Expanding conformal matter in gauge theory/gravity duality

K. Kajantie
keijo.kajantie@helsinki.fi
University of Helsinki, Finland

11 March 2008

Work with Jorma Louko (Nottingham), Touko Tahkokallio (Helsinki)

1. Background

$\mathcal{N}=4$ SYM prediction "applied to hot QCD":

$$
p(T)=p_{\mathrm{sB}}(T)\left[0.75+\left(0.15 \log \frac{T}{T_{c}}\right)^{1.5}+. .\right]
$$

Wrong for $T \lesssim 3 T_{c}$ (not conformal) and $T \gtrsim 100 T_{c}$ (not strongly coupled) Now make this conformal matter expand, $\infty>T>0$:

Bjorken expansion (1983) of massless conformal fluid, $\epsilon=3 a T^{4}$ in $1+1+2$ dim:

$$
\begin{gathered}
v(t, x)=\frac{x}{t} \\
\epsilon(\tau) \sim T^{4}(\tau) \sim \frac{1}{\tau^{4 / 3}}, \quad T(\tau) \sim \frac{1}{\tau^{1 / 3}} .
\end{gathered}
$$

Same with viscosity $\eta \sim T^{3}, \zeta=0$ (Hosoya-KK 1985)

$$
T(\tau)=T_{f}\left(\frac{\tau_{f}}{\tau}\right)^{1 / 3}-\frac{c}{\tau}
$$

Dimensions of dissipative coefficients in 4d:

$$
\begin{gathered}
T_{\mu \nu}= \\
\epsilon u_{\mu} u_{\nu}+\eta(\partial u)_{\mu \nu}+\lambda_{2}(\partial u)_{\mu \nu}^{2}+\lambda_{3}(\partial u)_{\mu \nu}^{3}+\lambda_{4}(\partial u)_{\mu \nu}^{4} \\
\Rightarrow \quad \epsilon, \eta, \lambda_{2}, \lambda_{3}, \lambda_{4} \sim T^{4}, T^{3}, T^{2}, T, 1
\end{gathered}
$$

Dimensionless large- τ expansion parameter:

$$
\frac{1}{\tau T(\tau)}=\frac{1}{T_{f} \tau_{f}^{1 / 3} \tau^{2 / 3}} \sim \frac{1}{\tau^{(d-2) /(d-1)}}
$$

Results from AdS/CFT ${ }^{1}$

$$
\begin{aligned}
& T(\tau)= T_{f}\left(\frac{\tau_{f}}{\tau}\right)^{1 / 3}+\frac{\eta_{0}}{\tau}-\frac{\eta_{0}^{2}(1-\log 2)}{T_{f} \tau_{f}^{1 / 3}} \frac{1}{\tau^{5 / 3}}+\frac{\eta_{0}^{3} A}{\left(T_{f} \tau_{f}^{1 / 3}\right)^{2} \tau^{7 / 3}}+\frac{\eta_{0}^{4} B}{\left(T_{f} \tau_{f}^{1 / 3}\right)^{3} \tau^{3}}+. . \\
& \eta_{0}=-\frac{1}{6 \pi} \\
& \epsilon(\tau)= \frac{3 \pi^{2}}{8} N_{c}^{2}\left(\frac{\left(T_{f} \tau_{f}^{1 / 3}\right)^{4}}{\tau^{4 / 3}}+\frac{4 \eta_{0}\left(T_{f} \tau_{f}^{1 / 3}\right)^{3}}{\tau^{2}}+\frac{2 \eta_{0}^{2}(1+\log 4)\left(T_{f} \tau_{f}^{1 / 3}\right)^{2}}{\tau^{8 / 3}}+\right. \\
&\left.+\frac{4 \eta_{0}^{3} T_{f} \tau_{f}^{1 / 3}(-2+\log 8+A)}{\tau^{10 / 3}}+\frac{\eta_{0}^{4}\left(-5+6 \log ^{2} 2+12 A+4 B\right)}{\tau^{4}}+. .\right)
\end{aligned}
$$

