NLO classical result (full). The quantum
evolution is shown with dotted lines. The initial particle den-
sity is six times as high as in Figs. 1,2. At these high densi-
ties, the difference between quantum and classical evolution
is small.

In Fig. 4 we plot the function T (t, p) for plow ! 0 and
phigh ! 2pts. Initially one observes a very different be-
havior of T (t, p) for the low and high momentum modes,
indicating that the system is far from equilibrium. Note
that classical and quantum evolution agree very well for
sufficiently high initial particle number density. However,
at later times the difference between quantum and clas-
sical evolution becomes visible. The quantum evolution
approaches quantum thermal equilibrium with a momen-
tum independent inverse slope T = 4.7mR. In contrast,
in the classical limit the slope parameter remains momen-
tum dependent and the system relaxes towards classical
thermal equilibrium [17].
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Suppose you buy 2PI...
What should we think about other approaches?

Classical statistical field theory

Transport theory

Calzetta,Hu 1988
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independently. At the end of this procedure we obtain a generalized transport equation [2,

3,9,14,22,36–38]:

2pµ∂x
µiḠ≷ −

{
Σ̄δ +Re Σ̄R, iḠ≷}

︸ ︷︷ ︸
{M̄,iḠ≷}

−
{
iΣ̄≷,Re ḠR

}
= iΣ̄<iḠ> − iΣ̄>iḠ< (39)

as well as a generalized mass-shell equation

[
p2 − m2 − Σ̄δ −Re Σ̄R

]
︸ ︷︷ ︸

M̄

iḠ≷ = iΣ̄≷ Re ḠR + 1

4

{
iΣ̄>, iḠ<

}
− 1

4

{
iΣ̄<, iḠ>

}

(40)

with the mass-function M̄ specified in (29). Since the Green function G≷(x1, x2) consists

of an antisymmetric real part and a symmetric imaginary part with respect to the relative

coordinate x1−x2, theWigner transform of this function is purely imaginary. It is thus con-

venient to represent the Wightman functions in Wigner space furtheron by the real-valued

quantities iḠ≷(p, x). Since the collisional self-energies obey the same symmetry relations

in coordinate space and in phase-space, they will be kept also as iΣ̄≷(p, x) furtheron.

In the transport equation (39) one recognizes on the l.h.s. the drift term pµ∂x
µiḠ≷, as

well as the Vlasov term with the local self-energy Σ̄δ and the real part of the retarded

self-energy Re Σ̄R . On the other hand the r.h.s. represents the collision term with its typ-

ical ‘gain and loss’ structure. The loss term iΣ̄>iḠ< (proportional to the Green function

itself) describes the scattering out of a respective phase-space cell whereas the gain term

iΣ̄<iḠ> takes into account scatterings into the actual cell. The last term on the l.h.s.

{iΣ̄≷,Re ḠR} is very peculiar since it does not contain directly the distribution function
iḠ<. This second Poisson bracket vanishes in the quasiparticle approximation and thus

does not appear in the on-shell Boltzmann limit. As demonstrated in detail in Refs. [2,3,

9,36–38] the second Poisson bracket {iΣ̄≷,Re ḠR} governs the evolution of the off-shell
dynamics for nonequilibrium systems.

Although the generalized transport equation (39) and the generalized mass-shell equa-

tion (40) have been derived from the same Kadanoff–Baym equation in a first order

gradient expansion, both equations are not exactly equivalent [2,22,37]. Instead, they de-

viate from each other by contributions of second gradient order, which are hidden in the

term {iΣ̄≷,Re ḠR} (see below or Refs. [22,37] for extended discussions). This raises the
question: which one of these two equations has been considered to higher priority? The

question is answered in practical applications by the prescription of solving the generalized

transport equation (39) for iḠ< in order to study the dynamics of the nonequilibrium sys-

tem in phase-space. Since the dynamical evolution of the spectral properties is taken into

account by the equations derived in first order gradient expansion from the retarded and

advanced Dyson–Schwinger equations, one can neglect the generalized mass-shell equa-

tion (40). Thus for our actual numerical studies in Section 3 we will use the generalized

transport equation (39) supported by the algebraic relations (27) and (28).

