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OUTLINE

1. Semiclassical gravity (SCG): SC Einstein Eqn: <Tmn>
2. Stochastic gravity: Einstein-Langevin Equation

Noise Kernel: <Tmn Trs>

3. Influence functional;: Stochastic Effective Action.

4. One area of Application:
Primordial cosmological perturbations

* Gives result equivalent at linear order to usual method of
guantizing metric and inflaton perturbations

e But can treat quadratic order perturbations needed in R?
e.g., trace anomaly driven (Starobinsky) inflation .



SEMICLASSICAL GRAVITY

Semiclassical Einstein eq. for classical geometry,
metric function g

Gpl0]= KT [0D e 1 =87G =87/m’
Klein-Gordon eq. for quantum matter field ¢
(V2—m?—&R)p =0
» Solve for g and "¢ self-consistently.

« Backreaction problem is at the heart of semiclassical gravity.



SEMICLASSICAL EINSTEIN EQUATION

Renormalization introduces guadratic tensors

G, [9]+Ag,, —aA,l9]-5B,19]= (T b[g]>ren

where b _ j 4%y \/_Ccdef o ctef

\/_ gab

B = d*x/—gR?
\/_ gab j \/7

Tab :Va¢vb¢_§gab(VC¢vc¢+m2¢2)+§(gabvcvc _vavb +Gab)¢2




LIMITS OF SEMICLASSICAL GRAVITY

* Below Planck energy: measurements of time and length intervals

AT, AL/,

e Quantum fluctuations of stress tensor small:
(T*)—(T)* =0
We want to extend semiclassical Einstein equations to

account for fluctuations of T, consistently.



Semiclassical Gravity

Semiclassical Einstein Equation (schematically):

i Fa

G;LLL#‘ (gm:fi') — ﬁ'(-rl—;_;.y)q Tt (TMV) c

(7., is the Einstein tensor (plus covariant terms
assoclated with the renormalization of the quantum field)
r = 87y and G 1s Newton’s constant

Free massive scalar field , X
(Od—m~—&cR)p = 0.

1',, 1s the stress-energy tensor operator
ju 2y
()4 denotes the expectation value



Stochastic Gravity

Einstein- Langevin Equation (schematically):

A

G:U-..u (gf_ﬁuﬁ) = K (TC 4 Tas

L My)

177, 1s due to classical matter or fields

P

TSE = <.Tﬂ-”>q + ;-Lf

1> 1s a new stochastic term

related to the quantum fluctuations ot 7,



How could a quantum field give rise
to a stochastic source?

via Influence functional (Feynman-Vernon 1963):
« We will assume linear perturbation of semiclassical solution
Oab T hab But stochastic gravity is NOT restricted to linear perturbations
» Einstein-Langevin equation: G, =x(T),, +&)

GYLg+h] = x(TY[g+h]),e, + &, [0]

(Vg+h - m2 - é:R)¢ =0



NOISE KERNEL

« EXp Value of 2-point correlations of stress tensor: bitensor

* Noise kernel measures quantum flucts of stress tensor

N, (% y)=§<{t;b LW T =Ty — (T

It can be represented by (shown via influence functional to be
equivalent to) a classical stochastic tensor source &, [g]

<é:ab>s =0 <§ab (X)gcd (y)>s — Nabcd (X, Y)

« Symmetric, traceless (for conformal field), divergenceless



Noise assoclated with the

fluctuations of a quantum field

* The noise kernel is real and positive semi-definite
as a consequence of stress energy tensor being
self-adjoint

the ultraviolet behaviour of (T ap(x) 7T ca(v)) 15
the same as that of (T .n(x ]I}{fqt-t,."[}"}}.

e (Classical Gaussian stochastic tensor field:

Eablg: x))s =0, (Eaple: X)6calg: ¥))s = Nabealg: x, ¥),
(- )
denotes statistical average wrt this noise distribution



Classical Stochastic Field
assoc.with a Quantum Field

 Stochastic tensor Is covariantly conserved in the
background spacetime (which is a solution of
the semiclassical Einstein equation).