For $d=2$ only one term in expansion ${ }^{2}$:

$$
\epsilon(\tau)=p(\tau)=\frac{\mathcal{L}}{16 \pi G_{3}} \frac{M}{\tau^{2}}=\frac{\pi \mathcal{L}}{4 G_{3}} T^{2}(\tau) \quad T(\tau)=\frac{\sqrt{M}}{2 \pi \tau} .
$$

[^0]${ }^{2}$ Kajantie-Louko-Tahkokallio
2. The $\mathrm{AdS}_{d+1} / \mathrm{CFT}_{d}$ setup for boost inv conf flow, $d=4$
$\left(t, x, x_{2}, x_{3}\right) \Rightarrow\left(\tau=\sqrt{t^{2}-x^{2}}, \eta=\frac{1}{2} \log [(t+x) /(t-x)], x_{2}, x_{3}\right), \quad d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}+d x_{T}^{2}$
Metric ansatz:
$$
d s^{2}=\frac{\mathcal{L}^{2}}{z^{2}}\left[a(\tau, z) d \tau^{2}+\tau^{2} b(\tau, z) d \eta^{2}+c(\tau, z)\left(d x_{2}^{2}+d x_{3}^{2}\right)+d z^{2}\right]
$$

Solve from

$$
R_{M N}=-\frac{4}{\mathcal{L}^{2}} g_{M N},
$$

expand near the boundary $z=0$:

$$
a(\tau, z)=-\left[1+a_{0}(\tau) z^{4}+a_{1}(\tau) z^{6}+\mathcal{O}\left(z^{8}\right)\right]
$$

to get

$$
\epsilon(\tau)=T_{\tau \tau}=\frac{\mathcal{L}^{3}}{4 \pi G_{5}} g_{\tau \tau}^{(4)}=-\frac{N_{c}^{2}}{2 \pi^{2}} a_{0}(\tau)
$$

Solving 5 d classical gravity get flow of conf $\mathcal{N}=4$ SYM matter in 4 d !?
How do you solve 5 nonlin PDOs, $\tau \tau, \eta \eta, T T, z z, \tau z$ comps of Einstein?

Conformal boost invariant flow in general
$T_{\mu}^{\mu}=0, \nabla_{\mu} T^{\mu \nu}=0 \Rightarrow$ in the local rest frame

$$
T_{\nu}^{\mu}=\left(\begin{array}{cccc}
-\epsilon(\tau) & 0 & 0 & 0 \\
0 & -\epsilon(\tau)-\tau \epsilon^{\prime}(\tau) & 0 & 0 \\
0 & 0 & \epsilon(\tau)+\frac{1}{2} \tau \epsilon^{\prime}(\tau) & 0 \\
0 & 0 & 0 & \epsilon(\tau)+\frac{1}{2} \tau \epsilon^{\prime}(\tau)
\end{array}\right)
$$

$$
\text { positivity condition : } \quad-4 \epsilon(\tau) \leq \tau \epsilon^{\prime}(\tau) \leq 0
$$

If $\epsilon \sim \tau^{-p}, 0 \leq p \leq 4$ and

$$
\begin{gathered}
T_{\nu}^{\mu}=\epsilon(\tau)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & p-1 & 0 & 0 \\
0 & 0 & 1-\frac{1}{2} p & 0 \\
0 & 0 & 0 & 1-\frac{1}{2} p
\end{array}\right) \\
p=0, \quad \text { constant, } p_{L}=-\epsilon, p_{T}=\epsilon \\
p=\frac{4}{3}, \quad \text { thermal, } p_{L}=p_{T}=\frac{1}{3} \epsilon \\
p=4, \quad \text { "vacuum", Casimir, } p_{T}=3 \epsilon, p_{T}=-\epsilon
\end{gathered}
$$

Not true vacuum in the sense $T_{\mu \nu}=$ const $\times g_{\mu \nu}^{(0)}$!

