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Applications and Motivation



Quantum Phase Transition:
a phase transition between different quantum phases (phases of
matter at T = 0). Quantum phase transitions can only be
accessed by varying a physical parameter — such as magnetic field
or pressure — at T = 0.
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Figure: Phase diagram paradigm



Experimental relevance

Many important physical systems may have quantum critical
points (QCPs). The QCP has an effective field theory description
which continues to be valid at small “distances” away from the
QCP. This quantum critical region may be in an experimentally
accessible regime.
Examples:

I superfluid-insulator transition in thin films

I transitions between quantum Hall states

I high temperature, under-doped superconductors at T > Tc

and the Nernst effect



Thin Films

Figure: Haviland, Liu, Goldman, PRL, 62 (1989) 2180



High Tc superconductors

I La2CuO4 is an antiferromagnetic insulator
I 2d physics: The Cu atoms arrange themselves into a square

lattice on separated sheets.
I Hole doping: substitute some of the La with Sr,

La2−xSrxCuO4

The Nernst effect

I Apply ∇T

I Apply B ⊥ ∇T

I Measure E ‖ B ×∇T

I The Nernst coefficient is

ν =
E

B|∇T |



High Tc superconductors and quantum criticality



State of Theory

I There are many lattice models with quantum critical points —
Boson-Hubbard model, quantum Ising and rotor models, etc.

I The effective field theory description of the fixed point is scale
invariant.

I The field theory sometimes has a Lorentzian symmetry.

c 6= 3× 108 m/s

I scale invariance + Lorentzian symmery =⇒ conformal
symmetry

I The description is often strongly interacting, e.g. a
Wilson-Fisher fixed point

How do we analyze strongly interacting, Lorentzian conformal field
theories?



The Sales Pitch

The AdS/CFT correspondence provides a tool to study a class of
strongly interacting field theories with Lorentzian symmetry in d
dimensions by mapping the field theories to classical gravity in
d + 1 dimensions.

I equation of state

I real time correlation functions

I transport properties — conductivities, diffusion constants, etc.

The ambitious program: There may be an example in this class of
field theories which describes the quantum critical region of a real
world material such as a high Tc superconductor.

The less ambitious program: By learning about this class of field
theories, we may find universal features that could hold more
generally for QCPs (η/s = ~/4πkB).



A (hopefully) gentle introduction to

AdS/CFT



Basic facts about string theory

I There are open strings (strings with end points) and closed
strings (loops).

I Strings may split with a likelihood gs .

I Strings have a tension T0 = 1/`2
s where `s is the string scale.

I Open strings end on massive objects called D-branes. These
D-branes have a m ∼ 1/gs .

Thinking of time as an extra dimension, strings become surfaces
— worldsheets.



What is AdS/CFT?

Figure: Open/closed duality

I D-branes are surfaces strings end on

I the lowest closed string mode is the graviton

I the lowest open string mode is a gauge boson



The original correspondence

maximally supersymmetric type IIB
SU(N) Super Yang Mills ∼ closed string theory

in 3+1 dimensions on AdS5 × S5

g2
YMN ≡ λ = L4/`4

s

g2
YM = 4πgs

AdS5: Five dimensional anti-de Sitter space. A hyperboloid with a
time direction and a boundary.
S5: Five dimensional sphere.

CFT: This Yang-Mills theory is conformal for all values of λ.

Classical strings: Take N →∞ with λ fixed means gs → 0. Strings
don’t split.
Supergravity: Take λ large. The radius of curvature is large
compared to the string scale.



AdS/CFT for 2+1 dimensional field theories

While there exist many examples, the best known and oldest is the
“M2-brane theory”.

I Consider the maximally supersymmetric SU(N) Yang-Mills
theory in 2+1 dimensions.

I Now the coupling is relevant: g2
YM = gs/`s , geff = g2

YMN/Λ.

I This gauge theory has an interacting superconformal fixed
point at low energies.

