The QCD phase diagram from lattice simulations

Philippe de Forcrand ETH Zürich and CERN

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ph. de Forcrand

KITP, March 2008 Finite-density LQCD

Versions of the QCD phase diagram

Heavy-ion collisions

Phase boundary versus freeze-out temperature?

At fixed \sqrt{s} , relative abundances fitted well with Boltzmann (T, μ_B)

Phase boundary versus freeze-out temperature?

T(freeze-out) $\leq T_c$ but very close Braun-Munzinger, Stachel & Wetterich, nucl-th/0311005

Phase boundary versus freeze-out temperature?

T(freeze-out) $\leq T_c$ but very close Braun-Munzinger, Stachel & Wetterich, nucl-th/0311005

Scope of lattice QCD simulations

What can lattice QCD say about:

- 1. The $\mu = 0$ finite-temperature transition/crossover ?
- **2**. The "phase" boundary $T_c(\mu)$?
- 3. The QCD critical point ?

 $T_c(\mu = 0)$ Sign pb. Phase bndry. Critical pt. Results Discuss

1. The $\mu = 0$ finite-temperature transition/crossover

The ultimate: Fodor et al. (hep-lat/0611014 → Nature; hep-lat/0609068) physical quark masses, 4 lattice spacings (but staggered fermions)

No phase transition: crossover

 $T_c(\mu = 0)$ Sign pb. Phase bndry. Critical pt. Results Discuss

1. The $\mu = 0$ finite-temperature transition/crossover

The ultimate: Fodor et al. (hep-lat/0611014 → Nature; hep-lat/0609068) physical quark masses, 4 lattice spacings (but staggered fermions)

• "T_c" depends a lot on the observable

But: - " $T_c(\bar{\psi}\psi)$ " < $T_{\text{freeze-out}} \approx 166 \text{ MeV}$? - $T_c = 192(7)(4) \text{ MeV}$ (Karsch et al.), from $N_t = 4$ and 6 The dust should settle soon.. ($N_t = 8$, two actions from HotQCD)

Comparing finite a data: Karsch vs Fodor (1)

DECONFINEMENT:

Light and Strange Susceptibilities

F. Karsch, xCCD, August 2007 - n. 16/28

Comparing finite a data: Karsch vs Fodor (2)

Renormalized Polyakov loop

Polyakov loop expectation value $\langle L \rangle = \exp(-F_q(T)/T);$ needs renormalization of divergent quark self-energies:

 $L_{ren}(T) = Z(\beta)^{N_{\tau}} \langle L \rangle(T)$

F. Karsch, xCCD, August 2007 - p. 17/28

expect still a shift of

T-scale ~ 5 MeV for

2. The "phase" boundary $T_c(\mu)$

μ

Phase diagram: to be checked by lattice QCD simulations

2. The "phase" boundary $T_c(\mu)$

μ

Phase diagram: to be checked by lattice QCD simulations

The difficulty: "sign" problem

• quarks anti-commute \rightarrow integrate analytically: $\det(\not D(U) + m + \mu \gamma_0)$ $\gamma_5(i\not p + m + \mu \gamma_0)\gamma_5 = (-i\not p + m - \mu \gamma_0) = (i\not p + m - \mu^* \gamma_0)^{\dagger}$

det complex unless $\mu = 0$ (or $i\mu_l$)

The difficulty: "sign" problem

• quarks anti-commute \rightarrow integrate analytically: $\det(\not D(U) + m + \mu \gamma_0) \gamma_5(i \not p + m + \mu \gamma_0) \gamma_5 = (-i \not p + m - \mu \gamma_0) = (i \not p + m - \mu^* \gamma_0)^{\dagger}$

det complex unless $\mu = 0$ (or $i\mu_l$)