Furthermore, one recognizes by subtraction of the iḠ> and iḠ< mass-shell and trans-

port equations, that the dynamics of the spectral function Ā = iḠ> − iḠ< is determined

in the same way as derived from the retarded and advanced Dyson–Schwinger equations

Boltzmann eq does the same resummations as 2PI.

Lowest OrderNLO
Lowest order: 2-to-2 scattering (scalar&setting-sun): 
Particle number conservation

LO or 
NLO?2PI equations Transport eq.

gradient 
expansion

Most modelling of Early Universe fields is based on classical 
methods: preheating, defects

Do we have a classical - quantum comparison?
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S. Juchem et al. / Nuclear Physics A 743 (2004) 92–126 109

Fig. 3. Upper part: evolution of several momentum modes | !p|/m = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0 of the equal-time

Green function on a logarithmic time scale for the different initializations D1, D2 and D3 for the generalized

transport equation (39). Lower part: same as above but for the full Kadanoff–Baym equation (9).

cussed in Ref. [51]. Consequently, the spectral shape in Wigner space is determined by the

finite integration interval in time rather than by the interactions itself. On the other hand,

we have used an infinite relative time range in deriving the generalized transport equa-
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2+1 d

(2.10) without any gradient expansion. For comparison, we
evaluate the same quantity using the LO gradient expan-
sion according to Eq. (3.14). For this we evaluate the RHS
of Eq. (3.14) using the full result for ~F!X0;!; ~p" and
~%!X0;!; ~p". If the gradient expansion to lowest order is
correct, then both results have to agree. Indeed, one ob-
serves from Fig. 3, employing the same parameters as for
Fig. 2, that the curves for the LO (dashed line) and the full
result agree well at sufficiently late times. However, they
only agree after some time, which is rather well deter-
mined by the characteristic time scale #tdamp for the
effective loss of details about the initial conditions. The
latter is given by the thermal equilibrium estimate (4.1).
Similarly, one can observe this time scale from the decay of
the unequal-time spectral function in thermal equilibrium,
!!eq"!t; ~pts" as explained below. The latter measures the
characteristic decay of correlations at time t with the initial
state. The decay time for !!eq" coincides rather well with
the time for the onset of validity of the LO result.

Using smaller amplitudes A (with " and pts kept fixed)
one observes a similar picture. In Fig. 4 we compare runs
for A $ 2, 3 and 4 with g2 $ 0:5. For instance, for A $ 3
the LO order and the full result approach each other rather
closely after a time of about 500=mR. This time is rather
well described by the characteristic decay time of the
unequal-time correlator !!eq" as shown in the inset of
Fig. 5. Of course, the precise notion of a time after which
a transport description holds depends on the definition and

prescribed accuracy. We find for A $ 2, 3, 4 that the damp-
ing time according to Eq. (4.1) is tdamp $ 270 183 141m%1

R .
For A $ 3 this time may be compared to the inset of Fig. 5,
which shows that only after, say, a time of about 500m%1

R
the correlator is small enough that initial-time effects play
no important role.

One may expect that the failure of the LO transport
equations to describe the dynamics before isotropization
completes is due to substantial NLO contributions.
However, this turns out not to be the case. Figure 5 com-
pares LO, NLO and full result for the time evolution of the
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Its full result is given by the solid lower line, whereas the LO
contribution is zero.
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For A $ 3 this time may be compared to the inset of Fig. 5,
which shows that only after, say, a time of about 500m%1

R
the correlator is small enough that initial-time effects play
no important role.

