Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3

S. Prem Kumar

Swansea University

February 21, 2008

(KITP, Santa Barbara)

S. Prem Kumar Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3

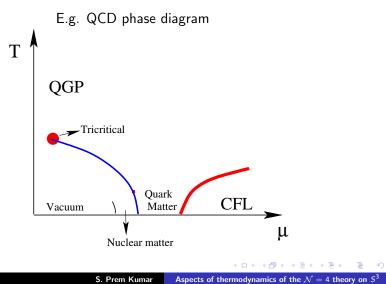
→ ∃ →

• Gauge theories exhibit a rich variety of thermodynamic phases:

- 4 回 2 - 4 □ 2 - 4 □

æ

• Gauge theories exhibit a rich variety of thermodynamic phases:



• SU(N) Pure Yang-Mills in 3+1 dimensions (+ adjoint matter)

・ロト・(中・(中・(中・(日・)

- SU(N) Pure Yang-Mills in 3+1 dimensions (+ adjoint matter)
- This theory has \mathbb{Z}_N center symmetry
- ${\mathcal T}
 eq 0$ thermodynamics: theory on ${\mathbb R}^3 imes S^1$
- Order parameter for \mathbb{Z}_N : $u_1 = \frac{1}{N} \operatorname{Tr} \exp i \int_0^\beta A_0 d\tau$ Polyakov loop

・ 同 ト ・ ヨ ト ・ ヨ ト

- SU(N) Pure Yang-Mills in 3+1 dimensions (+ adjoint matter)
- This theory has \mathbb{Z}_N center symmetry
- $T \neq 0$ thermodynamics: theory on $\mathbb{R}^3 imes S^1$

• Order parameter for
$$\mathbb{Z}_N$$
: $u_1 = \frac{1}{N} \operatorname{Tr} \exp i \int_0^\beta A_0 d\tau$
Polyakov loop

• Low T: $\langle u_1 \rangle = 0 \implies$ Confined Phase

First Order Transition (Svetitsky, Yaffe)

• High T: $\langle u_1 \rangle \neq 0 \implies$ Deconfined Phase $\rightarrow \mathbb{Z}_N$ breaking

イロン 不良と 不良とう

Small Volume, Large N Thermodynamics

• Yang-Mills theories on finite volume can also have interesting thermodynamics as $N \to \infty$

回 と く ヨ と く ヨ と

Small Volume, Large N Thermodynamics

 \bullet Yang-Mills theories on finite volume can also have interesting thermodynamics as $N \to \infty$

- Motivation:
 - ► AdS/CFT correspondence.
 - ▶ $\mathcal{N} = 4$ SUSY Yang-Mills at large $N \equiv$ String theory on $AdS_5 \times S^5$

回 と く ヨ と く ヨ と

 \bullet Yang-Mills theories on finite volume can also have interesting thermodynamics as $N \to \infty$

- Motivation:
 - ► AdS/CFT correspondence.
 - ▶ $\mathcal{N} = 4$ SUSY Yang-Mills at large $N \equiv$ String theory on $AdS_5 \times S^5$
- Field theory on $S^3 \times R_t \simeq$ conformal boundary of global AdS_5 .
- $T \neq 0$: $\mathcal{N} = 4$ SYM on $S^3 \times S^1 \simeq$ boundary of Euclidean AdS_5 space with thermal S^1 .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

 \implies Two dimensionless tunable parameters:

't Hooft coupling $\lambda = g^2 N$ and Temperature TR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

 \implies Two dimensionless tunable parameters:

- 't Hooft coupling $\lambda = g^2 N$ and Temperature TR
- $\mathcal{N} = 4$ SYM has only adjoint matter *i.e.* \mathbb{Z}_N symmetry

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

 \implies Two dimensionless tunable parameters:

- 't Hooft coupling $\lambda = g^2 N$ and Temperature TR
- $\mathcal{N} = 4$ SYM has only adjoint matter *i.e.* \mathbb{Z}_N symmetry

Two tractable regimes at $N = \infty$:

- $\lambda \to \infty$ Classical SUGRA
- $\lambda << 1$ Weakly coupled gauge theory on S^3

= 990

 \implies Two dimensionless tunable parameters:

- 't Hooft coupling $\lambda = g^2 N$ and Temperature TR
- $\mathcal{N} = 4$ SYM has only adjoint matter *i.e.* \mathbb{Z}_N symmetry

Two tractable regimes at $N = \infty$:

- $\lambda \to \infty$ Classical SUGRA
- $\lambda << 1$ Weakly coupled gauge theory on S^3
- SUGRA on AdS_5 yields $\lambda \to \infty$ field theory dynamics
- \bullet Can gauge theory at $\lambda \ll 1$ provide a window into AdS gravity ?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Free theory $(\lambda=0)$ on $S^3 imes S^1$

(Sundborg; Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk)

• Hamiltonian on $S^3 = \Delta$: Dilatation operator on \mathbb{R}^4 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Free theory $(\lambda = 0)$ on $S^3 imes S^1$

