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Applications and Motivation



Quantum Phase Transition:
a phase transition between different quantum phases (phases of
matter at T = 0). Quantum phase transitions can only be
accessed by varying a physical parameter — such as magnetic field
or pressure — at T = 0.
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Figure: Phase diagram paradigm



Experimental relevance

Many important physical systems may have quantum critical
points (QCPs). The QCP has an effective field theory description
which continues to be valid at small “distances” away from the
QCP. This quantum critical region may be in an experimentally
accessible regime.
Examples:

I superfluid-insulator transition in thin films

I transitions between quantum Hall states

I high temperature, under-doped superconductors at T > Tc

and the Nernst effect



Thin Films

Figure: Haviland, Liu, Goldman, PRL, 62 (1989) 2180



High Tc superconductors

I La2CuO4 is an antiferromagnetic insulator
I 2d physics: The Cu atoms arrange themselves into a square

lattice on separated sheets.
I Hole doping: substitute some of the La with Sr,

La2−xSrxCuO4

The Nernst effect

I Apply ∇T

I Apply B ⊥ ∇T

I Measure E ‖ B ×∇T

I The Nernst coefficient is

ν =
E

B|∇T |



High Tc superconductors and quantum criticality



State of Theory

I There are many lattice models with quantum critical points —
Boson-Hubbard model, quantum Ising and rotor models, etc.

I The effective field theory description of the fixed point is scale
invariant.

I The field theory sometimes has a Lorentzian symmetry.

c 6= 3× 108 m/s

I scale invariance + Lorentzian symmery =⇒ conformal
symmetry

I The description is often strongly interacting, e.g. a
Wilson-Fisher fixed point

How do we analyze strongly interacting, Lorentzian conformal field
theories?



The Sales Pitch

The AdS/CFT correspondence provides a tool to study a class of
strongly interacting field theories with Lorentzian symmetry in d
dimensions by mapping the field theories to classical gravity in
d + 1 dimensions.

I equation of state

I real time correlation functions

I transport properties — conductivities, diffusion constants, etc.

The ambitious program: There may be an example in this class of
field theories which describes the quantum critical region of a real
world material such as a high Tc superconductor.

The less ambitious program: By learning about this class of field
theories, we may find universal features that could hold more
generally for QCPs (η/s = ~/4πkB).



Adding Dirt to AdS/CFT



Transport Coefficients

(
~J
~Q

)
=

(
σ α̂T

α̂T κ̄T

)(
~E

−(~∇T )/T

)
Here ~E is electric field, T is temperature, ~J is charge current and
the heat current Qν ≡ T 0ν − µJν where µ is the chemical
potential.

The Nernst response is governed by

~E = −θ~∇T where θ = σ−1α̂

The Nernst coefficient

ν = θyx/B (Recall ν = E/B|∇T |)



Problematic Translation Invariance

I Imagine a material with translation invariance and a nonzero
charge density.

I An electric field will accelerate the material rather than
producing a steady state current.

I The dc conductivity σ is thus “infinite”.

I The Nernst effect, ν ≈ α̂/σB, will vanish.

Moral: Breaking translation invariance is important for modeling
the Nernst effect in real world systems.



A Scattering Time

Add a weak random potential coupled to the most relevant scalar
operator of dimension ∆O:

δH =

∫
d2y V (y)O(t, y)

Average over such potentials assuming

〈V (x)〉 = 0 and 〈V (x)V (y)〉 = V̄ 2δ(x − y) .

By dimensional analysis to leading order in V̄

1

τimp
=

V̄ 2

T 3−2∆O
F

(
ρ

T 2
,

B

T 2

)
.

We used the AdS/CFT correspondence to calculate 1/τimp in a
particular model — the M2 brane theory.



The Results
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Figure: The function F± = T 3−2∆O/V̄ 2τ± for the M2 brane theory for
magnetic (+) and electric (-) impurities.

I The corresponding operators have the same discrete
symmetries as the electric and magnetic field.

I The scattering time depends only on the above combination
of the magnetic field B and charge density ρ.



An Instability in the Underlying Theory

I There is a divergence of F− at
√

B2 + ρ2/σ2
0 ∼ 21T 2.

I This divergence comes from an underlying instability in the
translationally invariant theory.