One may expect that the failure of the LO transport
equations to describe the dynamics before isotropization
completes is due to substantial NLO contributions.
However, this turns out not to be the case. Figure 5 com-
pares LO, NLO and full result for the time evolution of the
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FIG. 3. The solid line shows the on-shell @X0! ~F in Wigner
coordinates, as computed from the solution of Eqs. (2.5) and
(2.6) without a gradient expansion. The dashed line represents
the same quantity using the expression from the LO gradient
expansion according to Eq. (3.14). If the gradient expansion to
lowest order is correct, then both lines have to agree. For this
quantity one observes that the lowest-order gradient expansion
becomes valid on a time scale of about the isotropization or
damping time tdamp ’ 100=mR. The inset shows the same results
on a logarithmic scale to make the small on-shell @X0!~% visible.
Its full result is given by the solid lower line, whereas the LO
contribution is zero.

 0

0.2

0.4

0.6

0.8

 1

1.2

1.4

 0  200  400  600  800  1000
X0 [mR

-1]

g2 = 0.5

A = 2
A = 3
A = 4

FIG. 4. Same as in Fig. 3 but for amplitudes A $ 2, 3, 4, i.e.
smaller occupation numbers according to Eq. (4.3), and coupling
g2 $ 0:5. The lower solid/dashed/dotted curves represent the full
result, while the upper (thick) ones show the respective LO
approximation.

 0

0.2

0.4

0.6

0.8

 1

1.2

 0  500  1000  1500  2000
X0 [mR

-1]

g2 = 0.5 full
LO

NLO

0

50
0

10
00

ρ(t)

FIG. 5. Comparison of LO, NLO and full result for the on-shell
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from the full result at early times. The inset displays the real-
time equilibrium spectral function for the considered mode,
which exhibits the characteristic damping time for (partial)
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How to renormalize?
NONEQUILIBRIUM FIELD THEORY

BPHZ scheme for 2PI

(1) (2)

(2) (1)
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JHWS05, Budapest

van Hees,Knoll 2001
Blaizot,Iancu,Reinosa 2003

Berges,SB,Reinosa,Serreau 2004,2005
Cooper,Mihaila,Dawson 2004,2006



the Bethe-Salpeter equation

Λ = 4 δ2Γ2[G,Φ]
δGδG

implements a one-channel resummation of
the four-point function.

This is the same resummation as in the 2-point equation.

Renormalisation of this 4-point equation removes all
sub-divergences from the 2-point equation.



Renormalization: the lazy way
(a scalar example)

Renormalize at T1 T2 G−1 = G−1
0 − Σ

δλ1 = 0 δλ2 = 0

and independently

keep and obtain 

ΣThe renormalization condition for fixes δm2 + δλ , but not      and     individuallyδm2 δλ

δm1, δm2 and the divergent tadpoles

δm2
1 = m2

T (T1) + δm2 + δλ

δm2
2 = m2

T (T2) + δm2 + δλ

1

2

Matching:
Perturbative input: this defines the renormalized coupling.
Finiteness is not spoiled by the use of non-resummed input!

m2
T (T ) ∼ λRT 2

V |k∗ = λR + O(λ2
R) (at leading order)

This realizes a renormalization condition like:

Instead of this one:
V |k∗ = λR

Proof of these statements: follows from the Bethe-Salpeter machinery

2 equations,
2 unknowns: δm2 δλ



The 2PI propagator
δΓ2PI[Φ,G]

δG(x,y) = 0

G−1
2PI[Φ] = G−1

0 [Φ]− Σ[Φ, G]
Σ = 2i δΓ2

δG

The 2PI  variational propagator:

In the O(N) model        is gapless to given order only 
In QED        is not transversal to given order only.

G2PI

G2PI

(This symmetry breaking effect appears at orders higher 
than the truncation of            )Γ2PI

Without  truncation         is the full propagator.G2PI

If we do truncate at some order:

Reason for the apparent failure: only the s-channel was resummed



or from the

 standard effective action

G−1
proper = δ2Γ2PI[Φ,G2PI[Φ]]

δΦxδΦy
= G−1

0 − 2 δ2Γ2
δΦxδΦy

+

Σ′ = δΣ
δΦ Λ = 4 δ2Γ2[G,Φ]

δGδG

At vanishing sources: 

An alternative definiton of the propagator:

This is the resummed effective action (non-polynomial) 

