
Classical thermodynamics of gravitational collapse

S. Khlebnikov
Purdue University

Work done in collaboration with Zoltan Gecse (Purdue).

Outline
1. Motivation (braneworlds and the strong CP problem).
2. Energy vs. "free energy" in gravitational collapse.
3. A specific example: spherically-symmetric collapse of an instanton 
"particle" in 5 dimensions.

4. Numerical results.
5. Interpretation.
6. Brief comments on quantum mechanics.
7. Conclusion.



Motivation

Instantons on the brane = transport of instanton ‘‘particles’’ through the 
brane. A theta-angle is a steady flow of these "particles".

For certain topologies (e.g., a sphere), the "particles" cost energy (the 
space has a finite inductance). Then, the effective theta-angle 
becomes time-dependent and can relax to zero---solution to the strong 
CP problem (S.K. and M. Shaposhnikov, 2004).

A (1+1)-dimensional Abelian example:
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Motivation (continued)

A time-dependent theta is a ‘‘global axion’’---a single degree of 
freedom, not a particle, but is supposed to contribute correctly to the 
low-energy theorems of QCD (so that the solution to the U(1) problem 
is intact). It can be seen explicitly that it does in the 2-flavor massive 
Schwinger model with finite inductance (S.K., 2006).

Existence of such a mode is possible because of a weak violation of 
Lorentz invariance.

The same mechanism may work simply due to the presence of a bulk 
black hole.
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‘‘Free energy’’ of a black hole
Is degeneracy of classical vacua determined by the energy E (mass) of 
the black hole or some ‘‘free energy’’?

A quantum state on the brane evolves with exp(iI), where I is the 
action (brane + bulk). Let canonical coordinates on the brane be q, and 

those in the bulk Q, and suppose q do not change.

The partial derivative with respect to time (of a brane observer) gives 
the energy:

∂I

∂t

∣

∣

∣
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Qf

= −E ,

while the total derivative gives the Lagrangian computed on the 
classical solution. Denote

dI

dt
= −F .

Questions: Is F a "thermodynamic potential"? How does it behave 
during gravitational collapse?



Gravitational collapse of an instanton ‘‘particle’’
This work (Z. Gecse and S.K., 2008):

1. Choice of theory: SU(2) Einstein-Yang-Mills in asymptotically flat 5d 
spacetime. [Not a realistic braneworld, but the question (about the 

time-dependence of F) can still be asked.]

2. Spherical symmetry, isotropic coordinates:

ds2 = −N2(t, r)dt2 + Ψ2(t, r)(dr2 + r2dΩ2

3
) ,

Aa
µ =

(

0, ηa
ijnj

f(t, r)

r

)

,

where spatial indices refer to the Cartesian coordinates built from r and 
the angles.

3. Initial conditions: a smooth  f(0,r) with weak gravity, e.g., an 
instanton

f0(r) =
2r2

λ2

0
+ r2

of a large size; zero or nonzero initial velocity.



Numerical evolution

Evolve the canonical pairs 

(Ψ, K), (f, p) .

Update  N(t,r) from its ODE. Monitor the energy and momentum 
constraints.

A black hole forms when N(t,r) as a function of r crosses zero.

Units (on the plots): energies and the Lagrangian are in units of the 
mass of a nongravitating (very large) instanton 

Einst =
8π2

g2

YM

,

distances and time are in units of the gravitational radius 
corresponding to this mass.



Numerical results

These are for λ0 = 5, p(0, r) = 0 .

For zero initial momentum and large  Newtonian gravity lasts untilλ0,
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Numerical results (the gauge field)
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Numerical results (the conformal factor)
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Numerical results (accumulation plot)

Need to separate the Lagrangian of the black hole from that of the 
outgoing wave.
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In this case,
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Numerical results (the Lagrangian)
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Interpretation

1. In a sense, E-F is the energy associated with evolution that goes 
unnoticeably to a distant observer. (If we set all time derivatives to 

zero, we would have F = E.) This is similar to statistical equilibrium.

2.  F = E/3 agrees with the standard black-hole thermodynamics:

Fthermo = E − THSBH =
1

3
E .

While the temperature and entropy each contain a power of the Planck 
constant, these cancel in the product, which means that the free 
energy may have a classical interpretation. Our results suggest that it 
is simply minus the Lagrangian.

3. The coincidence is nontrivial: the thermal free energy is computed 
from the vacuum exterior alone, while our F from a time-dependent 

solution with collapsing matter.

4. The difference E-F is accumulated in a thin shell near the horizon.



Conclusion

  Numerical studies suggest a classical interpretation of the free 
energy of a black hole. Our definition of the free energy is 
complementary to the usual thermal (Euclidean) definition. Unlike 
the latter, it explicitly refers to a time-dependent ("nonequilibrium") 
metric.

  Although classical solutions do not allow one to compute the overall 
normalization of the black-hole entropy, they can tell where (in 
space) the entropy is coming from.