• Corollary: measure ϖ must be complex when $\mu \neq 0$

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_q) = \langle \text{Re Pol} \times \text{Re}\overline{\varpi} - \text{Im Pol} \times \text{Im}\overline{\varpi} \rangle$$
$$\langle \text{Tr Polyakov}^{\dagger} \rangle = \exp(-\frac{1}{T}F_q) = \langle \text{Re Pol} \times \text{Re}\overline{\varpi} + \text{Im Pol} \times \text{Im}\overline{\varpi} \rangle$$

 $F_q \neq F_{\bar{q}} \Rightarrow \operatorname{Im} \overline{\omega} \neq 0$

The difficulty: "sign" problem

• quarks anti-commute \rightarrow integrate analytically: $\det(\not D(U) + m + \mu \gamma_0) \gamma_5(i \not p + m + \mu \gamma_0) \gamma_5 = (-i \not p + m - \mu \gamma_0) = (i \not p + m - \mu^* \gamma_0)^{\dagger}$

det complex unless $\mu = 0$ (or $i\mu_l$)

Need auxiliary partition function for Monte Carlo sampling

 \implies Need statistics $\propto \exp(+V)$ for constant accuracy

Numerical approaches: I. Conservative

I. Conservative: evaluate coefficients of Taylor series about $\mu = 0$

No sign problem \implies can control thermodynamic/continuum limits

 $T_{c}(\mu=0)$ Sign pb. Phase bndry. Critical pt. Results Discuss The curse The magic spells

Numerical approaches: I. Conservative

- I. Conservative: evaluate coefficients of Taylor series about $\mu = 0$ No sign problem \implies can control thermodynamic/continuum limits
- Simple-minded: simulate at $\mu = 0$, measure susceptibilities

Numerical approaches: I. Conservative

- I. Conservative: evaluate coefficients of Taylor series about $\mu = 0$ No sign problem \implies can control thermodynamic/continuum limits
- [Much] better: simulate at $\mu = i\mu_l$ imaginary

PdF & Philipsen, D'Elia & Lombardo, Chen & Luo, Azcoiti et al.,..

- limited by singularity $\mu_l = \frac{\pi}{3} T$

- two control parameters: β and μ_l
- fit with truncated Taylor expansion, then analytically continue $\mu_l^2 \ o \ \mu^2$
- systematics: can check significance of higher-order terms

- works also for critical line $T_c(\mu)$

Numerical approaches: II. Adventurous

II. Adventurous: evaluate full result at finite µ

Sign problem \implies small, coarse lattices \rightarrow crosscheck essential

 $\mu=0)$ Sign pb. Phase bndry. Critical pt. Results Discuss The curse The magic spells

Numerical approaches: II. Adventurous

II. Adventurous: evaluate full result at finite μ

Sign problem \implies small, coarse lattices \rightarrow crosscheck essential

• Double reweighting in
$$(\mu, \beta)$$
 from $(\mu = 0, \beta_c)$
Fodor & Katz

$$Z(\mu,\beta) = \langle \frac{\exp(-\beta S_g) \det M(\mu)}{\exp(-\beta_c S_g) \det M(\mu=0)} \rangle Z_{MC}(\mu=0,\beta_c)$$

Errors under control ? Sign problem ?, Overlap problem ?

 $f(\mu=0)$ Sign pb. Phase bndry. Critical pt. Results Discuss The curse The magic spells

Numerical approaches: II. Adventurous

II. Adventurous: evaluate full result at finite μ

Sign problem \implies small, coarse lattices \rightarrow crosscheck essential

• Double reweighting in
$$(\mu, \beta)$$
 from $(\mu = 0, \beta_c)$
Fodor & Katz

$$Z(\mu,\beta) = \langle \frac{\exp(-\beta S_g) \det M(\mu)}{\exp(-\beta_c S_g) \det M(\mu=0)} \rangle Z_{MC}(\mu=0,\beta_c)$$

Errors under control ? Sign problem ?, Overlap problem ?

