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Introduction

• Gauge theories exhibit a rich variety of thermodynamic phases:
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• SU(N) Pure Yang-Mills in 3+1 dimensions (+ adjoint matter)

• This theory has ZN center symmetry

• T 6= 0 thermodynamics: theory on R3 × S1

• Order parameter for ZN : u1 = 1
N Tr exp i

∫ β
0 A0dτ

Polyakov loop

• Low T: 〈u1〉 = 0 =⇒ Confined Phase

First Order Transition (Svetitsky,Yaffe)

• High T: 〈u1〉 6= 0 =⇒ Deconfined Phase → ZN breaking
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Small Volume, Large N Thermodynamics

• Yang-Mills theories on finite volume can also have interesting
thermodynamics as N →∞

• Motivation:

I AdS/CFT correspondence.

I N = 4 SUSY Yang-Mills at large N ≡ String theory on
AdS5 × S5

• Field theory on S3 × Rt ' conformal boundary of global AdS5.

• T 6= 0 : N = 4 SYM on S3× S1 ' boundary of Euclidean AdS5

space with thermal S1.
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• Radius of S3 = R Radius of S1 = β = 1
T

=⇒ Two dimensionless tunable parameters:

’t Hooft coupling λ = g2N and Temperature TR

• N = 4 SYM has only adjoint matter i.e. ZN symmetry

Two tractable regimes at N = ∞:

I λ→∞ Classical SUGRA

I λ << 1 Weakly coupled gauge theory on S3

• SUGRA on AdS5 yields λ→∞ field theory dynamics

• Can gauge theory at λ� 1 provide a window into AdS gravity ?
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Free theory (λ = 0) on S3 × S1

(Sundborg; Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk)

• Hamiltonian on S3 = ∆: Dilatation operator on R4.

• Physical states ' All gauge-invariant words

E.g. Tr [φ1φ2 . . . φ2φ2 . . .]︸ ︷︷ ︸ Energy ∼ L

L

• No. of states with energy L ∼ e# L: Hagedorn density

• Z = Tr e−β∆ can be computed in a Wilsonian approach:

• A0 has a zero mode on S3 × S1

α =

∫ β

0
A0dτ U ≡ e iα
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• Integrating out all KK harmonics on S1 × S3, obtain an effective

action for the zero mode of U = e iα

Z =

∫
[dU] exp[

∞∑
m=1

am(TR) TrUm TrU†m]

ZN -invariant effective action

un = 1
N TrUn n = 1, 2, . . .

• Eigenvalues (α1, α2, . . . αN) experience

Vandermonde repulsion ∼ log | sin(
αi−αj

2 )| +

T -dependent attraction
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• First order Hagedorn/Deconfinement transition at
TH ≈ 0.38R−1

− π π

H
T > T

ρ(α)

− π π
T < T

H

ρ(α)

• Change in free energy O(N2)

V

0 u
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T < T
H

1

V

0 u
1

H

1

T > T

〈u1〉 = 0 〈u1〉 6= 0 ZN breaking
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• λ = 0 picture consistent with λ = ∞

At λ = ∞: first order Hawking-Page transition between Thermal
AdS and the Big AdS-Schwarzschild Black Hole

Th AdS

r=0
β r = r+

AdS BH

W = 〈 1
N Tre i

∫
β(A0+...)〉 = 0 W = e−SF1 6= 0.
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• The picture at λ << 1 unresolved. Depending on the sign of b in

V = N2(m2(T )|u1|2 + b|u1|4); b ∼ λ2

b < 0 b > 0

Possibility 2Possibility 1

0 08 8

Thermal AdS

Big Black

Hole

Confined

Deconfined

λ λ

Big Black

Hole

Thermal AdSConfined

Deconfined

Τ
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Introducing Chemical Potentials

• Chemical potentials (µ1, µ2, µ3) for U(1)3 ⊂ SU(4)R global
symmetry.

• The N = 4 scalars φi transform as a 6 of SU(4)R
Fermions ψA as a 4.