Veanlg: x) = 0.

e For a conformal field &., 1s traceless:
11 . an _ .
12'{ }Eh' J'rJ' [.g’ . -'l ) — {:}!,

Thus there 1s no stochastic correction
to the trace anomaly



INFLUENCE FUNCTIONAL

e Open quantum system (Feynman-Vernon 63)

Es.ystem% h, 9, /Lenvironmeni
Fr =€ = [D[4,]D[¢ Jexp(S,[4..9" |-S.[4.97))

S (g +h?) :%fo)[hx]—:j[hX:ny {hy}+éﬂ[hx]ny h, |

[h] =h"—h" {h} =(h*+h")/2 (x,y denotes ab.cd)

H,, =2 ImT (T -2 (7.7,

TRLG+hD) e = —2[ Y=g H s (X, V)N (¥)



INFLUENCE FUNCTIONAL

* Closed Time Path effective action at tree level in metric pert.

re hh =8 [h*|-S | h™ |+S,|h",h" [+O(h®)
Sg IS EH action plus quadratic terms.

e Integral identity (Feynman Vernon 1963):

g~ 'mSr Eexp(_%“[hx]l\lxy[hy]jocjD‘feXp(_%”g Vi3 Jf j

* Probability distribution functional of a ﬂ5 N
classical stochastic field &_(x) P[£]oc e 2

el = | peprer! "I <e(RESF+;F[M)>



STOCHASTIC EFFECTIVE ACTION

e Define a stochastic effective action:

+ _ + [ — EE
| h.h&]=s,[h"]-5s,[h ]+Res,F+2j.§z[hz]

ol

StcC

oh”

e fileld equation from:

h*=h

mm) the Einstein-Langevin equation

GP[g +h]=x(TL[g +h],., +x&,,[0]



SOLUTIONS OF EINSTEIN-LANGEVIN
EQUATIONS

* These stochastic equations determine the correlations

h, (x) = h (x)+Kjd4x'FG;ggd(x X)ES (x)

(e OONg (YD) = (hg, 0ORS (1) + 7 [[ Gty (6, X INS" (X', y )Gl (¥, ¥)

Intrinsic fluctuations

(flucts In the initial state)

+

N

Induced fluctuations

(due to matter field flucts)

« Stochastic metric correlations is equivalent to quantum

metric correlations in 1/N:

(Calzetta, Roura, Verdaguer)

1 A -
~ ({0 (0, Bg (N = <, (0N (Y)),
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STOCHASTIC GRAVITY AND PRIMORDIAL
COSMOLOGICAL PERTURBATIONS

e Quantum fluctuations of inflaton are
seeds for structure formation

« Simplest chaotic inflationary model (Linde):
Massive minimally coupled inflaton field, initially
at average value larger than Planck scale

~ [, FEV(@g) MG

L(§) = 0,409+

e Background inflaton field and FRW metric

d(n) =(g)  ds?=a’(n)(~dn* +5,dx'dx’)




PERTURBATIONS

e Inflaton and scalar metric perturbations

N

p(X) =g +o(x)  (P)y =0
ds®* =a’*(n)[-(1+2d)dn* + (1— 2‘P)5ijdx‘dxj]
 Einstein-Langevin equations

GOTg]-x(TO[g] + GL ] - k(TP = &, [0]

zeroth order metric g is assumed to be guasi- de Sitter.
R O N NP VA A 3
T =VaVih = Gy (VVg+m’g?)  g=g+h

W, =i iwpter  T=T =)



STRESS TENSOR CORRELATIONS
(T[g+h]) =(T[g+h]),, +<(T[g+hD,, +(T[g+hD,,
G Ehlgl=(E.thlal. . + (T EPlg] . =(EDED), +(£PED),

AN AN

e assume Gaussian state: (p)=0 {(ppp)=0

 two Independent stochastic sources: ¢&¢® g®
Independently conserved

* Including only the first (linear) term: (--->¢2 ,
®»

we will show that the stochastic gravity
formulation gives equivalent results as the traditional

guantized metric and scalar field perturbations



E-L egn for linear perturbations

Sa? (07 +€0) = BH(HD + W) - VU,
AN

7(} (<5i}3>{1}+5{5}) — 8-3’_(“11;—}—7_[(1});;

%a? (<0T”>“ + EJ’) = {(27{’ +H?) D+ HD +

1

U+ 2HW + 5‘#17} 5] — 567 09,0;D.

where H = a'(n)/a(n), D = ® -V, V* = §"0;0,



 Since (T)=0,(i=j) = &=0(=])
m=) metric perturbations O =Y

» Fourier transf. of Oi-component: (neglecting non-local term):

2ki(H(I)k +chk):K§k(0i) E%
7

» Retarded propagator for @,

G (1,11") = %(6’(77—77') :((;7)) + f (n,n')j



With ¥ = ¢ we get for the ii component of E-L eqn:
(0T e +€) = (2H +H?) ®+ 3HD + 3.

