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OUTLINE

1. Semiclassical gravity (SCG):   SC Einstein Eqn: <Tmn>

2. Stochastic gravity: Einstein-Langevin Equation

Noise Kernel: <Tmn Trs>

3.  Influence functional; Stochastic Effective Action. 

4. One area of Application:
Primordial cosmological perturbations

• Gives result equivalent at linear order to usual method of
quantizing metric and inflaton perturbations
• But can treat quadratic order perturbations needed in R2

e.g., trace anomaly driven (Starobinsky) inflation .



SEMICLASSICAL GRAVITY

Semiclassical Einstein eq. for classical geometry, 
metric function g

ˆ[ ] [ ]ab ab renG g T gκ= 〈 〉 28 8 / PG mκ π π= =

Klein-Gordon eq. for quantum matter field ^φ

• Solve for g and ^φ self-consistently.

• Backreaction problem is at the heart of semiclassical gravity.

2 2 ˆ( ) 0g m Rξ φ∇ − − =



SEMICLASSICAL EINSTEIN EQUATION

Renormalization introduces quadratic tensors
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LIMITS OF SEMICLASSICAL GRAVITY

• Below Planck energy: measurements of time and length intervals

• Quantum fluctuations of stress tensor small:

2 2ˆ ˆ 0T T〈 〉 − 〈 〉 ≈

PΔl � l,Pt tΔ �

We want to extend semiclassical Einstein equations to

account for fluctuations of consistently. âbT

>> >>



Semiclassical Gravity
Semiclassical Einstein Equation (schematically):

is the Einstein tensor (plus covariant terms 
associated with the renormalization of the quantum field)

Free massive scalar field

+ κ (Tμν) c



Stochastic Gravity
Einstein- Langevin Equation (schematically):



• We will assume linear perturbation of semiclassical solution

But stochastic gravity is NOT restricted to linear perturbationsab abg h+

• Einstein-Langevin equation: ˆ( )g h g hG Tκ ξ+ += 〈 〉 +

(1) (1)ˆ[ ] [ ] [ ]ab ab ren abG g h T g h gκ κξ+ = 〈 + 〉 +

2 2 ˆ( ) 0g h m Rξ φ+∇ − − =

How could a quantum field give rise 
to a stochastic source?

via Influence functional (Feynman-Vernon 1963):



• Exp Value of 2-point correlations of stress tensor: bitensor

• Noise kernel measures quantum flucts of stress tensor

It can be represented by (shown via influence functional to be 
equivalent to) a classical stochastic tensor source

• Symmetric, traceless (for conformal field), divergenceless

{ }1 ˆ ˆ( , ) ( ), ( )
2abcd ab cdN x y t x t y= 〈 〉 ˆ ˆ ˆ

âb ab abt T T I≡ − 〈 〉

0ab sξ〈 〉 = ( ) ( ) ( , )ab cd s abcdx y N x yξ ξ〈 〉 =

[ ]ab gξ

NOISE KERNEL



Noise associated with the
fluctuations of a quantum field

• The noise kernel is real and positive semi-definite 
as a consequence of stress energy tensor being 
self-adjoint

• Classical Gaussian stochastic tensor field:     

denotes statistical average wrt this noise distribution



Classical Stochastic Field
assoc.with a Quantum Field

• Stochastic tensor is covariantly conserved in the 
background spacetime (which is a solution of 
the semiclassical Einstein equation).

• For a conformal field         is traceless: 

Thus there is no stochastic correction                      
to the trace anomaly



INFLUENCE FUNCTIONAL

• Open quantum system (Feynman-Vernon 63)

abh jφ
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INFLUENCE FUNCTIONAL

• Closed Time Path effective action at tree level in metric pert.

( )(0) 3, ,CTP g g IFh h S h S h S h h O h+ − + − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Γ = − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
is EH action plus quadratic terms.gS

• Probability distribution functional of a 
classical stochastic field
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• Integral identity (Feynman Vernon 1963):
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STOCHASTIC EFFECTIVE ACTION
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δ ±
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• Define a stochastic effective action:

the Einstein-Langevin equation

• field equation from:
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[ ]1, ; Re
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SOLUTIONS OF EINSTEIN-LANGEVIN 
EQUATIONS

• These stochastic equations determine the correlations

0 4( ) ( ) ' ( , ') ( ')ret cd
ab ab abcdh x h x d x gG x x xκ ξ= + −∫

0 0 2( ) ( ) ( ) ( ) ( , ') ( ', ') ( ', )ret efgh ret
ab cd s ab cd s abef ghcdh x h y h x h y G x x N x y G y yκ〈 〉 = 〈 〉 + ∫∫

(flucts in the initial state) (due to matter field flucts)

