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I. Collision experiments of heavy nuclei



Nonequilibrium dynamics

Relativistic heavy-ion collisions explore

strong interaction matter starting from a 

transient nonequilibrium state

Thermalization process?  

Schematically:



• Thermalization after & 10 fm/c?

Properties of the equilibrium phase diagram of QCD?

• Theoretical justification for hydrodynamics after  . 1 fm/c?

Early local thermal equilibrium ? 

Braun-Munzinger, Redlich, Stachel

RHIC: Measured relative particle abundancies consistent with

T » 1012 K » 200 MeV » 1 fm-1

from fit to statistical model …



Hydrodynamics ‘works‘ from » 1 fm/c ! 

Early hydrodynamics

P. Romatschke, U. Romatschke, PRL 99 (2007) 172301 

Kolb, Heinz, QGP3 (2004) 634; ... 

) almost ideal hydrodynamics for pT . 1-2 GeV

What are the essential assumptions for ideal fluid hydrodynamics?  



• Equation of state relating pressure p to energy density 

E.g. SUL(2)£ SUR(2) Yukawa model in 3+1d with couplings » O(1), isotropy:

trelax teqtpt

Berges, Borsanyi, Wetterich, PRL 93 (2004) 142002

m » T = 200–700 MeV ' 1–3.5 fm-1

e.g.

‘Prethermalization‘ (dephasing) time for EOS:    T tpt » O(1)

Consistent with early use of hydrodynamics –

far from equilibrium
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• Isotropy of the stress tensor in the local fluid rest frame 

Tij ' P ij

Relativistic heavy-ion collisions:   

anisotropy ! Txx » Tyy À Tzz

tiso »   O(1/gT)

Isotropization time tiso? In the absence of nonequilibrium instabilities:   

tiso » trelax » O(1/g4T)  |weak coupling QCD near equilibrium

Plasma instabilities: exponential growth of Tzz ! isotropization?

Understanding early use of hydrodynamics means

understanding fast isotropization due to plasma instabilities!  

Arnold, Moore, Yaffe,  PRL 94 (2005) 072302

Weibel, PRL 2 (1959) 83; Mrowczynski, PRC 49 (1994) 2191; ...

|weak coupling, O(1) anisotropy

?



Nonequilibrium instabilities

Fast isotropization/thermalization due to instabilities?  

Large class of possible instabilities:   

Spinodal, Parametric, Plasma (Weibel) …   

E.g. Weibel instability in electrodynamics:  

Initial fluctuating current:

j(x) = j cos(kx) ez

) generated magnetic field:

B(x) = j sin(kx)/k ey

) Lorentz force acts such that current grows:

F(x) = q v £ B = - q vz j sin(kx)/k ex

) B-field grows, etc. 

Mrowczynski ’94; Romatschke, Strickland ‘03; Arnold, Lenaghan, Moore ‘03, Mrowczynski, Rebhan, 

Strickland ‘04; Rebhan, Romatschke, Strickland ’05; Dumitru, Nara ‘05; Romatschke, Venugopalan 

‘06; Schenke, Strickland, Greiner, Thoma ‘06; Dumitru, Nara, Strickland ’07; Bödeker, 

Rummukainen ’07; Berges, Scheffler, Sexty ’08; Mrowczynski ’08 …



) 1/max ' 1.1 fm/c   for  = 30 GeV/fm3

What energy density would be required to get 1/max ' 0.1 fm/c ? 

)  =  300 TeV/fm3 (!)  

primary

secondary growth rates

Inverse primary growth rate: 

Characteristic time scales

B) Classical-statistical gauge field evolution (here)  

A) ‘Soft‘ classical gauge fields + ‘hard‘ classical particles
Arnold, Moore, Yaffe; Rebhan, Romatschke, Strickland; Dumitru, Nara, Strickland; 

Bödeker, Rummukainen 

Romatschke, Venugopalan; Berges, Scheffler, Sexty  



Bottom-up isotropization of pressure
Spatial Fourier transform of the energy-momentum tensor T(x): 

PL(t,p) for ==3, PT(t,p) from transversal components

For what p is PL(p)/PT(p) & 0.6 at end of exponential growth? ) pz . 1.4 1/4

BUT: Isotropization time of dominant higher momenta consistent with ‘infinity‘    

fast slow

pz . 1 GeV for  = 30 GeV/fm3



Strickland, J Phys G34 (2007) S429 

See, however: Bödeker, Rummukainen, JHEP 0707 (2007) 022 (Vlasov equations) 

Arnold, Moore, PRD 73 (2006) 025006

Evolution towards turbulent-type spectrum?