I Itzhaki, Maldacena, Sonnenschein, and Yankielowicz,
hep-th/9802042 conjectured the IR fixed point at large N is a
SCFT described via AdS/CFT by 11 dimensional supergravity
on AdS4 × S7.

I There is no equivalently tuneable λ as there was for the
AdS5/CFT4 correspondence.



A more concrete statement of the duality

Think of AdS as a half space

z

z=0

Figure: Bulk information is
projected onto the boundary
where the field theory lives.

I O(x) is a field theory
operator.

I φ0(x) is a source for O or
a boundary value of a
supergravity field φ(x , z).

I W = ln Zgravity is a
generating functional for
connected correlators in
the field theory.

〈
exp

(∫
ddx φ0(x)O(x)

)〉
FT

= Zgravity [φ(x , z)|z=0 = φ0(x)]



The Classical Gravitational Limit

I The limit N →∞ means we are in a classical limit.

I We can evaluate Zgravity through a saddlepoint method.

I Solve Einstein’s equations, plug in the solutions to the
gravitational action, and call the result W .

I Evaluated on-shell, W has support only at z = 0.

Maldacena, Klebanov, Polyakov, Gubser, Witten



Important Field Theory Operators O

I For O = Tµν the stress-energy tensor, φ(x , z) = δgµν(x , z)
fluctuations in the metric tensor.

I For O = Jµ a conserved current, φ(x , z) = Aµ(x , z) a vector
potential of a gauge field.

By evaluating the classical gravity action for a solution to
Einstein’s equations, we can produce a generating functional for
〈Tµν〉, 〈Jµ〉, 〈TµνJλ〉, etc!

N.B. We are computing correlators of a global current. To
re-interpret the results for a gauge current, the gauge field has to
be very weak. We ignore Coulomb interactions.



The Gravitational Action

The bosonic part of the eleven dimensional supergravity action is

1

2κ2
11

∫
d11x

√
−det(gµν)R−

1

4κ2
11

∫ (
F4 ∧ ?F4 +

1

3
A3 ∧ F4 ∧ F4

)
.

Today, we can focus on a 4 dimensional “consistent truncation” of
the 11 dimensional action:

1

2κ2

∫
d4x

√
−det(gµν)

[
R − L2FµνF

µν +
6

L2

]
Classical gravity with E&M and a negative cosmological constant.

The Fµν is dual to the R-symmetry current in the M2-brane theory.

N.B. many AdS4/CFT3’s have such a consistent truncation.



Dyonic Black Holes

One solution to this 4d action is a dyonic black hole in AdS4.
Dyonic black holes have electric and magnetic charge.

I The Hawking temperature of the black hole is the
temperature of the field theory.

I The magnetic field of the black hole is the magnetic field in
the field theory.

I The electric field of the black hole becomes the charge density
of the field theory.

One can freely tune the temperature and charges of the black hole.



Dyonic Black Holes II

The metric or line element:

1

L2
ds2 =

α2

z2

[
−f (z)dt2 + dx2 + dy2

]
+

1

z2

dz2

f (z)

The electric and magnetic fields:

Bz = Fxy = hα2 ; Ez = Fzt = qα

The warp factor:

f (z) = 1 + (h2 + q2)z4 − (1 + h2 + q2)z3

The temperature and entropy density (g2 = 2L2/κ2):

T =
(3− h2 − q2)α

4π
; s =

πα2

g2



Why electric field becomes charge density

Consider Aµ(x , z) near the boundary z = 0 in a gauge where
Az = 0:

Aµ = aµ(x) + z bµ(x) +O(z2) .

On shell, the relevant piece of the supergravity action reduces to
the boundary term

W =
α

g2

∫
d3x (At∂zAt − Ax∂zAx − Ay∂zAy ) .

The radial electric field at the boundary limz→0 ∂zAt = Ez = bt

and by our prescription the charge density is thus

ρ = 〈Jt〉 =
δW

δat
= αbt/g2 = αEz/g2 .

