What the Inflaton might tell us about RHIC

Jürgen Berges

Darmstadt University of Technology

Content

- I. Collision experiments of heavy nuclei
- II. Heating the universe after inflation

I & II:

- Instabilities and fast thermalization?
- Non-thermal fixed points: effective weak coupling in strongly correlated systems far from equilibrium

I. Collision experiments of heavy nuclei

Relativistic Heavy Ion Collider (BNL)

Facility for Antiproton and Ion Research (GSI)

Large Hadron Collider (CERN)

Nonequilibrium dynamics

Relativistic heavy-ion collisions explore strong interaction matter starting from a transient *nonequilibrium* state

Thermalization process?

Thermalization after ≥ 10 fm/c?

Properties of the equilibrium phase diagram of QCD?

RHIC: Measured relative particle abundancies consistent with

$$T\sim 10^{12}~\mathrm{K}\sim 200~\mathrm{MeV}\sim 1~\mathrm{fm}^{-1}$$

from fit to statistical model ...

Braun-Munzinger, Redlich, Stachel

Theoretical justification for hydrodynamics after ≤ 1 fm/c?
 Early local thermal equilibrium?

Early hydrodynamics

Hydrodynamics 'works' from ~ 1 fm/c! Kolb, Heinz, QGP3 (2004) 634; ...

P. Romatschke, U. Romatschke, *PRL* 99 (2007) 172301

\Rightarrow almost ideal hydrodynamics for $p_T \lesssim 1-2$ GeV

What are the essential assumptions for ideal fluid hydrodynamics?

Equation of state relating pressure p to energy density ε

E.g. $SU_L(2) \times SU_R(2)$ Yukawa model in 3+1d with couplings $\sim O(1)$, isotropy:

'Prethermalization' (dephasing) time for EOS: $T t_{pt} \sim O(1)$

Consistent with early use of hydrodynamics – far from equilibrium

Berges, Borsanyi, Wetterich, PRL 93 (2004) 142002

• Isotropy of the stress tensor in the local fluid rest frame

$$T_{\rm ij} \simeq P \, \delta_{\rm ij}$$
 Relativistic heavy-ion collisions: $T_{\rm xx} \sim T_{\rm yy} \gg T_{\rm zz}$

Isotropization time t_{iso} ? In the absence of nonequilibrium instabilities:

$$t_{\rm iso} \sim t_{\rm relax} \sim O(1/g^4 T)_{\rm |weak coupling QCD near equilibrium}$$

Plasma instabilities: exponential growth of $T_{zz} \rightarrow$ isotropization? Weibel, *PRL* 2 (1959) 83; Mrowczynski, *PRC* 49 (1994) 2191; ...

$$t_{\text{iso}} \stackrel{?}{\sim} O(1/gT)_{|\text{weak coupling, } O(1) \text{ anisotropy}}$$

Understanding early use of hydrodynamics means understanding fast isotropization due to plasma instabilities!

Arnold, Moore, Yaffe, PRL 94 (2005) 072302

Nonequilibrium instabilities

Large class of possible instabilities:

Spinodal, Parametric, Plasma (Weibel) ...

E.g. Weibel instability in electrodynamics:

Initial fluctuating current:

$$\mathbf{j}(\mathbf{x}) = \mathbf{j} \cos(\mathbf{k}\mathbf{x}) \mathbf{e}_{\mathbf{z}}$$

⇒ generated magnetic field:

$$\mathbf{B}(\mathbf{x}) = \mathbf{j} \sin(\mathbf{k}\mathbf{x})/\mathbf{k} \mathbf{e}_{\mathbf{y}}$$

⇒ Lorentz force acts such that current grows:

$$\mathbf{F}(\mathbf{x}) = \mathbf{q} \mathbf{v} \times \mathbf{B} = -\mathbf{q} \mathbf{v}_{z} \mathbf{j} \sin(k\mathbf{x})/k \mathbf{e}_{x}$$

⇒ B-field grows, etc.

Fast isotropization/thermalization due to instabilities?

Mrowczynski '94; Romatschke, Strickland '03; Arnold, Lenaghan, Moore '03, Mrowczynski, Rebhan, Strickland '04; Rebhan, Romatschke, Strickland '05; Dumitru, Nara '05; Romatschke, Venugopalan '06; Schenke, Strickland, Greiner, Thoma '06; Dumitru, Nara, Strickland '07; Bödeker, Rummukainen '07; Berges, Scheffler, Sexty '08; Mrowczynski '08 ...