I ∆ → ∆−
∑

p µpJp

I LE → LE − 1
2µ

2
p Tr (φ2

p + φ2
2p−1)− i

2µp Tr φ2pD0φ2p−1 + . . .

• On S3, all scalars have a conformal mass 1
R2

V0 = N
λ Tr

(
1
2(R−2 − µ2

p)(φ
2
2p + φ2

2p−1)− [φa, φb]
2
)
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Phase diagram at λ = 0

(Yamada, Yaffe)

• Energy unbounded from below for µ > µc ≡ R−1

• With T 6= 0, µ ≤ µc the grand canonical partition sum

Z = Tre−β(∆−µpJp) =

∫
[dU] exp[

∑
m

am(µp,T ) TrUm Tr U†m]

 λ = 0 
T

µ

µ

Unstable

c

Confined

Z

Deconfined

Z
N N
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Small non-zero coupling

(Hollowood, SPK, Naqvi, to appear)

I For µp > µc , classical theory is still unstable along mutually
commuting scalar directions.

I New light, interacting scalar degrees of freedom appear for
µp ' µc and T = 0.

I Classically, at µp = µc , flat directions parametrized by
constant diagonal modes of (φ2p, φ2p−1).

• Along the classically flat directions
φa1 . . .
. φa2 . .
. . φa3 .
. . . .


integrate out all heavy off-diagonal modes, m2 ∼ |φi − φj |2 + `2.
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I Background field gauge on S3

L(gf) =
1

2g2
Tr

[(
∇iA

i + D̃0A
0 − i [φ, δφ]

)2

+c̄(−D̃2
0 −∆(s) + [φ, .]2)c

]
.

I With µp 6= 0, A0 and scalar fluctuations mix;
Fermions also mix.

I Fluctuation determinants yield Casimir sums at T = 0:

V1−loop ∼
∑

species

N∑
ij=1

∑
`

deg(`) ε(`, |φi − φj |)

I With critical µp fermions can have integer moding on S3:

εF =
√

(`+ 1
2)2 + φ2

ij →
√

(`+ 1
2 ±

µ1
2 )2 + φ2

ij ±
µ2
2 ±

µ3
2 .
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I Perform Casimir sums using energy cutoffs on S3

I Regularized Casimir sums at T = 0 and with critical µp:

V b
1 = (2π2R3)−1

∑N
ij=1 Λ4R3 − 1

2RΛ2 − R3φ2
ijΛ

2 + 1
12R −

1
4φ

2
ijR

+1
2φ

4
ijR

3 log
(
|φij |e1/4

2Λ

)
+ 8

∫∞
Rφij

x2
√

x2R−2−φ2
ij

e2πx−1
.

V f
1 = (2π2R3)−1

∑N
ij=1−Λ4R3 + 1

2RΛ2 + R3φ2
ijΛ

2 + 5
48R

+1
4φ

2
ijR −

1
2φ

4
ijR

3 log
(
|φij |e1/4

2Λ

)
− 8

∫∞
Rφij

x2
√

x2R−2−φ2
ij

e2πx−1
.

S. Prem Kumar Aspects of thermodynamics of the N = 4 theory on S3



I Perform Casimir sums using energy cutoffs on S3

I Regularized Casimir sums at T = 0 and with critical µp:

V b
1 = (2π2R3)−1

∑N
ij=1 Λ4R3 − 1

2RΛ2 − R3φ2
ijΛ

2 + 1
12R −

1
4φ

2
ijR

+1
2φ

4
ijR

3 log
(
|φij |e1/4

2Λ

)
+ 8

∫∞
Rφij

x2
√

x2R−2−φ2
ij

e2πx−1
.

V f
1 = (2π2R3)−1

∑N
ij=1−Λ4R3 + 1

2RΛ2 + R3φ2
ijΛ

2 + 5
48R

+1
4φ

2
ijR −

1
2φ

4
ijR

3 log
(
|φij |e1/4

2Λ

)
− 8

∫∞
Rφij

x2
√

x2R−2−φ2
ij

e2πx−1
.