The B field, by contrast, is a source term Bz = ∂xay − ∂yax .



Transport Coefficient Results from AdS/CFT



Two point functions

By considering small fluctuations around the background values of
Aµ and gµν , we can compute two point functions 〈TµνTλρ〉,
〈TµνJλ〉, and 〈JµJν〉. These two points functions determine the
conductivities.(

~J
~Q

)
=

(
σ α̂T

α̂T κ̄T

)(
~E

−(~∇T )/T

)
.

Here ~E is electric field, T is temperature, ~J is charge current and
the heat current Qν ≡ T 0ν − µJν where µ is the chemical
potential.



Calculating the conductivity

The conductivity is

σij =
J i

Ej
= lim

z→0

Bi

g2Ej
=

Bi

g2Ej

We define
σ± ≡ σxy + iσxx

and

E± = Ex ± iEy ; B± = Bx ± iBy ; J± = Jx ± iJy .

Thus Ohm’s law becomes J± = ∓iσ±E±, and

σ± = lim
z→0

B±
g2E±

=
B±

g2E±
.



Electric-magnetic duality

The action for an abelian gauge field

1

2g2

∫
d4x

√
−det(gµν)FµνF

µν

has electric-magnetic duality, E → B, B → −E , and
2π/g2 → g2/2π.

On the boundary, this duality switches ρ and B and, as should be
clear from the previous slide, takes

2πσ± → − 1

2πσ±
.

S duality.



An AdS/CFT result

A frequency independent σ±.

I Consider the case ρ = B = 0. S-duality becomes a
self-duality, ignoring the action on g .

I Because of electric-magnetic duality, the ratio
E±/B± = −B±/E±

I Thus

σ± =
B±

g2E±
= ± i

g2
,

a result independent of ω.

σxx =
1

g2



Hydrodynamic Results

Small frequency (hydrodynamic) behavior at nonzero ρ and B:

σ+ = iσQ
ω + iω2

c/γ + ωc

ω + iγ − ωc

ωc =
Bρ

ε + P
; γ =

σQB2

ε + P
; σQ =

(sT )2

(ε + P)2
1

g2
.

I The structure is fixed by hydrodynamics, while the values of ε,
P, s, σQ are fixed by the microscopic AdS/CFT theory.

I The cyclotron pole at ω = ωc − iγ.

I Hall conductivity: limω→0 σ+ = ρ/B which implies
σxy = ρ/B.



Numeric Results
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Figure: A density plot of |σ+| as a function of complex w . White areas
are large in magnitude and correspond to poles while dark areas are
zeroes of σ+, from left to right, h = 0 and q = 1, h = q = 1/

√
2, and

h = 1 and q = 0.

Remember B = hα2 and ρ = −qα2/g2.



More symmetry constraints

These relations are Ward identities and are consistent with but
independent of the AdS/CFT results.

±α̂±Tω = (B ∓ µω)σ± − ρ ,

±κ̄±Tω = (B ∓ µω) α̂±T − ε− P + µρ .

They rely on the following assumptions:

I Gravitational interactions are unimportant.

I Electromagnetic interactions between components of the
material are unimportant.

I The field theory is Lorentz invariant.

I The equilibrium state is time reversal invariant, rotationally
symmetric, and reflectionally invariant.

Given σ, we can calculate α̂ and κ̄.



The Nernst effect redux

The Nernst response is governed by

~E = −θ~∇T where θ = σ−1α̂

The Nernst coefficient

ν = θyx/B (Recall ν = E/B|∇T |)

In complex combinations

θ± = ∓i
α±
σ±



Impurities

I To compare the Nernst effect with experiments, we have to
add the effect of scattering from impurities, τimp

ν =
1

T

1/τimp

(ω2
c/γ + 1/τimp)2 + ω2

c

I Impurities have been considered from a hydrodynamic context
by Hartnoll and collaborators and in the AdS/CFT context by
Hartnoll and me.