 $f(\mu=0)$ Sign pb. Phase bndry. Critical pt. Results Discuss The curse The magic spells

Numerical approaches: II. Adventurous

II. Adventurous: evaluate full result at finite μ

Sign problem \implies small, coarse lattices \rightarrow crosscheck essential

(MeV) 170

150

n

Glasgow -

200

_____160

quark-gluon plasma

600 800 1000

400

endpoint

• Double reweighting in
$$(\mu, \beta)$$
 from $(\mu = 0, \beta_c)$
Fodor & Katz

$$Z(\mu,\beta) = \langle \frac{\exp(-\beta S_g) \det M(\mu)}{\exp(-\beta_c S_g) \det M(\mu=0)} \rangle Z_{MC}(\mu=0,\beta_c)$$

Errors under control ? Sign problem ?, Overlap problem ?

Phase Diagram $T - \mu$: comparing apples with apples

All with $N_f = 4$ staggered fermions, $am_q = 0.05$, $N_t = 4$ ($a \sim 0.3$ fm) PdF & Kratochvila

Summary for phase boundary

- Under control for $\mu/T \lesssim 1$
- Well described by parabola \rightarrow curvature $\frac{d(T/T_c)}{d(\mu/T_c)^2}|_{\mu=0}$
- Curvature about 1/3 freeze-out parabola (using pert. scaling)
- Can study $a \rightarrow 0$ continuum limit (~ susceptibility)

Preliminary:

- curvature increases towards freeze-out value ($m_q=m_q^{
 m phys}$) Fodor
- curvature decreases for $N_f = 3, m_q = m_q^{crit}$ PdF & OP

 $T_c(\mu = 0)$ Sign pb. Phase bndry. Critical pt. Results Discuss

3. The QCD critical point

Can one locate the critical point (μ_E, T_E) ?

Locating the critical point

M. Stephanov, hep-ph/0402115

• Much harder task:

detect divergence of correlation length on small lattice (??)

Already determined, but...

Fodor & Katz: hep-lat/0402006 (~ physical quark masses)

Legitimate concerns:

- Discretization error? $N_t = 4 \implies a \sim 0.3$ fm
- Abrupt qualitative change near μ_E: abrupt change of physics or breakdown of algorithm (Splittorff)?

 \rightarrow repeat with conservative approach (derivative), with $N_t = 4$ first

Generalize QCD to arbitrary $(m_{u,d}, m_s)$, *T*: phase diagram

 $\mu = 0$

Generalize QCD to arbitrary $(m_{u,d}, m_s)$, *T*: phase diagram

Generalize QCD to arbitrary $(m_{u,d}, m_s)$, *T*: phase diagram

Generalize QCD to arbitrary $(m_{u,d}, m_s)$, T: phase diagram

For heavy quarks, first-order region shrinks (PdF, Kim, Takaishi, hep-lat/0510069)

1. Line of second-order phase transitions in the quark mass plane $(m_{u,d}, m_s)$ via Binder cumulant $B_4 = \langle (\delta \bar{\psi} \psi)^4 \rangle / \langle (\delta \bar{\psi} \psi)^2 \rangle^2$

 $\mu = 0$:

- data consistent with tricritical point at $m_{u,d} = 0, m_s \sim 2.8 T_c$
- physical point in crossover region

cf. Fodor & Katz

Strategy: tune m_q for 2nd-order P.T. at $\mu = 0$, then turn on [imaginary] μ Does the transition become 1rst-order (left) or crossover (right)?

Strategy: tune m_q for 2nd-order P.T. at $\mu = 0$, then turn on [imaginary] μ Does the transition become 1rst-order (left) or crossover (right)? Answer: very little change (\rightarrow surface almost vertical)

Strategy: tune m_q for 2nd-order P.T. at $\mu = 0$, then turn on [imaginary] μ Does the transition become 1rst-order (left) or crossover (right)? Answer: very little change (\rightarrow surface almost vertical) 0711.0262: measure δB_4 under $\delta \mu^2 \rightarrow \text{crossover}$: $\frac{m_c(\mu)}{m_c(0)} = 1-3.3(5) \left(\frac{\mu}{\pi T}\right)^2$