Characteristic time scales

- A) 'Soft' classical gauge fields + 'hard' classical particles Arnold, Moore, Yaffe; Rebhan, Romatschke, Strickland; Dumitru, Nara, Strickland; Bödeker, Rummukainen
- B) Classical-statistical gauge field evolution (here) Romatschke, Venugopalan; Berges, Scheffler, Sexty

Inverse primary growth rate:

$$\Rightarrow$$
 1/ $\gamma_{max} \simeq$ 1.1 fm/c for $\varepsilon = 30$ GeV/fm³

What energy density would be required to get $1/\gamma_{max} \simeq 0.1$ fm/c?

$$\Rightarrow$$
 ε = 300 TeV/fm³ (!)

Bottom-up isotropization of pressure

Spatial Fourier transform of the energy-momentum tensor $T^{\mu\nu}(x)$:

 $P_{L}(t,p)$ for $\mu=\nu=3$, $P_{T}(t,p)$ from transversal components

For what p is $P_L(p)/P_T(p)\gtrsim 0.6$ at end of exponential growth? $\Rightarrow p_z\lesssim 1.4~\epsilon^{1/4}$

 $p_z \lesssim 1$ GeV for $\varepsilon = 30$ GeV/fm³ 'enough' for hydro?

BUT: Isotropization time of dominant higher momenta consistent with 'infinity'

Evolution towards turbulent-type spectrum?

Very slow evolution after the initial exponential growth:

Strickland, *J Phys G*34 (2007) S429 Arnold, Moore, PRD 73 (2006) 025006

See, however: Bödeker, Rummukainen, JHEP 0707 (2007) 022 (Vlasov equations)

II. Heating the Universe after inflation: scalar inflaton dynamics as a *quantum* example

Schematic evolution:

- Energy density of matter ($\sim a^{-3}$) and radiation ($\sim a^{-4}$) decreases
- Enormous heating after inflation to get 'hot-big-bang' cosmology!

Parametric resonance preheating

Kofman, Linde, Starobinsky, PRL 73 (1994) 3195

E.g. scalar $\lambda \Phi^4$ inflaton dynamics:

- Field expectation value $\phi = \langle \Phi \rangle$
- Fluctuation $F \sim \langle \{\Phi, \Phi\} \rangle$

parametric resonance: $F(t) \sim e^{\gamma t}$

Classical oscillator analogue (exact early): $\omega(t) \leftrightarrow \phi(t)$, $x(t) \leftrightarrow F(t)$

$$\ddot{x} + \omega^2(t)x = 0$$
, $\omega(t+T) = \omega(t)$

invariant under $t \rightarrow t + T$:

$$\rightarrow$$
 $x(t + T) = cx(t)$, i.e.

$$x(t) = c^{t/T}\Pi(t)$$
, $\Pi(t+T) = \Pi(t)$

for real c > 1:

instability with exponential growth!

Inflaton dynamics in the quantum theory

(N=4)-component $\lambda(\Phi_a\Phi_a)^2$ quantum field theory

Energy:

Occupation numbers:

(Approximation: 2PI 1/N to NLO)

Berges, Serreau, PRL 91 (2003) 111601

Tachyonic preheating: Arrizabalaga, Smit, Tranberg, JHEP 0410 (2004) 017

time

nonperturbative regime: quasistationary evolution

nonlinear regime: source induced amplification

linear regime: non parametric resonance sour

slow

Nonperturbative: saturated occupation numbers $\sim 1/\lambda$

- \rightarrow *universal:* λ drops out
- \rightarrow all processes O(1)

Effective weak coupling!

(IV)
$$\sim N, N^0$$
; $\sim N^0$ + $\sim N^0$ + $\sim O(\lambda^{-1})$

$$t_{\text{nonpert}} \sim \ln (\lambda^{-1})/2 \gamma_0$$

 $F_1 \sim O(N^0 \lambda^{-1})$

$$\sim O(N^0 \lambda^0)$$

(III)

 $t_{\text{collect}} \sim 2 t_{\text{nonpert}}/3 + \ln(N)/6\gamma_0$

$$F_{\perp} \sim O(N^{1/3} \, \lambda^{-2/3}) \text{ for } N \lesssim \lambda^{-1}$$

$$\sim$$
 O(N⁰ λ ⁰)

rate: $6 \gamma_0$ for $F_{\perp}(p \neq p_0)$

(II)

 $t_{\text{source}} \sim t_{\text{nonpert}}/2$

$$F_{\!\scriptscriptstyle \perp}\!\sim O(N^{\,0}\,\lambda^{-1/2})$$

$$\sim O(N^0 \lambda^0)$$

rate: $4 \gamma_0$ for $F_{\parallel}(p \lesssim 2p_0)$

fast

Nonlinear – perturbative: occupation numbers $< 1/\lambda$

secondary growth rates $c(2\gamma_0)$ with c = 2,3,...