3. $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

$$
\begin{gathered}
\left(x^{+}, x^{-}, z\right),(\tau, \eta, z),(t, x, z),(\text { light cone, Milne, Minkowski) } \\
x^{ \pm}=\frac{x^{0} \pm x^{1}}{\sqrt{2}}=\frac{\tau}{\sqrt{2}} e^{ \pm \eta}, \quad t=\tau \cosh \eta, x=\tau \sinh \eta \\
d s^{2}=-2 d x^{+} d x^{-}=-d \tau^{2}+\tau^{2} d \eta^{2}=-d t^{2}+d x^{2} .
\end{gathered}
$$

General solution of

$$
R_{M N}-\frac{1}{2} R g_{M N}-\frac{1}{\mathcal{L}^{2}} g_{M N}=0, \quad g_{M N}=\frac{\mathcal{L}^{2}}{z^{2}}\left(\begin{array}{cc}
g_{\mu \nu} & 0 \\
0 & 1
\end{array}\right)
$$

is

$$
g_{M N}=\frac{\mathcal{L}^{2}}{z^{2}}\left(\begin{array}{ccc}
g\left(x^{+}\right) z^{2} & -1-\frac{z^{4}}{4} g\left(x^{+}\right) f\left(x^{-}\right) & 0 \\
-1-\frac{z^{4}}{4} g\left(x^{+}\right) f\left(x^{-}\right) & f\left(x^{-}\right) z^{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$g\left(x^{+}\right)=0, f\left(x^{-}\right)=\delta\left(x^{-}\right)$gives an "Aichelburg-Sexl shock wave", grav field of a particle moving with $x=+t$.
Now you have two clouds of particles colliding!

Compute $T_{\mu \nu}$

Expand

$$
g_{\mu \nu}\left(x^{ \pm}, z\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)+\left(\begin{array}{cc}
g\left(x^{+}\right) & 0 \\
0 & f\left(x^{-}\right)
\end{array}\right) z^{2}+(\ldots) z^{4}
$$

and read from general results

$$
T_{\mu \nu}=\frac{\mathcal{L}}{8 \pi G_{3}}\left(\begin{array}{cc}
g\left(x^{+}\right) & 0 \\
0 & f\left(x^{-}\right)
\end{array}\right)=(\epsilon+p) u_{\mu} u_{\nu}+p g_{\mu \nu}^{(0)}
$$

Solve $2 u^{+} u^{-}=u^{2}=-1$:

$$
\begin{gathered}
u_{\mu}=\left(-\left(\frac{g\left(x^{+}\right)}{4 f\left(x^{-}\right)}\right)^{1 / 4},-\left(\frac{f\left(x^{-}\right)}{4 g\left(x^{+}\right)}\right)^{1 / 4}\right) \\
\epsilon=p=\frac{\mathcal{L}}{8 \pi G_{3}} \sqrt{g\left(x^{+}\right) f\left(x^{-}\right)}
\end{gathered}
$$

Special case 1: $g\left(x^{+}\right)=\frac{M-1}{4 x^{+2}}, f\left(x^{-}\right)=\frac{M-1}{4 x^{-2}}$

Diverges for $\tau \rightarrow 0$!

Same metric in other coordinates:

$$
d s^{2}=\frac{\mathcal{L}^{2}}{z^{2}}\left[-\left(1-\frac{(M-1) z^{2}}{4 \tau^{2}}\right)^{2} d \tau^{2}+\left(1+\frac{(M-1) z^{2}}{4 \tau^{2}}\right)^{2} \tau^{2} d \eta^{2}+d z^{2}\right]
$$

Horizon at $\tau=\frac{1}{2} \sqrt{M-1} z$?
(t, r, η)
By explicit coordinate transformations ${ }^{3}$:

$$
d s^{2}=-\left(\frac{r^{2}}{\mathcal{L}^{2}}-M\right) d t^{2}+\frac{d r^{2}}{r^{2} / \mathcal{L}^{2}-M}+r^{2} d \eta^{2}
$$

Completely static: the nonrotating BTZ black hole!

$$
T=\frac{\sqrt{M}}{2 \pi \mathcal{L}}, \quad \frac{S}{" \mathrm{Vol} "}=\frac{S}{\mathcal{L} \Delta \eta}=\frac{\sqrt{M}}{4 G_{3}} . \quad M, \text { not } M-1!
$$

Where is time dependent $s(\tau) \sim 1 / \tau$?