{ }1 ˆ ˆ( ), ( ) ( ) ( )
2 ab cd ab cd sh x h y h x h y〈 〉 = 〈 〉

• Stochastic metric correlations is equivalent to quantum  
metric correlations in 1/N: (Calzetta, Roura, Verdaguer)

Intrinsic fluctuations Induced fluctuations+
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STOCHASTIC GRAVITY AND PRIMORDIAL 
COSMOLOGICAL PERTURBATIONS

• Quantum fluctuations of inflaton are
seeds for structure formation

• Simplest chaotic inflationary model (Linde):
Massive minimally coupled inflaton field, initially
at average value larger than Planck scale

2 21 1( )
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a
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• Background inflaton field and FRW metric
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( )V φ
φ <~<<



PERTURBATIONS

• Inflaton and scalar metric perturbations

ˆ ˆ( ) ( ) ( )x xφ φ η ϕ= + ˆ 0gϕ〈 〉 =

2 2 2( )[ (1 2 ) (1 2 ) ]i j
ijds a d dx dxη η δ= − + Φ + − Ψ

• Einstein-Langevin equations

(0) (0) (1) (1)ˆ ˆ[ ] [ ] [ ] [ ] [ ]ab ab ab ab abG g T g G h T h gκ κ κξ− 〈 〉 + − 〈 〉 =
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zeroth order metric g is assumed to be quasi- de Sitter.
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STRESS TENSOR CORRELATIONS
ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]T g h T g h T g h T g hφφ φϕ ϕϕ〈 + 〉 = 〈 + 〉 + 〈 + 〉 + 〈 + 〉

• assume Gaussian state:
• two independent stochastic sources:

ˆ 0ϕ〈 〉 = ˆ ˆ ˆ 0ϕϕϕ〈 〉 =
(1) (2),ξ ξ

• Including only the first (linear) term:
we will show that the stochastic gravity
formulation gives equivalent results as the traditional
quantized metric and scalar field perturbations
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φ ϕ

〈 〉

{ } { } { }2 2 2 2
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independently conserved



E-L eqn for linear perturbations



• Since ˆ 0, ( )ijT i j〈 〉 = ≠ 0, ( )ij i jξ = ≠

Φ = Ψmetric perturbations

• Fourier transf. of 0i-component: (neglecting non-local term):

• Retarded propagator for kΦ
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With                  we get for the ii component of E-L eqn:

Two unknowns 1.
2.

These three equations reduce to two because of the Bianchi 
Identity, which holds here since the averaged and stochastic 
sources in the EL eqn are separately conserved.  



Equivalence with Quantum approach:

Can show that EL eqn reduces to (Roura and Verdaguer 2007) 

Same as the conventional approach via quantized linear 
perturbations, e.g., Eq. (6.48) of 

Comments:

1. In Fourier space nonlocal terms in the integro-differential equation in the spatial 
sector simplify to products. Non-locality in time in this equation disappears due 
to an exact cancellation of the different contributions from 

2. Seems like there is no dependence on the stochastic source. 
But the solutions to ELeqn should also satisfy the constraint eqn at the initial 
time in addition to the dynamical eqn. The initial conditions for                                     
have dependence on the stochastic source. 



CORRELATIONS FOR METRIC 
PERTURBATIONS

• Solutions of E-L equation:

2 '
' '( ) ( ') (2 ) ( ') k k

k k s ret k k s retk k G Gη η π δ ξ ξ〈Φ Φ 〉 = + 〈 〉∫∫
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METRIC PERTURBATION 
CORRELATIONS

Computing perturbatively in (1)
kG / Pm m

assuming slow roll
taking (rather insensitive to initial conds.) 0η → −∞

2
2 3 3

'( ) ( ') 8 (2 ) ( ') cos[ ( ')]k k s
P

m k k k k
m

η η π π δ η η−⎛ ⎞
〈Φ Φ 〉 + −⎜ ⎟

⎝ ⎠

r r
�

• Harrison-Zel’dovich scale inv. spectrum large scales 1kη ≤

• Amplitude of CMB anisotropies 610
P

m
m

−�

• Agreement with linear perturbations approach (Mukhanov 92)

• Stochastic gravity can go beyond linear app. in inflaton flucts.
(Weinberg 05) and deal with Starobinsky (tr anomaly) inflation

2( ) ( / )P Pt m m mφ −& �~

~



Summary:  Main Features

S.G fails when flucts. of quantum stress tensor are large
1. Semiclassical gravity depends on e.v. of q. stress tensor

2. Stochastic gravity incorporates these fluctuations
(at Gaussian level) through the noise kernel
acting as source for the Einstein-Langevin equation

3. Stochastic two-point metric correlations agree with quantum
two-point metric correlations to order 1/N in large N expansion

