Experimenting with Strongly Coupled QCD Matter at RHIC

Barbara Jacak Stony Brook

Nonequilibrium dynamics at KITP

February 26, 2008

outline

- We already know from RHIC opaque, flowing, rapidly thermalized QCD matter
- Nonequilibrium dynamics: isotropization EM observables
- Nonequilibrium probes of the equilibrated matter transport of momentum into QCD matter transport of energy by QCD matter heavy quark diffusion and viscosity

properties of matter ^ OCD

- thermodynamic (equilibrium)
 T, P, ρ
 EOS (related T,P,V)
 v_{sound}, static screening length
- approach to thermalization

(with C.DeTar, E.Laermann O. Kacamerek)

 f^* measuring these is new for nuclear/particle physics!

challenge: heavy ion collisions & cosmology

not possible to measure as a function of time nature integrates over the entire collision history

RHIC at Brookhaven National Laboratory

Collide Au + Au ions for maximum volume $\sqrt{s} = 200$ GeV/nucleon pair, p+p and d+A to compare

The Tools

STAR specialty: large acceptance measurement of hadrons

PHENIX specialty: rare probes, leptons, and photons

study plasma by radiated & "probe" particles

• as a function of transverse momentum $p_T = p \sin \theta$ (with respect to beam direction) 90° is where the action is (max T, ρ) p_L midway between the two beams: midrapidity

p_T < 1.5 GeV/c
 "thermal" particles
 radiated from bulk of the medium
 "internal" plasma probes

• p_T > 3 GeV/c jets (hard scattered q or g) heavy quarks, direct photons describe by perturbative QCD produced early→"external" probe

a bit of geometry, terminology

- baseline for heavy ions are p+p collisions
- peripheral collisions (large impact parameter) are like a handful of p+p collisions
- central (small impact parameter) collisions produce largest plasma volume, temperature, lifetime
- report centrality as fraction of total A+A cross section

peripheral: few participant nucleons (small N_{part}) few NN collisions (N_{coll})

central: large N_{part} & N_{coll} Ncoll near 1000 in ~ head-on Au+Au

Establish that matter is opaque

colored objects lose energy, photons don't

Collectivity: measuring elliptic flow (v_2)

v₂ is large & reproduced by hydrodynamics

must begin hydro in < 1 fm/c
viscosity must be ~ 0 - 0.1
i.e. "perfect" liquid
viscosity decreases longitud.
pdV work → higher
transverse velocity

data constrains hydro: as in plasma physics

First indication of small η /S

isotropization of incoming momentum in <1 fm/c

- is really *FAST!!*
- not possible by partonic interactions with perturbative cross sections
- first indication that coupling is strong also: α_s not small at RHIC gluon density in sphere with $r_{Debye} \sim 1$ liquid behavior is typical of strongly coupled plasma
- mechanism: plasma instability?
- need experimental observables sensitive to nonequilibrium processes

electromagnetic probes not perturbed by equilibrated plasma at later times

Begin with leptons: $\gamma^* \rightarrow e^+e^-$ pairs

p+p and Au+Au normalized to π^0 region

- Au+Au agrees with p+p at resonances (ω, φ)
- Enhancement for 0.2 < m_{ee} < 0.8 GeV
- Also excess ρ : $\pi + \pi \rightarrow \rho$ during hadron gas phase
- Agree at 1.2 < m < 3 GeV and J/ Ψ by coincidence (J/ Ψ scales as π^0 due to scaling as N_{coll} + suppression)

excess is in central collisions

yield excess grows faster than N_{π} large excess below ρ $q+\bar{q}\to\gamma^*\to e+e-?$ thermal radiation

low mass excess is dominantly at low p_T

p_T distribution is mysterious

direct photons via e+e-

low mass and $p_T >> m_{ee}$ dominated by decay of γ^* (kinematic bias against hadron decay background) for low mass, $p_T > 1$ GeV/c direct γ^* fraction of inclusive γ^* (mostly π^0 , η) is \approx real γ fraction of γ (mostly π^0 , η)

low pT direct γ and QCD direct γ

High p_T direct photons

interesting things at $p_T>15$ GeV/c?

transport properties of hot QCD matter

• to characterize material, typically one measures transport coefficients:

particle number, energy, momentum, charge diffusion sound viscosity conductivity

- also transverse momentum deposition into the medium: \hat{q}
- emission from the bulk can reflect collective motion
- but other useful probes require
 auto-generation in the heavy ion collision
 large Q² processes to separate production & propagation
 large E_{tot} (high p_T or M) to set scale other than T(plasma)

tranport step 1: dump momentum into the medium

energy/momentum is transferred to the medium how to quantify this & the medium's response?