Take $M=1$:

$$
d s^{2}=\frac{1}{z^{2}}\left(-d \tau^{2}+\tau^{2} d \eta^{2}+d z^{2}\right)
$$

seems AdS, no T - for inertial observers!
$\tau=e^{t} r / \sqrt{r^{2}-1}, z=e^{t} / \sqrt{r^{2}-1} \Rightarrow$

$$
d s^{2}=-\left(r^{2}-1\right) d t^{2}+\frac{d r^{2}}{r^{2}-1}+r^{2} d \eta^{2}
$$

Has timelike Killing ∂_{t} with horizon, etc. ${ }^{4}$
AdS (\star) has many Killing vectors. Choose physically correct one: timelike, commutes with ∂_{η} (boost invariance!) $\Rightarrow \partial_{t}$!!

Noninertial observers!

Fluid+Casimir/vacuum, time dependent entropy

$$
\begin{aligned}
& d s^{2}=\frac{\mathcal{L}^{2}}{z^{2}}\left[-\left(1-\frac{(M-1) z^{2}}{4 \tau^{2}}\right)^{2} d \tau^{2}+\left(1+\frac{(M-1) z^{2}}{4 \tau^{2}}\right)^{2} \tau^{2} d \eta^{2}+d z^{2}\right] \\
& \Rightarrow T_{\mu \nu}=\frac{\mathcal{L}(M-1)}{16 \pi G_{3}}\left(\begin{array}{cc}
\tau^{-2} & 0 \\
0 & 1
\end{array}\right)=\frac{\mathcal{L} M}{16 \pi G_{3}}\left(\begin{array}{cc}
\tau^{-2} & 0 \\
0 & 1
\end{array}\right)-\frac{\mathcal{L}}{16 \pi G_{3}}\left(\begin{array}{cc}
\tau^{-2} & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

$T_{\mu \nu}=$ sum of fluid $(M>0)$ and a Casimir/vacuum contribution - renormalised $T_{\mu \nu}$ in Milne coordinates ${ }^{5}$.

Gauge/gravity duality gives all there is in field theory (most strikingly anomalies of T_{μ}^{μ} in curved boundary)

$$
\text { Same as } d s^{2}=-\left(\frac{r^{2}}{\mathcal{L}^{2}}-M\right) d t^{2}+\frac{d r^{2}}{r^{2} / \mathcal{L}^{2}-M}+r^{2} d \eta^{2}
$$

The equivalent metric is the well-understood completely static nonrotating BTZ black ${ }^{12}$ hole with entropy (density)

$$
T=\frac{\sqrt{M}}{2 \pi \mathcal{L}}, \quad \frac{S}{" \mathrm{Vol} "}=\frac{S}{\mathcal{L} \Delta \eta}=\frac{\sqrt{M}}{4 G_{3}} . \quad M, \text { not } M-1!
$$

For an expanding system one should measure entropy not with $\mathcal{L} \Delta \eta$ but $\tau d \eta$ as longitudinal volume element:

$$
s(\tau)=\frac{\Delta S}{\tau \Delta \eta}=\frac{\sqrt{M}}{4 G_{3}} \frac{\mathcal{L}}{\tau}, \quad T(\tau)=\frac{\sqrt{M}}{2 \pi \tau}
$$

Consistent!

Moral: understanding the global structure is important!