Very slow evolution after the initial exponential growth:  



• Energy density of matter (» a-3) and radiation (» a-4) decreases

(numbers ‘‘illustrative‘‘) 

• Enormous heating after inflation to get ‘hot-big-bang‘ cosmology!   

II. Heating the Universe after inflation:

scalar inflaton dynamics as a quantum example

Schematic evolution: 



Parametric resonance preheating

Kofman, Linde, Starobinsky, PRL 73 (1994) 3195

E.g. scalar 4 inflaton dynamics:   

• Field expectation value  = hi

• Fluctuation F » h{,}i

Classical oscillator analogue (exact early):  w(t) $ (t),  x(t) $ F(t)

parametric resonance:  F(t) » e t



t

Occupation numbers:

Inflaton dynamics in the quantum theory

Energy:

(N=4)-component (aa)
2 quantum field theory

Berges, Serreau, PRL 91 (2003) 111601

fast slow

(Approximation: 2PI 1/N to NLO)

Tachyonic preheating: Arrizabalaga, Smit, Tranberg, JHEP 0410 (2004) 017
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Classical/linear:

primary growth rate

secondary growth rates

c (20)  with c = 2,3,…

Nonlinear – perturbative:

occupation numbers < 1/

Nonperturbative: saturated
occupation numbers » 1/

fast

slow

! all processes O(1)

! universal:  drops out

Effective weak coupling!

 » (N /  )1/2



Non-thermal fixed pointsslow:

Time-translation invariant non-thermal solutions? 

No, thermal equilibrium unique (H-theorem)

Non-thermal FP

! classical: unstable w.r.t. 

quantum corrections!  

Thermal equilibrium

‘Space of correlation functions‘Cartoon:

But: Slow dynamics after saturation governed by approximate

non-thermal FP of the corresponding classical-statistical theory

t



nonlinear – perturbative

nonperturbative

Comparison quantum/classical dynamics

Practically no quantum corrections at the end of preheating

Berges, Rothkopf, Schmidt ‘08

Accurate nonperturbative description by 2PI 1/N to NLO

Classical-statistical simulations: Khlebnikov, Tkachev ‘96; Prokopec,Roos ‘97; 

Tkachev, Khlebnikov, Kofman, Linde ’98; …

p



Nonequilibrium evolution equations

statistical propagator » h{,}i

spectral function » h[,]iPropagator:   

Tremendous simplification if thermal equilibrium G(eq)(x,y)=G(eq)(x-y) with

“ fluctuation-dissipation relation“ 

Nonequilibrium: 



Quantum- vs. classical-statistical contributions

Example: (Similar for 1/N to NLO and   0)



Neglecting quantum corrections and Fab»abF, ab»ab, 1/N to NLO: 

´ 0   

Fixed point condition

Time and space translation invariant solutions require: 

£ (1-()) 

Berges, Rothkopf, Schmidt ‘08



Effective weak coupling

‘One-loop‘ retarded self-energy: 

Graphically: 

regime (t=90)

; 

nonperturbative



Scaling solutions

)

(UV)

(IR)

, i.e. eff scales differently in UV and IR:

Ã dominates UV for  > 0

Ã dominates IR for  > 0



Comparison analytical/simulation results

Late-time behavior well characterized by non-thermal fixed points!

UV:  = 3/2 coincides with perturbative (Boltzmann) analysis exponent

a) local four-leg interaction )  = 0, 1, 4/3, 5/3

b) local three-leg interaction )  = 1, 3/2
Micha, Tkachev ‘04

Berges, Rothkopf, Schmidt ‘08

 = 4

 = 3/2



QCD Inflaton
Early: fast dynamics driven by instabiltities

Late: slow dynamics governed by non-thermal fixed points



Inflaton:

• Instabilities do not lead to fast thermalization

• Non-thermal fixed points govern late-time behavior

- nonperturbative: all processes O(1)

- universal

- effective weak coupling!

But: lead to fast prethermalization of some ‘bulk’ quantities, 

e.g. EOS 

w
=

 P
/

t

Dufaux et al ‘06

End of instability

Unstable w.r.t. quantum corrections:

! small corrections only if occupation numbers À 

Quantum evolution available (2PI 1/N to NLO) 



QCD:

• Characteristic time scale from plasma instabilities:

1/max » 1 fm/c    for  = 30 GeV/fm3

• ‘Bottom-up’ isotropization of stress tensor for

Classical evolution available

p . 1 GeV for  = 30 GeV/fm3

i.e. (optimistically) about the range where hydro ‘works’ 

No isotropization for dominant UV momenta seen yet! 

• Can slow late-time behavior be understood in terms of 

non-thermal fixed points? Effective weak coupling?!

Viscosity? ...

• Quantum corrections for lower occupied high momenta? 