S. Prem Kumar Aspects of thermodynamics of the N = 4 theory on S3



I Perform Casimir sums using energy cutoffs on S3
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V b
1 + V f

1 = N2

Vol(S3)

3

16R

I At critical chemical potential and T = 0, radiative corrections
vanish, the classical flat directions are not lifted.

I For µ1 = µc ; µ2 = µ3 = 0 , the new Hamiltonian ∆− J1

vanishes on all 1
2 BPS states.

I These parametrize the ground states since {Q†,Q} ∼ ∆− J1

I At a generic point on this moduli space, there is a charged
condensate

I For two and three critical µp, the ground states are the 1
4 and

1
8 BPS states.
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TR << 1 and |µ1 − µc | . O(λ)

I At µ1 = µc , switch on a small non-zero T (TR � 1)

I Joint potential for αi and scalars:

V1 =
∑N

ij=1

(
1

Vol(S3)

[
3

16R − 8Te
− 1

TR

√
1+R2φ2

ij ×

cos
(

αi−αj

T

)
+O(e−2/TR)

])
.

I All αi = 0 – deconfined phase: u1 = 1.

I 1-loop term vanishes at large φij , and has positive curvature
near φi = 0.

I For some values of µ & µc , V1 can overcome tree level
instability near φi = 0.
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(φ)

3/16

TR << 1

V 

φ

• For TR � 1 metastable state with (µ1 − µc) ≤ 1
R λ exp(−1

TR )

• Thermal activation and tunnelling rates ∝ exp(−Ne−
1

TR )
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Τ
λ << 1

DeconfinedConfined

µ
c

µ Unstable

?

Metastable

• Width of metastable band ∼ λ e
−1
TR
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High T metastable phase

(Yamada, Yaffe)

I At high temperatures 1√
λ

& TR � 1, theory is deconfined

(αi = 0).

I Scalars have a thermal mass λT 2 near the origin φi = 0.

I At large |φij |, quantum corrections vanish, effective potential
has classical behaviour.

I Thus for µc < µ <
√
λT 2 + µ2

c , there is a metastable phase

near the origin, with decay rate ∼ e−N/λ
3
2 .
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High T metastable potential

V

φ
1/λ > (TR)  >> 1

2
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Weak-strong comparison

Τ

DeconfinedConfined

Unstable

? Metastable

µ
c

µ

λ << 1

Tλ 8

linear

?

Charged AdS−

Black HoleThermal

AdS

c

Instability
µ

µ

(Cvetic,Gubser;Behrndt,Cvetic,Sabra;Yamada)
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Further directions

I Unitary matrix model for on S3, truncted to the ’b’ term, as a
model for extracting small black holes;blackhole -string phase
transition. (Alvarez-Gaume,Gomez,Liu,Wadia; Basu,Wadia;

Dutta,Gopakumar)

I An effective potential for the Polyakov loop from gravity.
(Headrick)

I Eigenvalue distributions for the Polyakov-Maldacena both at
weak and strong coupling. (Hartnoll,SPK)
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• Real time correlators at high temperature, TR →∞- Poles vs.
Cuts.

E.g. 〈TrF 2(t,~x)TrF 2(0)〉ret
ω,~k

−k k

ω

−k k

ω
λ =0 λ=

8

(Hartnoll,SPK)

• More generally, branch cuts from graphs at λ� 1 should turn into

poles corresponding to BH quasinormal frequencies at λ→∞.
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• Real time correlators as probes of black hole singularities.
(Fidkowski,Hubeny,Kleban,Shenker)

t

+
−

−i

−ι

+

− β/2

β/2

t c
x

〈O+(t)O−(−t)〉 ∼ 1

(t − tc)2∆
; ∆ � 1.

• Exponential falloff of correlator at large imaginary frequency.
(Festuccia,Liu)

• Remnants of such signals in weakly coupled field theory?
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