A q2
‘)

s—

Two unknowns 1. scalar metric perturbations ® ()

2. (¢p)gthe expectation value of the quantum operator
for the inflaton perturbations on the spacetime
with the perturbed metric, (©|g + h])

These three equations reduce to two because of the Bianchi
ldentity, which holds here since the averaged and stochastic
sources in the EL egn are separately conserved.

the one hand, the conservation of (67,;)¢ is equivalent to the Klein-Gordon equation for the expectation value (),
which is completely analogous to Eq. (36):

()5 + 2H () — V2 (P)g +m2a® (§)g — 40'D + 2m*a® P = 0. (41)

On the other hand, the conservation of the stochastic source is a consequence of the conservation of the noise kernel,
which in turn relies on the fact that the quantum ()pel ator for the inflaton perturbations ¢[g] satisfies the Klein-Gordon
equation on the background spacetime, (VGV“ —m ) o) =0.



Equivalence with Quantum approach:

Can show that EL egn reduces to (Roura and Verdaguer 2007)

P (‘H _ )_”> O — V2P + (’H" — Hﬁ) b =0,

¢’ @

Same as the conventional approach via quantized linear

perturbations, e.g., Eq. (6.48) of
V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).

Comments:

1. In Fourier space nonlocal terms in the integro-differential equation in the spatial
sector simplify to products. Non-locality in time in this equation disappears due
to an exact cancellation of the different contributions from <O’j\;b>¢)

2. Seems like there is no dependence on the stochastic source.
But the solutions to ELeqn should also satisfy the constraint egn at the initial
time in addition to the dynamical eqn. The initial conditions for ®(7y) and @} (1)
have dependence on the stochastic source.



CORRELATIONS FOR METRIC
PERTURBATIONS

- Solutions of E-L equation:
(@, (NP, (7)), = (27)° 5K +K ) [[ GE (£.£.). G
(G50, =5 (84D

Gt 02 B (7)) = kikip (1) 8 '(,){ @ (1), 0., (7,)})

<{(Bk (771)’ (B—k (772)}> — Glgl) (771’ 772)

Is the Hadamard function for free scalar field on de Sitter,

In Euclidean vacuum 1
a(n)=—H—,—OO<77<0

7



METRIC PERTURBATION
CORRELATIONS

Computing G perturbatively in m/m;
assuming slow roll ~ #(t) 3 -mZ(m/m,)

taking (rather insensitive to initial conds.) r, —» —©

(@, (7)D,.(n)), 0 87° (m ) k= (27)° 6 (k +k ) cos[k (7 -]

e Harrison-Zel'dovich scale inv. spectrum large scales kp <1

. . . m_ .
» Amplitude of CMB anisotropies wmp 310 °
P

« Agreement with linear perturbations approach (Mukhanov 92)

« Stochastic gravity can go beyond linear app. in inflaton flucts.
(Weinberg 05) and deal with Starobinsky (tr anomaly) inflation



Summary: Main Features

1. Semiclassical gravity depends on e.v. of q. stress tensor

S.G fails when flucts. of quantum stress tensor are large

2. Stochastic gravity incorporates these fluctuations
(at Gaussian level) through the noise kernel
acting as source for the Einstein-Langevin equation

3. Stochastic two-point metric correlations agree with quantum
two-point metric correlations to order 1/N in large N expansion

4. Cosmological Perturbation and Structure Formation:
Agreement with linear perturbations approach (e.g.,Mukhanov 92)
*But can go beyond linear order in inflaton fluctuations
necessary for trace-anomaly driven inflations (e.g., Starobinsky 1980)



Stochastic Gravity program

e (since 1994) E. Calzetta (Buenos Aires),

B. L. Hu, A. Matacz, N.G. Phillips, S. Sinha (Maryland)
A. Campos, R. Martin, A. Roura, Enric Verdaguer (Barcelona);

e Current work:
with A. Roura (Los Alamos), Enric Verdaguer (Barcelona)
- cosmological perturbations work // by Urakawa and Maeda (Waseda)