- define a transport parameter e.g. q̂:
 <p_T²> transfer from medium to fast quark/gluon per unit path length
- cannot measure directly use data to constrain models with varying \hat{q} model high p_T pion suppression energy/momentum loss of fast quark to medium dominantly via gluon radiation this radiation calculable with pQCD
- also calculable via AdS/CFT
 in that case q̂ is a measure of temperature, T

extract \hat{q} using high p_T data, get a big number!

C. Loizides Eur.Phys.J. C49 (2007) 339

pQCD favors ~1 (Baier); AdS/CFT ~4.5 GeV²/fm (Rajagopal, Wiedemann)

Most models approach perturbatively

Some include feedback to parton Geometry details vary

In strong coupling: $\hat{\mathbf{q}} \propto \sqrt{\mathbf{N}_{\mathrm{DOF}}}$

$$\hat{q} = c\sqrt{g_{YM}^2 N} T^3$$

It does not seem that the answers hang together

Results (1σ range):

Caveat: theoretical uncertainties not included

PQM	GLV	WHDG	ZOWW
$\hat{q} = 13.2^{+2.1}_{-3.2} \text{GeV}^2/\text{fm}$	$dN^{g} / dy = 1400^{+270}_{-150}$	$dN^{g} / dy = 1400^{+200}_{-540}$	$\varepsilon_0 = 1.9^{+0.2}_{-0.5} \text{GeV/fm}^3$

medium transport of deposited energy?

- study using hadron pairs
- high p_T trigger to tag hard scattering
- second particle to probe the medium

at high momentum, jets punch through

Phys.Rev.Lett. 97 (2006) 162301

central

lower p_T looks funny:

medium responds to the "lost" energy

lost energy excites a sound (density) wave?

if shoulder is sound wave... LOCATION at $\phi=\pi$ +/-1.23=1.91,4.37 \rightarrow speed of sound $\cos\phi_m=c_s\sim0.35$ -0.4 $(c_s^2=0.33 \text{ in QGP},\sim0.19 \text{ in hadron gas})$

relative excitation of sound and diffusion wake in intense study data → sound mode large

Chesler & Yaffe, 0706.0368(hep-th)

Diffusion of heavy quarks traversing QGP

- How do they interact?
- Prediction: lower energy loss than light quarks large quark mass reduces phase space for radiated gluons

 Measure via semi-leptonic decays of mesons containing charm or bottom quarks

c,b decays via single electron spectrum

compare data to "cocktail" of hadronic decays

sufficient interaction to equilibrate??

- Like putting a rock in a stream and watching if the stream can drag it along...
- Measure correlation of e[±]
 with the light hadrons (i.e. v₂)
- NB: rate of equilibration gives information on the viscosity of the liquid!

Heavy quarks do flow!!
Use to probe transport
properties of QGP!

analogy from J. Nagle

and heavy quarks lose substantial energy

pQCD: energy loss dominantly bremsstrahlung (radiate gluons) plasmas have collisions among constituents! including it helps larger than expected scattering $\sigma \to \text{stronger coupling}$

heavy quark transport: diffusion & viscosity

- diffusion = brownian motion of particles
 definition: flux density of particles J = -D grad n
- integrating over forward hemisphere: $D = \text{diffusivity} = 1/3 < v > \lambda$ $\text{so } D = < v > / 3n\sigma$ $\lambda = \text{mean free path}$

 $D \propto$ collision time, determines relaxation time Langevin: equation of motion for diffusion thru a medium drag force \leftrightarrow random force \leftrightarrow $<\Delta p_T^2>$ /unit time \leftrightarrow D^*

note: viscosity is ability to transport momentum $\eta = 1/3 \ \rho < v > \lambda$ so $D = \eta/\rho \sim \eta/S \rightarrow$ measure D get $\eta!$

^{*} G. Moore and D. Teaney, hep-ph/0412346

confronting mechanisms with data

PRL98, 172301 (2007)

Radiative energy loss alone: fails to reproduce v₂

Heavy quark transport model (i.e. diffusion) shows better agreement with R_{AA} and v_2

Though agreement with data is so-so, slow relaxation ruled out by v₂

$$D \sim 4-6/(2\pi T)$$
 for charm $\eta/S = (1.3 - 2.0)/4\pi$

Comparison with other estimates

estimates of η/s based on flow and fluctuation data indicate small value as well close to conjectured limit significantly below η/s of helium (4πη/s ~ 9)

conjectured quantum limit

What about b quarks?