4. Cosmological Perturbation and Structure Formation:
Agreement with linear perturbations approach (e.g.,Mukhanov 92)

•But can go beyond linear order in inflaton fluctuations
necessary for trace-anomaly driven inflations (e.g., Starobinsky 1980)



Stochastic Gravity program
• (since 1994) E. Calzetta (Buenos Aires), 

B. L. Hu, A. Matacz, N.G. Phillips, S. Sinha (Maryland)  
A. Campos, R. Martin, A. Roura, Enric Verdaguer (Barcelona);

• Current work: 
with A. Roura (Los Alamos),  Enric Verdaguer (Barcelona)  

- cosmological perturbations work // by Urakawa and Maeda (Waseda)

• Review:
B. L. Hu and E. Verdaguer, “Stochastic gravity: Theory and 

Applications”, in  Living Reviews in Relativity 7 (2004) 3. 
[update in arXiv:0802.0658]

http://xxx.lanl.gov/abs/0802.0658




SEMICLASSICAL GRAVITY

ˆ
jφ abg

• Gravitational field classical abg , Matter fields quantum ˆ
jφ j=1,..,N

• Quantum field theory in curved spacetime:       test fieldˆ

particle creation: early universe, Hawking radiation

• Semiclassical gravity: backreaction of on

• Axiomatic approach (Wald 77)

• Large N expansion (Hartle-Horowitz 81)

jφ

cosmology, inflation, black hole evaporation



Einstein-Langevin Equation

• Consider a weak gravitational perturbation h off 
a background g                             The ELE is 
given by

The ELE is Gauge invariance



Noise Kernel
A physical observable that describes these 

fluctuations to the lowest order is the noise 
kernel which is the vacuum expectation value of 
the  two-point correlation function of the stress-
energy operator





Stochastic Gravity in relation to Quantum and Semiclassical 
(w. Enric Verdaguer, Peyresq 98)
As an example, let’s consider 

The Semiclassical Einstein Equation is  

where <  > denotes the quantum vacuum expectation value

With solutions

The Quantum (Heisenberg) Equation is

With solutions

Where the average is taken with respect to the quantum fluctuations of both the 
gravitational and matter fields



For stochastic gravity, the Einstein Langevin equation 
is of he form

With solutions

We now take the noise average 

Recall

Hence

We get,

Note this has the same form as in quantum gravity except that the
Average is taken with respect to matter field fluctuations only.



Semiclassical Gravity includes only the mean value of the 
Stress-Energy Tensor of the matter field

Stochastic Gravity includes the two point function of Tmn in the 
Einstein-Langevin equation

It is the lowest order in the hierarchy of correlation functions. 
The full hierarchy gives full information about the matter field.

At each level of the hierarchy there is a linkage with the gravity sector. 
The lowest level is the Einstein equation relating the Tmn itself to the 
Einstein tensor Gmn

Quantum Fluctuations :: Quantum Correlation :: Quantum Coherence

Thus stochastic gravity recovers partial quantum coherence in the 
gravity sector via the metric fluctuations induced by matter fields





A simple illustrative model

• Classical theory 0φ =� a
ah Tκ κ φ φ= = ∂ ∂�

ˆ ˆh Tκ=�

solution

{ } { } { }0 0 2
' ' ' '

ˆ ˆ ˆ ˆ ˆ ˆ, , ,x y x y xx yy x yh h h h G G T Tκ〈 〉 = 〈 〉 + 〈 〉∫∫

0ˆ ˆ ˆ
x x xy yh h G Tκ= + ∫

• Quantum theory (Heisenberg)



• Noise kernel: { }1 ˆ ˆ, ,
2xy x yN t t= 〈 〉 ˆ ˆt̂ T T≡ − 〈 〉

Define stochastic Gaussian field 0,sξ〈 〉 =

• Langevin equation

ˆ( )x x xh Tκ ξ= 〈 〉 +�

solution

x y s xyNξ ξ〈 〉 =

0
' ' '

ˆ( )x x xx x xh h G Tκ ξ= + 〈 〉 +∫
{ }0 0 2

' ' ' '
ˆ ˆ2 2 ,x y s x y s xx yy x yh h h h G G T Tκ〈 〉 = 〈 〉 + 〈 〉∫∫



A SIMPLE MODEL

• Second terms on r.h.s. are equal

• First terms on r.h.s. are equal provided initial
0
xh

• Obtain quantum correlations from stochastic approach.

{ }1 ˆ ˆ,
2 x y x y sh h h h〈 〉 = 〈 〉

1 ˆ ˆ, ( )
2 x y yx xyh h i G Gκ⎡ ⎤〈 〉 = −⎣ ⎦

in agreement with large N expansion

{ }0 0 0 01 ˆ ˆ,
2x y s x yh h h h〈 〉 = 〈 〉distribution
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