 Review:
B. L. Hu and E. Verdaguer, “Stochastic gravity: Theory and
Applications”, in Living Reviews in Relativity 7 (2004) 3.
[update in arXiv:0802.0658]



http://xxx.lanl.gov/abs/0802.0658




SEMICLASSICAL GRAVITY

Vo

* Gravitational field classical g,,, Matter fields quantum ¢j =1...N

e

« Quantum field theory in curved spacetime: @.

j testfield

particle creation: early universe, Hawking radiation

Ve

e Semiclassical gravity: backreaction of ¢j on (.,
cosmology, inflation, black hole evaporation
o Axiomatic approach (Wald 77)

e Large N expansion (Hartle-Horowitz 81)



Einstein-Langevin Equation

e Consider a weak gravitational perturbation h off
a background .. = &, + h.., The ELE is
given by

Gn‘h[.? T h] T A(.Qc'h + huh) - 2 ﬂAn‘h + ﬁBﬁh)[Q T h]
= 871G ((T g+ h]) + &‘“h[g]).

= The ELE Is Gauge invariance



Noise Kernel

A physical observable that describes these
fluctuations to the lowest order iIs the noise
kernel which is the vacuum expectation value of
the two-point correlation function of the stress-
energy operator

Navealgs X, ¥) = 5 ({Fanlg: X). Fealgs ¥)}).

ot

fn'h[g; X) = Tn'h[g; X) — <T”h[._f;'; k)}






Stochastic Gravity in relation to Quantum and Semiclassical

(w. Enric Verdaguer, Peyresg 98)
As an example, let’s consider

gravitational perturbations 7, in a FLRW universe with background metric g,

P

The Semiclassical Einstein Equation is Oh = (T)

where < > denotes the quantum vacuum expectation value

With solutions }1: /(;(j—'% h’lh’z = / /(11(12 T T>

The Quantum (Heisenberg) Equation is —

With solutions h — / Gj\“? fz fz //0192 b,

Where the average is taken with respect to the quantum fluctuations of both the
gravitational and matter fields



For stochastic gravity, the Einstein Langevin equation
Is of he form

Oh = (T ) + 7
With solutions
= [c@y+ [Gr mba= [ [ GG + (D74 r(D) + 7o
We now take the noise average e ‘
Recall - . ; ;
oLl b () = Ty (2) — (T (2)) ]
Hence

(The =0, (mim)e = (T1T2) — (T1) (1)
We get’ hlhg g —//G1G2 TT

Note this has the same form as in quantum gravity except that the
Average Is taken with respect to matter field fluctuations only.



Semiclassical Gravity includes only the mean value of the
Stress-Energy Tensor of the matter field

Stochastic Gravity includes the two point function of Tmn in the
Einstein-Langevin equation

It is the lowest order in the hierarchy of correlation functions.
The full hierarchy gives full information about the matter field.

At each level of the hierarchy there is a linkage with the gravity sector.
The lowest level is the Einstein equation relating the Tmn itself to the
Einstein tensor Gmn

Quantum Fluctuations :: Quantum Correlation :: Quantum Coherence

Thus stochastic gravity recovers partial guantum coherence in the
gravity sector via the metric fluctuations induced by matter fields






A simple illustrative model

» Classical theory =0 [h=«T = x0_,¢40°¢

e Quantum theory (Heisenberg) Dﬁ — Kf

solution h — S+K_[G T



 Noise kernel: N =1<{f ,f}), '[AE-|:—<T>

Define stochastic Gaussian field (¢), =0, (g,5,)s =N,

« Langevin equation
h, = k(T +&)
solution h =h’+ K_[ GXX,(('fX.) +<.)

2(0h,), = 200200 + &7 [[ G, G, (T, T, )



A SIMPLE MODEL

e Second terms on r.h.s. are equal

 First terms on r.h.s. are equal provided initial

distribution h’  (h%q 0, __<{ X,Ay}>

e Obtain quantum correlations from stochastic approach.
<{ N b =(hh),

<[ N y} ~ix(G,, -G,

In agreement with large N expansion
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