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CMB Anisotropies and Inflation

Latest WMAP 5 yr release



WMAP 5-yr data gives even more statistical 
weight to inflation being the source of metric 
perturbations that induce CMB temperature 

anisotropies

We can use the data to put stringent bounds
on some of the usual models of inflation.

How reliable are these calculations?



Inflationary Perturbations

• Let’s look at how inflationary 
perturbations evolve.

• Start as quantum fluctuations in the 
inflaton field, inside the inflationary 
horizon.

• Physical scale is red-shifted outside 
of horizon and then frozen in 
amplitude,

• Once inflation ends, fluctuation can 
re-enter the matter dominated era 
horizon, and convert to matter 
perturbations.

• CMB photons fall in and out of 
these wells, giving rise to hot and 
cold spots.
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Φ(!x, η) = φ(η) + ψ(!x, η)

ψ(!x.η) =
∫

d3k

(2π)3
[
Uk ak eik·x + h.c

]

Nothing REALLY matters: Choosing the 
inflationary vacuum

• Let’s go over the standard 
procedure for computing the power 
spectrum of fluctuations

• Decompose the fluctuations 
into modes and solve the mode 
equations

• Now we need to pick the initial 
state, i.e. which linear 
combination will be used to 
compute the power spectrum.

• Equal time commutation 
relations can give a partial 
solution and fix overall 
normalization
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But what fixes relative strength of the solutions?

The usual statement is that at short distances
or high energy, spacetime looks like flat space

so fields should match to flat space vacua

This fixes the modes as Uk(η) =
√

π

2
Hη

3
2 Hν(kη)

This is the
Bunch-Davies

state

BUT: Is this a reasonable requirement? What if, 
as is most likely, there is some scale M at which 

new physics relating to the inflaton occurs?

Mathematically As kη → −∞, Uk(η)→ − Hη√
2k

e−ikη

Maybe the inflaton
is a composite at energies larger 

than M! 



The Trans-Planckian Problem
(Brandenberger & Martin)

• We need at least 60-65 e-folds of 
inflation to solve the horizon, flatness 
and monopole problems.

• Most models give far more e-folds, 
unless the dynamics is fine tuned.

• Length scales in the CMB sky, would 
correspond to distance scales 
SMALLER than the Planck length!

• DO WE NEED TO UNDERSTAND QG 
TO DO ANY CALCULATIONS AT 
ALL? HOW COULD THIS BE DONE 
RELIABLY?
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The Trans-Planckian Opportunity of 
Inflation

• We need at least 60-65 e-folds of 
inflation to solve the horizon, flatness 
and monopole problems.

• Most models give far more e-folds, 
unless the dynamics is fine tuned.

• Length scales in the CMB sky, would 
correspond to scales BELOW the 
Planck length during inflation!

• CAN WE USE CMB MEASUREMENTS 
TO UNDERSTAND SUB-PLANCK 
SCALE PHYSICS?



The Trans-Planckian Opportunity of 
Inflation

• We need at least 60-65 e-folds of 
inflation to solve the horizon, flatness 
and monopole problems.

• Most models give far more e-folds, 
unless the dynamics is fine tuned.

• Length scales in the CMB sky, would 
correspond to scales BELOW the 
Planck length during inflation!

• CAN WE USE CMB MEASUREMENTS 
TO UNDERSTAND SUB-PLANCK 
SCALE PHYSICS?

 

space

H–1(t)

rhor(t)

tim
e

inflation ends

MPl



t0 treentrytleave

w
av

el
en

gt
h 

of
 a

 m
od

e

inflationary era era of radiation
domination

era of
matter

domination

mode subject to
causal processes

mode frozen
(stretched beyond

the horizon)

mode
reenters

ttrans-Planckian

sub-Planckian
regime

trans-Planckian
regime

1/Mpl

1/Hinf

50–60 e-folds

The take-home lesson
from the Trans-Planckian

discussion:

There’s no escaping new physics 
thresholds when defining

the inflaton modes1



Approaches to the Trans-Planckian
Problem

• How shall we deal with the 
trans-Planckian modes?

• One way is to construct models 
of what that physics may be and 
try to infer general trends from 
those models.

•  Modified dispersion relations 
(Brandenberger and Martin)

• Alpha vacua in de Sitter 
space (Daniellson; Collins, RH, 
Martin)

• Couplings to excited fields 
(Burgess, Cline, RH, Lemieux)

Some ideas

Consider a dispersion relation that is
modified at the Planck scale:

    

€ 

L = g 1
2 ∂µϕ∂

µϕ + 1
2 ∂µχ∂

µχ{
+ 1

2 m2ϕ2 + λ(χ2 − v2 )2

+ 1
2 gχ 2ϕ2 + γϕ 4}

An inflaton (ϕ) coupled to to a heavy, 
excited field (χ),

A modified uncertainty relation at 
short distances,

Long-distance given by an α-state,

    

€ 

U k
α = Nk U k

BD + eαU k
BD*[ ]
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2 (k,η) = k2 − k2 bm

a(η)
k

Mpl

      

€ 

x, p[ ] = ih(1 + βp ⋅ p +L)





Possible Effects of TP 
Physics on the CMB?