For the record, here are the coordinate transformations from the time dependent

$$
d s^{2}=\frac{\mathcal{L}^{2}}{z^{2}}\left[-\left(1-\frac{(M-1) z^{2}}{4 \tau^{2}}\right)^{2} d \tau^{2}+\left(1+\frac{(M-1) z^{2}}{4 \tau^{2}}\right)^{2} \tau^{2} d \eta^{2}+d z^{2}\right]
$$

to a static form for any M :
Transform stepwise $\tau, z \rightarrow V, U \rightarrow t, r$

$$
\begin{gathered}
V=\left(\frac{2 \tau-(\sqrt{M}+1) z}{2 \tau+(\sqrt{M}-1) z}\right)\left(\frac{\tau}{\mathcal{L}}\right)^{\sqrt{M}}, \quad r=\mathcal{L} \sqrt{M}\left(\frac{1-U V}{1+U V}\right), \quad M=M_{\mathrm{BH}} \cdot 8 G_{3} \\
U=-\left(\frac{2 \tau-(\sqrt{M}-1) z}{2 \tau+(\sqrt{M}+1) z}\right)\left(\frac{\tau}{\mathcal{L}}\right)^{-\sqrt{M}}, \quad t=\frac{\mathcal{L}}{2 \sqrt{M}} \ln \left|\frac{V}{U}\right| . \\
\Rightarrow d s^{2}=\mathcal{L}^{2}\left[-\frac{4}{(1-U V)^{2}} d V d U+M\left(\frac{1-U V}{1+U V}\right)^{2} d \eta^{2}\right] \\
d s^{2}=-\left(\frac{r^{2}}{\mathcal{L}^{2}}-M\right) d t^{2}+\frac{d r^{2}}{r^{2} / \mathcal{L}^{2}-M}+r^{2} d \eta^{2}
\end{gathered}
$$

For the record, here is also the Penrose diagram:

The region $0<z<2 \tau / \sqrt{M-1}$ is part of interior of while hole + exterior of black hole. The naive horizon $\tau=\frac{1}{2} \sqrt{M-1} z$ (dotted) is behind the true horizon $r=r_{+}, \tau=\frac{1}{2}(\sqrt{M}+1) z$.

Special case 2: core + tail, some phenomenology

$$
f(x)=g(x)=\frac{M-1}{4}\left[\frac{1}{x^{2}} \Theta(x-a)+\frac{1}{a^{2}} \Theta(x) \Theta(a-x)\right] \quad a \sim \frac{1}{Q_{s}}
$$

Energy density per unit rapidity is finite due to imposed boost noninvariance!

Conformal matter is opaque:

Dotted: particle paths. Matter recoils!

Metric ansatz:

$$
d s^{2}=\frac{\mathcal{L}^{2}}{z^{2}}\left[a(\tau, z) d \tau^{2}+\tau^{2} b(\tau, z) d \eta^{2}+c(\tau, z)\left(d x_{2}^{2}+d x_{3}^{2}\right)+d z^{2}\right]
$$

Large- τ solutions obtained by expanding

$$
a(\tau, z)=a_{0}(v)+a_{1}(v) \frac{1}{\tau^{2 / 3}}+a_{2}(v) \frac{1}{\tau^{4 / 3}}+\ldots, \quad v \equiv \frac{z}{\tau^{1 / 3}},
$$

solving $a_{i}(v)$ exactly and determining constants by regularity.
Could it be that the solution just is a time dependent coordinate transformation of the AdS_{5} black hole

$$
d s^{2}=\frac{\mathcal{L}^{2}}{\tilde{z}^{2}}\left[-\left(1-\frac{\tilde{z}^{4}}{z_{0}^{4}}\right) d t^{2}+d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+\frac{1}{1-\tilde{z}^{4} / z_{0}^{4}} d \tilde{z}^{2}\right]
$$

or

$$
d s^{2}=\frac{\mathcal{L}^{2}}{z^{2}}\left[-\frac{\left(1-z^{4} /\left(4 z_{0}^{4}\right)\right)^{2}}{1+z^{4} /\left(4 z_{0}^{4}\right)} d t^{2}+\left(1+\frac{z^{4}}{4 z_{0}^{4}}\right)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)+d z^{2}\right]
$$

or even

$$
d s^{2}=-\left(\frac{r^{2}}{\mathcal{L}^{2}}+1-\frac{\mu \mathcal{L}^{2}}{r^{2}}\right) d t^{2}+\frac{d r^{2}}{(\ldots .)}+r^{2} d \Omega_{3}^{2} \quad ? ?
$$