Strategy: tune m_q for 2nd-order P.T. at $\mu = 0$, then turn on [imaginary] μ Does the transition become 1rst-order (left) or crossover (right)? Answer: very little change (\rightarrow surface almost vertical) 0711.0262: measure δB_4 under $\delta \mu^2 \rightarrow \text{crossover}$: $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(5) \left(\frac{\mu}{\pi T}\right)^2$ (preliminary) $-12(6) \left(\frac{\mu}{\pi T}\right)^4$

Status of numerical results

Measure variation of $B_4(\bar{\psi}\psi)$ and apply chain rule:

$$c_1' = rac{d(am_c)}{d(a\mu)^2}|_{\mu=0} = rac{\partial B_4}{\partial (a\mu)^2} imes \left(rac{\partial B_4}{\partial (am_c)}
ight)^{-1}$$

Consistency under increase of volume:

Status of numerical results

Measure variation of $B_4(\bar{\psi}\psi)$ and apply chain rule:

$$c_1' = rac{d(am_c)}{d(a\mu)^2}|_{\mu=0} = rac{\partial B_4}{\partial (a\mu)^2} imes \left(rac{\partial B_4}{\partial (am_c)}
ight)^{-1}$$

• NLO fits of B₄ consistent with direct meas. of derivative c'₁:

Ph. de Forcrand

KITP, March 2008

Standard scenario

Discretization errors? Recall that $N_t = 4 \Rightarrow a \sim 0.3$ fm

Location of critical point depends on:

1) curvature of critical surface

2) distance physical point \longleftrightarrow critical surface

Discretization errors on (1) and (2) ?

Discretization errors? Recall that $N_t = 4 \Rightarrow a \sim 0.3$ fm

Location of critical point depends on:

1) curvature of critical surface

2) distance physical point \longleftrightarrow critical surface

Discretization errors on (1) and (2)?

(2) increases by O(100%) as a → 0
 As a → 0, it takes much lighter quarks to have first-order transition 0711.0262, PdF & Philipsen; also 0710.0998, Fodor & Katz; Bielefeld, MILC
 Pion mass (measured at T = 0) decreases: m_{T_c} ≈ 1.6 (N_t = 4) → 0.95 (N_t = 6)

Discretization errors? Recall that $N_t = 4 \Rightarrow a \sim 0.3$ fm

Location of critical point depends on:

- 1) curvature of critical surface
- 2) distance physical point \longleftrightarrow critical surface

Discretization errors on (1) and (2) ?

A critical point at "small" μ (ie. $\mu/T \lesssim 1$) would require curvature to change sign and become large

as $a \rightarrow 0$

• O(4) transition for 2 massless flavors Pisarski & Wilczek \Rightarrow tricritical points ($m_{u,d} = 0, m_s = \infty, \mu = \mu^*$) and ($m_{u,d} = 0, m_s = m_s^*, \mu = 0$)

Critique:

• O(4) if strong enough $U_A(1)$ anomaly, otherwise first-order

Chandrasekharan & Mehta

Critique:

• O(4) if strong enough $U_A(1)$ anomaly, otherwise first-order

Chandrasekharan & Mehta

• $N_f = 2$ and $N_f = 2 + 1$ need not be connected

Conclusions

- Tough problem, but steady progress
- Cutoff error: $\mu = 0 \rightarrow O(10\%)$ and $\mu \neq 0 \rightarrow O(100\%)$ work in progress
- Keep open mind:
 - critical point at small μ or not?
 - second critical point at small T?

Baym, Hatsuda et al. McLerran & Pisarski

- "quarkyonics" at large N_c?
- Phase diagram may be very different in next review

A second QCD critical point?

Baym, Hatsuda et al.

- Ginzburg-Landau analysis with two condensates: $\langle \bar{\psi} \psi \rangle$ and $\langle \psi \psi \rangle$
- Mapping from coeffs of V_{eff} to (T, μ) ??

2nd critical point could require, eg, T < 0

Quarkyonics?