From Martin and Ringeval: arXiv:astro-ph/0310382

Possible Effects of TP 
Physics on the CMB?



What do we learn from these models?

There are indeed corrections to the power spectrum. The scale
of these corrections tends to be of order H/M 

Pφ =
H2

4π2

(
1− H

MPl
sin

2MPl

H

)

Some questions remain:

- To what extent are the results universal?
- Can different models be distinguished?
- Calculations use a crude cutoff, but in QFT 
we are used to integrating beyond the 
regime of validity of the theory.

As an example, Daniellson finds:



Effective Field Theory in an Expanding 
Universe

In EFT, we divide phenomena according to whether 
or not they occur at energies larger than some fixed 
scale M.

The fields and symmetries of the low-
energy theory fix the renormalizable 
operators.

High energy physics appears as higher 
dimension operators, suppressed by 
powers of M

The physics is consistent since for experiments at a 
scale E, all high energy physics will be suppressed by 
powers of E/M. 

In principle, renormalizability of the low-energy 
theory would require an infinite number of 
operators, but in practice, how well we can measure 
determines the dimension of the operators we 
should keep. 

E << MW

Integrate out the W boson
in the standard model to go the

Fermi theory. This will be valid for 
 



EFT in an Expanding Universe

• Separation of scales non-trivial 
due to redshifting of UV modes 
into the IR.

• The questions asked are 
different; not S-matrix elements, 
but in-in ones.

• Problem to be solved is an IVP; 
specified initial state is also only 
defined up to modifications 
suppressed by powers of M.

This implies the 
existence of an

earliest time. Take scales of interest today
and blueshift them until they reach M

kCMB

a(η0)
= M

Want a formalism that takes 
this time into account and allows for
perturbatively controlled calculations

of cosmologically interesting quantities



Effective State Formalism
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define each mode
as k(t) crosses Mpl

1/Mpl

1/Hinf

50–60 e-folds

or define all modes
at once, at some
“initial” time, t0η0

An important point about 
our formalism: we set up an 
initial value problem for ALL 
our modes at the earliest 
time       i.e. on a space-like 
surface. 

This is as opposed to 
approaches that define the 
modes as each physical 
wavenumber crosses M, 
which corresponds to a IVP 
using a timelike surface.



Loops
Part of the exercise is to find a 

way to 
control higher order corrections 

to things
like the power spectrum.

With new initial conditions, propagators 
have to be

modified to incorporate them. The 
propagators

now have two pieces; point source and 
boundary influence.

In flat space, the modifications 
can

be found via a method of images 
construction.

Gk(η,η′) = GkF(η,η′) + fk* GkF(ηI,η′)

ηI = 2η0 – η

space

η′

η

η0

ηI

x y
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Boundary Renormalization

Consider the following simple 
description of

an effective state

fk =
∞∑

n=1

dn
kn

(a(η0)M)n

This is a short-distance 
modification,  where we 

expect Trans-Planckian signals 
to be.

Loops create NEW UV 
divergences, when we 

sum over all modes and ONLY on 
the initial time hypersurface.

Counter-terms also live only on 
this hypersurface.

Correspondence

UV structures in
initial state

Irrelevant 
boundary 

counterterms
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Boundary Renormalization
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fk =
∞∑

n=0

dn

(
HI

Ωk(η0)

)n

+
∞∑

n=0

cn

(
Ωk(η0)

M

)n



Boundary Renormalization

IR piece: Divergences can be 
cancelled by renormalizable 
boundary counterterms
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IR: Marginal or relevant operators 
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Pk =
H2

4π2

[
1 +O(1)

H

M
sin

(
2
M

H
+ φ

)]

Application: Primordial Spectrum 
Correction

Use fk = d1
k

(a(η0)M)
+ · · ·

The power spectrum is given by Pk =
H2

4π2

[
1 + d1

k

k∗
sin

(
2

k

k∗

M

H

)]
where k∗/a(η0) = M.

It’s worth noting that time-like 
defined states will give something like



20



Stress Energy Tensor Renormalization
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Stress Energy Tensor Renormalization

• Can corrections to initial 
state back-react to even 
prevent inflation from 
occurring?

• Effective field theory 
approach should eat up 
such divergences to leave 
a small backreaction 
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Stress Energy Tensor Renormalization

• Can corrections to initial 
state back-react to even 
prevent inflation from 
occurring?