(I) $F_{\perp}(t,t;p_0) \sim \exp(2\gamma_0 t) \qquad \text{rate: } 2\gamma_0$

Classical/linear: primary growth rate

$$t=0$$
, $F_{\perp}\sim O(N^0\lambda^0)$

$$\phi\sim$$
 (N / λ)^{1/2}

Slow: Non-thermal fixed points

Time-translation invariant non-thermal solutions?

No, thermal equilibrium unique (H-theorem)

But: Slow dynamics after saturation governed by approximate non-thermal FP of the corresponding *classical-statistical* theory

<u>Cartoon</u>: 'Space of correlation functions'

Comparison quantum/classical dynamics

Classical-statistical simulations: Khlebnikov, Tkachev '96; Prokopec, Roos '97; Tkachev, Khlebnikov, Kofman, Linde '98; ...

Berges, Rothkopf, Schmidt '08

Practically no quantum corrections at the end of preheating

Accurate nonperturbative description by 2PI 1/N to NLO

Nonequilibrium evolution equations

Propagator:

spectral function $\sim \langle [\Phi, \Phi] \rangle$

$$G(x,y) = F(x,y) - \frac{i}{2}\rho(x,y)\operatorname{sign}_{\mathscr{C}}(x^0 - y^0)$$

statistical propagator $\sim \langle \{\Phi, \Phi\} \rangle$

Tremendous simplification if thermal equilibrium $G^{(eq)}(x,y)=G^{(eq)}(x-y)$ with

$$F^{(\mathrm{eq})}(\boldsymbol{\omega},\mathbf{p}) = -i\left(\frac{1}{2} + n_{\mathrm{BE}}(\boldsymbol{\omega})\right) \boldsymbol{\rho}^{(\mathrm{eq})}(\boldsymbol{\omega},\mathbf{p})$$
 "fluctuation-dissipation relation"

Nonequilibrium:

$$F \not\sim \rho$$

$$\begin{aligned} \left[\Box_{x}\delta_{ac} + M_{ac}^{2}(x)\right]\rho_{cb}(x,y) &= -\int_{y^{0}}^{x^{0}} \mathrm{d}z \Sigma_{ac}^{\rho}(x,z)\rho_{cb}(z,y) \\ \left[\Box_{x}\delta_{ac} + M_{ac}^{2}(x)\right]F_{cb}(x,y) &= -\int_{0}^{x^{0}} \mathrm{d}z \Sigma_{ac}^{\rho}(x,z)F_{cb}(z,y) \\ &+ \int_{0}^{y^{0}} \mathrm{d}z \Sigma_{ac}^{F}(x,z)\rho_{cb}(z,y) \end{aligned}$$
$$\left(\left[\Box_{x} + \frac{\lambda}{6N}\phi^{2}(x)\right]\delta_{ab} + M_{ab}^{2}(x;\phi = 0,F)\right)\phi_{b}(x)$$
$$= -\int_{0}^{x^{0}} \mathrm{d}y \Sigma_{ab}^{\rho}(x,y;\phi = 0,F,\rho)\phi_{b}(y)$$

Quantum- vs. classical-statistical contributions

Example: Quantum

(Similar for 1/N to NLO and $\phi \neq 0$)

$$\Sigma^{F}(t,t';\mathbf{p}) = -\frac{\lambda^{2}}{6} \int_{\mathbf{q},\mathbf{k}} F(t,t';\mathbf{p} - \mathbf{q} - \mathbf{k})$$

$$\left[F(t,t';\mathbf{q})F(t,t';\mathbf{k}) - \frac{3}{4} \rho(t,t';\mathbf{q})\rho(t,t';\mathbf{k}) \right]$$

$$\Sigma^{\rho}(t,t';\mathbf{p}) = -\frac{\lambda^{2}}{2} \int_{\mathbf{q},\mathbf{k}} \rho(t,t';\mathbf{p} - \mathbf{q} - \mathbf{k})$$

$$\left[F(t,t';\mathbf{q})F(t,t';\mathbf{k}) - \frac{1}{12} \rho(t,t';\mathbf{q})\rho(t,t';\mathbf{k}) \right]$$

<u>Classical</u>

$$\Sigma_{\text{cl}}^{F}(t, t'; \mathbf{p}) = -\frac{\lambda^{2}}{6} \int_{\mathbf{q}, \mathbf{k}} F(t, t'; \mathbf{p} - \mathbf{q} - \mathbf{k}) F(t, t'; \mathbf{q}) F(t, t'; \mathbf{k})$$

$$\Sigma_{\rm cl}^{\rho}(t,t';\mathbf{p}) = -\frac{\lambda^2}{2} \int_{\mathbf{q},\mathbf{k}} \rho(t,t';\mathbf{p}-\mathbf{q}-\mathbf{k}) F(t,t';\mathbf{q}) F(t,t';\mathbf{k})$$