Bethe-Salpeter equation 
appears here naturally

G−1
1PI = δ2Γ[Φ]

δΦδΦ = δ2Γ2PI[Φ,G2PI[Φ]]
δΦ2

Γ2PI[Φ, G2PI[Φ]] = Γ[Φ]



Four point function from 2PINONEQUILIBRIUM FIELD THEORY

4-point function

1
2 1 2

3 4

1
2 1 4

2 3

1
2

1
2

+=

1
2 iV

Γi
(4)

1234 =

4

2

31
+

1 3

42

+ +

= +

iV
1
2
− iV= + Bethe-Salpeter equation

resummation in one channel only

JHWS05, Budapest
Berges,SB,Reinosa,Serreau 2004

All three channels 
are present



restoration of the
 Goldstone theorem

s channel only

s+t+u channels

G1PI

G2PI

van Hees,Knoll 2001
Berges,SB,Reinosa,Serreau 2004

+

:

:



2PI effective action is just a means to
ladder-resum the standard effective action

restoration of the
 Ward identities

s channel only

s+t+u channels

G1PI

G2PI

Reinosa,Serreau 2006-7 
Carrington,Kovalchuk 2007

+

:

:



Can we do gauge fields?
resummed:2-loop order 3-loop order

Broken gauge invariance: new counterterms appear.

Usual counterterms:
transversal photon 

+ electronδZ3, δZ2

New counterterms:
δλGµνkµkν

δM2Gµνgµν

Gauge fixing: Covariant gauge: 

longitudial photon

δgaGµνGµν

δgbGµ
µGν

ν

photon self interaction
Bethe-Salpeter ->

Subdivergency in the ladder:
Calculated as the solution of 
the Bethe-Salpeter equation  

Reinosa, Serreau 2006

(e4 log a) ∼

(e4 log a) ∼

(e4a2) ∼
(e4 log a) ∼

(e2 log a) ∼

λ = 1/ξ

∂ΠL
∂k2

∣∣
k∗

= 0

ΠL(k∗) = 0

V µν
L |k∗ = 0



The 2PI pressure curve
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Figure 1: Pressure as a function of the renormalized coupling, normalized to the ideal
gas, i.e. one-loop pressure. Shown are the 2PI two- and three-loop results (left) for
T = 2T0 with T0 = mR(T0). The right figure shows the perturbative results to
order g2

R and g3
R along with the 2PI two-loop curve in the high-temperature limit

for illustration of the problematic alternating behavior of perturbation theory (see
text).

expansions in the coupling and a variational mass parameter [13]3. These
studies indicate already improved convergence properties. However, perturbatively
motivated estimates as in Ref. [13] suffer from the presence of nonrenormalizable,
ultraviolet divergent contributions and the apparent breakdown of the approach
beyond some value for the coupling. If one does not want to rely on these further
assumptions, going beyond two-loop order requires the use of efficient numerical
techniques. Such rigorous studies are important to get a decisive answer about the
properties of 2PI expansions. As it turns out (cf. below) these problems appear as
an artefact of the additional approximations employed and cannot be attributed to
the 2PI loop expansion.

In this work we calculate the pressure as well as other thermal quantities for a
scalar g2φ4 field theory from a three-loop 2PI effective action numerically without
further approximations. A detailed comparison with the two-loop approximation
is presented. We observe a strongly improved convergence behavior as compared
to perturbative approaches. This is exemplified in Fig. 1, where the pressure is
shown as a function of the renormalized coupling gR determined by the physical
four-vertex. The left figure compares the two- and three-loop result normalized to
the ideal gas pressure. For the employed high temperature T = 2mR(T0) the three-
loop corrections to the pressure are rather small. Here mR(T0) is the temperature-
dependent renormalized mass parameter or inverse correlation length and we have
T0 = mR(T0). For illustration we also show on the right of Fig. 1 the perturbative
results to order g2

R and g3
R along with the dominant 2PI two-loop result for the

high-temperature limit. The problematic alternating behavior of the perturbative
3Cf. Ref. [14] for a similar application to QED.