• Effective field theory 
approach should eat up 
such divergences to leave 
a small backreaction 

ρ =
1
2

1
a2

∫
d3"k

(2π)3
{
U ′

kU ′∗
k + (k2 + a2m2)UkU∗

k

+f∗
k

[
U ′

kU ′
k + (k2 + a2m2)UkUk

]}
,

p = −ρ +
1
a2

∫
d3"k

(2π)3
{
U ′

kU ′∗
k + 1

3k2UkU∗
k

+f∗
k

[
U ′

kU ′
k + 1

3k2UkUk

]}
,

20
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Stress Energy Tensor Renormalization 
(Cont’d)

21



Stress Energy Tensor Renormalization 
(Cont’d)

The Procedure:
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Stress Energy Tensor Renormalization 
(Cont’d)

gµν = a2(η)
[
ηµν + hµν(η, "x)

]

The Procedure:

1. Expand metric about 
FRW,
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Stress Energy Tensor Renormalization 
(Cont’d)

gµν = a2(η)
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ηµν + hµν(η, "x)

]

HI(η) =
1
2
a2(η)

∫
d3"xhµν

{
−2G̃µν + T cl

µν + T̂µν

}

The Procedure:

1. Expand metric about 
FRW,

2. Construct interaction 
Hamiltonian linear in 

fluctuations,
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Stress Energy Tensor Renormalization 
(Cont’d)

gµν = a2(η)
[
ηµν + hµν(η, "x)

]

HI(η) =
1
2
a2(η)

∫
d3"xhµν

{
−2G̃µν + T cl

µν + T̂µν

}

〈0eff(η)|h+
µν(η, "x)|0eff(η)〉

= 〈0eff |T
(
h+

µν(η, "x)e−i
R 0

η0
dη′[H+

I (η′)−H−
I (η′)])|0eff〉

=
1
2

∫ η

η0

dη′a2(η′)
{[

Π> λρ
µν, (η, η′;"0)−Π< λρ

µν, (η, η′;"0)
]

×
[
2G̃λρ(η′)− T cl

λρ(η
′)− Tλρ(η′)

]
+ · · ·

}
.

The Procedure:

1. Expand metric about 
FRW,

2. Construct interaction 
Hamiltonian linear in 

fluctuations,
3. Compute tadpole using 

S-K formalism. 
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Stress-Energy and Backreaction
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Stress-Energy and Backreaction

 For TP corrections fk = dn
ωn

k

(aM)n
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Stress-Energy and Backreaction

 For TP corrections fk = dn
ωn

k

(aM)n

ρsurf(η0) ∝
H4

16π2

Hn

Mn

d∗
n

ε

[
1 +O

(
m2/H2

)
+O

(
H ′/H2

)]

psurf(η0) ∝
H4

16π2

Hn

Mn

d∗
n

ε

[
1 +O

(
m2/H2

)
+O

(
H ′/H2

)]
;
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Stress-Energy and Backreaction

 For TP corrections fk = dn
ωn

k

(aM)n

ρsurf(η0) ∝
H4

16π2

Hn

Mn

d∗
n

ε

[
1 +O

(
m2/H2

)
+O

(
H ′/H2

)]

psurf(η0) ∝
H4

16π2

Hn

Mn

d∗
n

ε

[
1 +O

(
m2/H2

)
+O

(
H ′/H2

)]
;

ρR
surf

ρvac
∼ 1

16π2

H2

M2
pl

Hn

Mn

Backreaction is under 
control!

Greene et al vs. Porrati et al.
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Observability

Signals that scale as H/M could be 
seen in future surveys!

Far from being an academic 
exercise, we need to understand how to

control the possible infiltration of short-distance
physics into the CMB just to have predictive power! 



Observability

Power Spectrum prospect summaryPower Spectrum prospect summary

! Today: 10-2

! Soon (WMAP/Planck) : 10-3

! Planned Galaxy Surveys (KAOS, LSST, Pan-Starr): 10-4

! Future Galaxy Surveys (21 cm survey up to z~30) : 10-5

! Theoretical Bound: 10-6

! So in principle TP effects as we “understand” them now might be probed in a

not so far future, ignoring all the galaxy evolution related complications...

! We need to know what to look for !

Signals that scale as H/M could be 
seen in future surveys!

Far from being an academic 
exercise, we need to understand how to

control the possible infiltration of short-distance
physics into the CMB just to have predictive power! 



Conclusions

• To extract maximum information early Universe from the CMB we need to 
know how to reliably calculate all relevant effects.

• There is a real possibility of using the CMB power spectra to get information 
about possible trans-Planckian physics effects.

• We now have an effective initial state that allows for reliable, controllable 
calculations. We’ve shown that as expected, back-reaction effects are small 
after renormalization of the effective theory.