I A pole in the retarded Green’s function for the scalar operator
O− moves into the upper half plane.

I We have a dynamic instability without a corresponding
thermodynamic instability, providing a counter-example to the
Gubser-Mitra conjecture.



Observing a Cyclotron Resonance

The transport coefficients have a cyclotron resonance at
ω = ωc − iγ − i/τimp.

σ+ = iσQ
ω + i/τimp + iω2

c/γ + ωc

ω + i/τimp + iγ − ωc

ωc =
Bρ

ε + P
; γ =

σQB2

ε + P
; σQ =

(sT )2

(ε + P)2
1

g2
.

where
σ± = σxy ± iσxx

Originally it was thought that τimp would make the resonance
unobservable. However the behavior of F+ at large ρ may change
this story!



Impurities and the Nernst Effect

I To compare the Nernst effect with experiments, we have to
add the effect of scattering from impurities, τimp

ν =
1

T

1/τimp

(ω2
c/γ + 1/τimp)2 + ω2

c

I When ρ = 0,

ν =
τimp

T
=

T 2−2∆O

V̄ 2
F (B/T 2) .



“ρ = 0” experimental plots
from Ong and Ardavan
compared with our theoretical
results.
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(Plot provided by A. Ardavan.)
Warning: T here is really T − Tc .



Technical Details

I 1/τimp was computed using the memory function formalism
(Götze and Wolfle, Forster, Giamarchi)

I

1

τimp
=

V̄ 2

2χ0
lim
ω→0

∫
d2k

(2π)2
k2 Im GR

OO(ω, k)

ω

χ0 = lim
ω→0

GR
PP(ω, 0)

where P = niT
0i .

I The scattering time reduces to a calculation of a Green’s
function of the operator O in the absence of impurities.

I This formalism resums a class of diagrams. There could be
trouble in the limit ω2−∆O � V̄ . We believe T acts as an IR
regulator and that the calculation is actually valid provided
ω � T .



Remarks and Plans for the Future

I Tried to convince you that AdS/CFT is a useful tool for
studying strongly interacting field theories — equations of
state, correlation functions, transport properties.

I The hope is that these field theories may be relevant for
understand real world condensed matter systems.

I We saw today how to get away from a translationally
invariant system and introduce impurities to AdS/CFT.

I Next on the list is getting away from the quantum critical
point. Can we find supergravity solutions that correspond to
deforming the effective field theory by a relevant operator?
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Figure: Viscosity to entropy density ratio



Current-current two-point functions at B = ρ = 0
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Figure: Imaginary part of the retarded function C yy (ω, k), plotted in
units of (−χ), as a function of dimensionless frequency w ≡ 3ω/(4πT ),
for several values of dimensionless momentum q ≡ 3k/(4πT ). Curves
from left to right correspond to q = 0, 0.5, 1.0, 2.0, 3.0. Left:
Im C yy (w , q), Right: Im C yy (w , q)/w .

χ = 4πT/3g2
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Figure: Imaginary part of the retarded function C tt(w , q)/q2, plotted in
units of (−χ), as a function of dimensionless frequency w ≡ 3ω/(4πT ),
for several values of dimensionless momentum q ≡ 3k/(4πT ). Curves
from left to right correspond to q = 0.2, 0.5, 1.0 (left panel), and
q = 1.0, 2.0, 3.0, 4.0 (right panel). The dashed curves are plots of

1/
√

w2 − q2.

χ = 4πT/3g2

small q: hydrodynamic peak at w ∼ q2

large q: collisionless peak at w ∼ q
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Figure: The position of the peak of the spectral function. The dashed
line is w = q.



The cyclotron resonance
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Figure: The dashed blue line is the Im(σ+) while the solid red line is the
Re(σ+) as a function of w : a) h = q = 1/

√
2, b) h = 1 and q = 0.



Dyonic blackhole thermodynamics

T =
α(3− h2 − q2)

4π
.

B = hα2 , m = −hα

g2
, ρ = −qα2

g2
, and µ = −qα .

s =
πα2

g2
, ε =

α3

g2

1

2
(1 + h2 + q2) , and P = ε/2 + mB .

P = 〈Taa〉 = ε/2 .

1

g2
=

√
2N3/2

6π
.