2

(a scalar example)

Pressure is quartically divergent
-> we calculate 

where φ(x) is a real scalar field with bare mass term m2 and coupling g2.
The normalization of the coupling is chosen for simple comparison with existing
literature (cf. e.g. Ref. [11]) in view of applications of these methods to QCD

thermodynamics. We use the shorthand notation
∫

x ≡
∫

−i/T

0 dx0
∫

d3x with
temperature T . Following [1] it is convenient to parametrize the temperature
dependent 2PI effective action as

Γ[φ, D] = S[φ] +
i

2
Tr lnD−1 +

i

2
TrD−1

0 (φ)D + Γ2[φ, D] + const , (2.2)

which expresses Γ in terms of the classical action S and correction terms including
the function Γ2 to which only two-particle irreducible diagrams contribute. Here the
classical inverse propagator is given by iD−1

0 (x, y; φ) ≡ δ2S[φ]/δφ(x)δφ(y). In the
absence of external sources physical solutions require

δΓ[φ, D]

δφ(x)

∣

∣

∣

φ=φ0

= 0 , (2.3)

δΓ[φ, D]

δD(x, y)

∣

∣

∣

D=D(φ)
= 0 . (2.4)

The 2PI effective action evaluated at D(φ; x, y), i.e. for the φ-dependent solution of
(2.4), is identical to the 1PI effective action Γ[φ, D(φ)]. The effective action at the
stationary point, Γ[φ0, D(φ0)], corresponds to the logarithm of the partition function
in the absence of sources [1]. Therefore, in thermal equilibrium with temperature T
(φ0 constant) the effective action is related to the pressure P by

P =
T

L3
iΓ[φ0, D(φ0)] , (2.5)

where L3 =
∫

d3x denotes the spatial volume and the constant in Eq. (2.2) is chosen
such that the pressure vanishes at zero temperature. Entropy density S and energy
density E are given by

S =
∂P

∂T
, (2.6)

E = −P + TS = T 2 ∂

∂T

(

P

T

)

. (2.7)

We recall that all the physical information is contained in the effective action at the
stationary point Γ[φ0, D(φ0)] and its changes with respect to variations in the field
φ evaluated at φ = φ0. For instance, the connected two-point function, Γ(2), and
proper four-point function, Γ(4), are given by

Γ(2)(x, y) ≡
δ2Γ[φ, D(φ)]

δφ(x)δφ(y)

∣

∣

∣

φ=φ0

, (2.8)

Γ(4)(x, y, z, w) ≡
δ4Γ[φ, D(φ)]

δφ(x)δφ(y)δφ(z)δφ(w)

∣

∣

∣

φ=φ0

. (2.9)

All information about the quantum theory can therefore be conveniently obtained
from Γ[φ, D(φ)] by functional differentiation. In particular, Γ[φ, D(φ)] evaluated for
constant field φ encodes the effective potential.
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4

T1  : find the counterterms, calculate the pressure
T2  : use the counterterms, calculate the pressure

(The regularized equations are solved)

p(T1)− p(T2)
T 4

1 − T 4
2

Berges,SB,Reinosa,Serreau 2004



The pressure curve: QED
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Restoration of gauge 
parameter independence

“Strong” gauge parameter independence:

pressure(N,e,ξ)
N: loop order, e couling
ξ: gauge parameter

is ξ independent for any N

“Weak” gauge parameter independence:

pressure(N,e,ξ) ξ dependence at O(e2N+2)

(e.g. Perturbation theory)

(e.g. 2PI effective action)

N(e, ξ): order required for the required precision

N2PI < Npert, and N2PI(e, ξ=0)< N2PI(e, ξ)

Arrizabalaga,Smit 2002 



Conclusion
Long live 2PI!
Self-consistent, 
Cures secularity,
Renormalisable (and we know how to renormalise)
Gives a prescription for symmetry-respecting propagators
Gauge symmetry is restored as we increase the order in g
(all gauges are equal, but some gauges are more equal)

We need:
more people,
more jobs,
more machines.

Orwell, Animal farm