Fixed point condition

Time and space translation invariant solutions require:

$$\Sigma_{ab}^{\rho}(\phi, p)F_{bc}(p) - \Sigma_{ab}^{F}(\phi, p)\rho_{bc}(p) = J_{ac}^{(3)}(\phi, p) + J_{ac}^{(4)}(\phi, p) \equiv \mathbf{0}$$

Neglecting quantum corrections and $F_{ab} \sim \delta_{ab} F$, $\rho_{ab} \sim \delta_{ab} \rho$, 1/N to NLO:

$$\begin{split} J_{aa}^{(3)}(\phi,p) &= \frac{\lambda\phi^2}{18N(2\pi)^4} \int \mathrm{d}^4k \, \mathrm{d}^4q \, \delta^4(p-q-k) \\ &= \frac{\lambda}{18N(2\pi)^4} \int \mathrm{d}^4k \, \mathrm{d}^4q \, \delta^4(p-q-k) \\ &= \frac{\lambda}{18(2\pi)^8} [\rho(k) + \rho(k) + \rho(k)$$

Effective weak coupling

$$\lambda_{\text{eff}}(p) = \frac{\lambda}{\left|1 + \Pi_R(p)\right|^2} \qquad \tilde{\mathbb{S}}_{10^{-1}}$$

'One-loop' retarded self-energy:

$$\Pi_R(p) = \frac{\lambda}{3(2\pi)^4} \int d^4q \, F(q) G_R(p-q) \; ; \; \Delta(\phi, p) = \frac{2\lambda\phi^2}{3N} \text{Re}\left[\frac{G_R(p)}{1 + \Pi_R(p)}\right]$$

Scaling solutions

$$F(p) = s^{2+\alpha} F(sp)$$

$$\rho(p) = s^2 \rho(sp)$$

$$\lambda_{\text{eff}}(p) = s^{\gamma} \lambda_{\text{eff}}(sp)$$

 $\Rightarrow \Pi_R(p) = s^{\alpha}\Pi_R(sp)$, i.e. λ_{eff} scales differently in UV and IR:

I:
$$\gamma = 0 \text{ for } \Pi_R(p) \ll 1$$
 (UV)

$$J_{aa}^{(3)}(\phi,p) = s^{2\alpha} J_{aa}^{(3)}(s\phi,sp) \leftarrow \text{dominates UV for } \alpha > 0$$

$$J_{aa}^{(4)}(0,p) = s^{3\alpha} J_{aa}^{(4)}(0,sp)$$

$$J_{aa}^{(3)}(\phi, p) = 0 \Rightarrow \left[\alpha = 1, \alpha = \frac{3}{2}\right]$$

II:
$$\gamma = -2\alpha \text{ for } \Pi_R(p) \gg 1$$
 (IR)

$$J_{aa}^{(3)}(\phi, p) = s^0 J_{aa}^{(3)}(s\phi, sp)$$

$$J_{aa}^{(4)}(0,p) = s^{\alpha} J_{aa}^{(4)}(0,sp) \leftarrow \text{dominates IR for } \alpha > 0$$

$$J_{aa}^{(4)}(0,p) = 0 \implies \alpha = 0, \alpha = 1, \alpha = 4, \alpha = 5$$

Comparison analytical/simulation results

Late-time behavior well characterized by non-thermal fixed points!

UV: $\alpha = 3/2$ coincides with perturbative (Boltzmann) analysis exponent

- a) local four-leg interaction $\Rightarrow \alpha = 0, 1, 4/3, 5/3$
- b) local three-leg interaction $\Rightarrow \alpha = 1, 3/2$

Micha, Tkachev '04

Inflaton

Early: fast dynamics driven by instabilities

Late: slow dynamics governed by non-thermal fixed points

Inflaton: Quantum evolution available (2PI 1/N to NLO)

Instabilities do not lead to fast thermalization

But: lead to fast prethermalization of some 'bulk' quantities,

e.g. EOS

- Non-thermal fixed points govern late-time behavior
 - nonperturbative: all processes O(1)
 - universal
 - effective weak coupling!

Unstable w.r.t. quantum corrections:

ightarrow small corrections only if occupation numbers $\gg \lambda$

QCD: Classical evolution available

Characteristic time scale from plasma instabilities:

$$1/\gamma_{\text{max}} \sim 1 \text{ fm/c}$$
 for $\varepsilon = 30 \text{ GeV/fm}^3$

'Bottom-up' isotropization of stress tensor for

$$p \lesssim 1 \text{ GeV}$$
 for $\varepsilon = 30 \text{ GeV/fm}^3$

i.e. (optimistically) about the range where hydro 'works'

No isotropization for dominant UV momenta seen yet!

- Quantum corrections for lower occupied high momenta?
- Can slow late-time behavior be understood in terms of non-thermal fixed points? Effective weak coupling?!
 Viscosity? ...