Assume a, b, c only depend on z / τ :

$$
a(\tau, z)=-g^{2}(s), \quad s \equiv \frac{z^{2}}{\tau^{2}} \quad g(0)=1, g^{\prime}(0)=0
$$

Then $g(s)=1+\frac{1}{2} g^{\prime \prime}(0) s^{2}+\ldots$,

$$
g_{\tau \tau}^{(4)}=\frac{-g^{\prime \prime}(0)}{\tau^{4}}, \quad \epsilon(\tau)=\frac{N_{c}^{2}}{2 \pi^{2}} \frac{-g^{\prime \prime}(0)}{\tau^{4}}
$$

and tensor structure is that of Casimir/vacuum, $T^{\mu}{ }_{\nu} \sim \operatorname{diag}(1,-3,1,1) / \tau^{4}$. The ODE for $g(s)$

$$
g(s) g^{\prime}(s)\left[g(s)-s g^{\prime}(s)\right]=s\left[g^{2}(s)-s\right] g^{\prime \prime}(s)
$$

can be solved analytically $\Rightarrow a, b, c$.
So one has a family (parameter: $g^{\prime \prime}(0)$) of AdS_{5} solutions leading to a maximally τ dependent energy density $\sim 1 / \tau^{4}$ in the boundary flow! Can this be split in fluid + Casimir?
A surprise is waiting:

By a change of variables the AdS_{5} scaling solution becomes ("bubble of nothing" ${ }^{\text {" }}$)

$$
\begin{aligned}
d s^{2}= & \frac{\mathcal{L}^{2}}{\zeta^{2}}\left\{\left[1-\frac{\zeta^{2}}{2 \mathcal{L}^{2}}+\frac{\left(\mu+\frac{1}{4}\right) \zeta^{4}}{4 \mathcal{L}^{4}}\right] \mathcal{L}^{2}\left[-d \gamma^{2}+e^{-2 \gamma} \mathcal{L}^{-2}\left(d x_{2}^{2}+d x_{3}^{2}\right)\right]\right. \\
& \left.+\frac{\left[1-\frac{\left(\mu+\frac{1}{4}\right) \zeta^{4}}{4 \mathcal{L}^{4}}\right]^{2}}{\left[1-\frac{\zeta^{2}}{2 \mathcal{L}^{2}}+\frac{\left(\mu+\frac{1}{4}\right) \zeta^{4}}{4 \mathcal{L}^{4}}\right]} \mathcal{L}^{2} d \eta^{2}+d \zeta^{2}\right\}
\end{aligned}
$$

Coordinates $\left(\gamma, x^{2}, x^{3}, \eta, \zeta\right), \mu=4 g^{\prime \prime}(0)$.
A new time γ and transverse coordinates form a 3d De Sitter space!
Expanding around $\zeta=0$, (coordinates $\gamma, x^{2}, x^{3}, \eta$):

$$
T^{\mu}{ }_{\nu}=\frac{N_{c}^{2}}{2 \pi^{2}} \frac{1+4 \mu}{16 \mathcal{L}^{4}}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

The above is an example of what may appear if one studies exact solutions and their global properties.

Lacking exact solutions of AdS_{5} gravity equations with symmetries appropriate for boost invariant longitudinal flow in $1+1+2 \mathrm{~d}$ we have studied cases where exact solutions can be obtained.

In 1+1d boundary the fluid and Casimir/vacuum parts can be correctly identified since the global structure is known. The Casimir/vacuum part necessarily appears.

In 1+1d an exact non-boostinvariant solution simulates heavy ion collisions with central and fragmentation regions and an analogue of saturation scale.

In $1+1+2 \mathrm{~d}$ an exact solution with z / τ scaling leads to an energy density $\sim 1 / \tau^{4}$. Are there fluid + Casimir components in this?

[^0]: ${ }^{1}$ Janik-Peschanski, Baier-Romatschke-Son-Starinets-Stephanov,...