I When ρ = 0,

ν =
τimp

T
.
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Remarks and Plans for the Future

I Tried to convince you that AdS/CFT is a useful tool for
studying strongly interacting field theories — equations of
state, correlation functions, transport properties.

I The hope is that these field theories may be relevant for
understand real world condensed matter systems.

I Getting away from a translationally invariant system. How
does one introduce impurities into AdS/CFT?

I Getting away from the quantum critical point. Can we find
supergravity solutions that correspond to deforming the
effective field theory by a relevant operator?



Extra Slides



Separating AdS/CFT from symmetry constraints

It is often difficult to figure out what AdS/CFT teaches us that the
symmetries don’t. In this case, one finds some clear lessons.

I Under electric-magnetic duality, 2πσ → −1/2πσ.

I The B, ρ → 0 limit is ω independent. Follows from
electric-magnetic duality.

lim
B,ρ→0

σxx =
1

g2

I The full form of σ± as a function of ω with its horseshoe of
zeros and poles stretching into the complex ω plane.



Simple argument for the Hall conductivity

The Hall conductivity at ω = 0 follows from translation invariance
alone.

I Consider a plate with charge density ρ in a transverse
magnetic field.

I Perform a boost, x → x + vt, v small.

I There is now a current Jx = vρ and an electric field Ey = vB.
Thus, σxy = Jx/Ey = ρ/B.

J = v  

B B

E=vB

ρ

A similar argument shows that the DC αxy = (ε + P − µρ)/BT .



There are many theoretical examples

The noncompact CP1 easy-plane model

S =

∫
d2x dt

[
|(∂µ − iAµ) z1|2 + |(∂µ − iAµ) z2|2 + s

(
|z1|2 + |z2|2

)
+

u
(
|z1|2 + |z2|2

)2
+ v |z1|2|z2|2 +

1

2e2

(
εµνλ∂νAλ

)2]

ssc
0

Higgs Coulomb: logarithmically
bound z particles

T Quantum
critical

Figure: Phase diagram

Motrunich and Vishwanath, cond-mat/0311222
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Current-current two-point functions at B = ρ = 0
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Figure: Imaginary part of the retarded function C yy (ω, k), plotted in
units of (−χ), as a function of dimensionless frequency w ≡ 3ω/(4πT ),
for several values of dimensionless momentum q ≡ 3k/(4πT ). Curves
from left to right correspond to q = 0, 0.5, 1.0, 2.0, 3.0. Left:
Im C yy (w , q), Right: Im C yy (w , q)/w .

χ = 4πT/3g2
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Figure: Imaginary part of the retarded function C tt(w , q)/q2, plotted in
units of (−χ), as a function of dimensionless frequency w ≡ 3ω/(4πT ),
for several values of dimensionless momentum q ≡ 3k/(4πT ). Curves
from left to right correspond to q = 0.2, 0.5, 1.0 (left panel), and
q = 1.0, 2.0, 3.0, 4.0 (right panel). The dashed curves are plots of

1/
√

w2 − q2.

χ = 4πT/3g2

small q: hydrodynamic peak at w ∼ q2

large q: collisionless peak at w ∼ q



0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

wmax(q)

Figure: The position of the peak of the spectral function. The dashed
line is w = q.



The cyclotron resonance
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Figure: The dashed blue line is the Im(σ+) while the solid red line is the
Re(σ+) as a function of w : a) h = q = 1/

√
2, b) h = 1 and q = 0.



Dyonic blackhole thermodynamics

T =
α(3− h2 − q2)

4π
.

B = hα2 , m = −hα

g2
, ρ = −qα2

g2
, and µ = −qα .

s =
πα2

g2
, ε =

α3

g2

1

2
(1 + h2 + q2) , and P = ε/2 + mB .

P = 〈Taa〉 = ε/2 .

1

g2
=

√
2N3/2

6π
.