Conclusions

- Enhanced dileptons and photons (also at lower \sqrt{s} at SPS) soft but no flow; hadronic?? need to constrain $T_{initial}!$
- Energy loss is large. Mechanism & magnitude??

PQM	GLV	WHDG	ZOWW
$\hat{q} = 13.2^{+2.1}_{-3.2} \text{GeV}^2/\text{fm}$	$dN^{2}/dy = 1400_{-150}^{+270}$	$dN^{g} / dy = 1400^{+200}_{-540}$	$\varepsilon_0 = 1.9^{+0.2}_{-0.5} \text{GeV/fm}^3$

and/or $\alpha_s \sim 0.27$

- Deposited energy shocks the medium. Mach cones? $c_s \sim (0.35-0.4)$ c (closer to hadron gas than QGP) expected diffusion wake AWOL (baryon enhancement?)
- Heavy quark diffusion, hadron v_2 , fluctuations \rightarrow viscosity $\eta/S = (1-3)/4\pi$ close to conjectured bound
- First hint of b decays, maybe not gobbled up by medium?

Impact on cosmological models

- ??
- How does the strong coupling affect evolution?
- Do we care about fluctuations and correlations after inflation??

for further (experimental) progress

• backup slides

LPM effect up to $O(g_s) + (3+1)d$ hydro + collisions

Qin, Ruppert, Gale, Jeon, Moore and Mustafa, 0710.0605

Fix initial state by constraining hydro with particle spectra Reproduce observed energy loss vs. centrality using $\alpha_s = 0.27$

more complex jet fragment measurements

 3 – particle correlations consistent with Mach-cone shoulder

- sum of jet fragment momentum
 - increases togetheron trigger and away sides
 - momentum loss in punch-thru jet balanced by momentum in the shoulder peak
 - evidence for wakes?

screening length: onium spectroscopy

250

300

350

400

N_{part}

they are screened but direct J/ψ not?

what does non-perturbative QCD say?

Lattice QCD shows heavy $q\bar{q}$ correlations at $T > T_c$, also implying that interactions are not zero

Big debate ongoing whether these are resonant states, or "merely" some interactions

Color screening – yes! but not fully... Some J/ψ may emerge intact

 J/ψ is a mystery at the moment!

Others may form in final state if c and cbar find each other

are J/ ψ 's regenerated late in the collision?

$c + \overline{c}$ coalesce at freezeout $\rightarrow J/\psi$

R. Rapp et al.PRL 92, 212301 (2004)
R. Thews et al, Eur. Phys. J C43, 97 (2005)
Yan, Zhuang, Xu, PRL97, 232301 (2006)
Bratkovskaya et al., PRC 69, 054903 (2004)
A. Andronic et al., NPA789, 334 (2007)

should narrow rapidity dist. ... does it?

 J/ψ is a mystery at the moment!

minimum η at phase boundary?

Csernai, Kapusta & McLerran PRL97, 152303 (2006)

strongly coupled dusty plasma

B. Liu and J. Goree,

minimum observed in other strongly coupled systems — kinetic part of η decreases with Γ while potential part increases

calculating transport in QGP

weak coupling limit

perturbative QCD

kinetic theory, cascades

strong coupling limit

not so easy!

gravity ↔ supersym 4-d

QCD-like theory

resummation of hard thermal loops

the 1-loop self-energy for gluons.

dielectron spectrum vs. hadronic cocktail

Comparison with conventional theory

minimum bias Au+Au @ √s = 200 GeV

Direct photon v₂

$$v_2^{dir.photon} = \frac{R^*v_2^{inc.photon} - v_2^{BG_photon}}{R-1}$$