(Sundborg; Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk)

- Hamiltonian on $S^3 = \Delta$: Dilatation operator on \mathbb{R}^4 .
- ullet Physical states \simeq All gauge-invariant words

E.g. Tr
$$[\phi_1 \phi_2 \dots \phi_2 \phi_2 \dots]$$
 Energy $\sim L$

• No. of states with energy $L \sim e^{\# L}$: Hagedorn density

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Free theory $(\lambda = 0)$ on $S^3 imes S^1$

(Sundborg; Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk)

- Hamiltonian on $S^3 = \Delta$: Dilatation operator on \mathbb{R}^4 .
- \bullet Physical states $\quad \simeq \quad$ All gauge-invariant words

E.g. Tr
$$[\phi_1 \phi_2 \dots \phi_2 \phi_2 \dots]$$
 Energy $\sim L$

- No. of states with energy $L \sim e^{\# L}$: Hagedorn density
- $\mathcal{Z} = \operatorname{Tr} e^{-\beta \Delta}$ can be computed in a Wilsonian approach:
- A_0 has a zero mode on $S^3 imes S^1$

$$\alpha = \int_0^\beta A_0 d\tau \qquad U \equiv e^{i\alpha}$$

• Integrating out all KK harmonics on $S^1 \times S^3$, obtain an effective action for the zero mode of $U = e^{i\alpha}$

$$\begin{split} \mathcal{Z} &= \int [dU] \;\; \exp[\sum_{m=1}^{\infty} \; a_m(TR) \;\; \mathrm{Tr} U^m \;\; \mathrm{Tr} U^{\dagger m}] \\ & \mathbb{Z}_N \text{-invariant effective action} \\ & u_n = \frac{1}{N} \mathrm{Tr} U^n \;\; n = 1, 2, \dots \end{split}$$

◆□ > < E > < E > E - のQ ○

• Integrating out all KK harmonics on $S^1 \times S^3$, obtain an effective action for the zero mode of $U = e^{i\alpha}$

$$\begin{aligned} \mathcal{Z} &= \int [dU] \; \exp[\sum_{m=1}^{\infty} \; a_m(TR) \; \operatorname{Tr} U^m \; \operatorname{Tr} U^{\dagger m}] \\ & \mathbb{Z}_N \text{-invariant effective action} \\ & u_n = \frac{1}{N} \operatorname{Tr} U^n \; n = 1, 2, \dots \end{aligned}$$

• Eigenvalues $(\alpha_1, \alpha_2, \dots, \alpha_N)$ experience

Vandermonde repulsion $\sim \log |\sin(\frac{\alpha_i - \alpha_j}{2})| +$

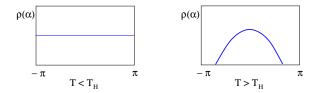
T-dependent attraction

□ > < E > < E > E - のへで

• First order Hagedorn/Deconfinement transition at $T_H \approx 0.38 R^{-1}$

・ロ・・ 白・・ ・ 山・ ・ 白・ ・ 日・

• First order Hagedorn/Deconfinement transition at $T_{H} \approx 0.38 R^{-1}$



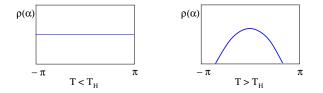
< ≣⇒

a ►

< ≣ >

æ

• First order Hagedorn/Deconfinement transition at $T_{H} \approx 0.38 R^{-1}$

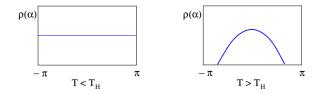


• Change in free energy $\mathcal{O}(N^2)$

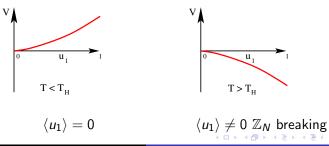
< ≣⇒

æ

• First order Hagedorn/Deconfinement transition at $T_{H} \approx 0.38 R^{-1}$



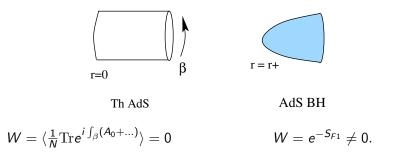
• Change in free energy $\mathcal{O}(N^2)$



S. Prem Kumar Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3

• $\lambda = 0$ picture consistent with $\lambda = \infty$

At $\lambda = \infty$: first order Hawking-Page transition between Thermal AdS and the Big AdS-Schwarzschild Black Hole



• The picture at $\lambda << 1$ unresolved. Depending on the sign of b in

$$V = N^2(m^2(T)|u_1|^2 + b|u_1|^4); \qquad b \sim \lambda^2$$

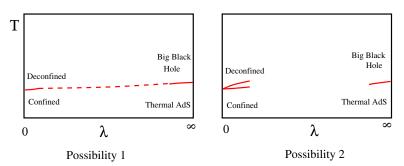
・ロト ・回ト ・ヨト ・ヨト

き わえで

• The picture at $\lambda \ll 1$ unresolved. Depending on the sign of b in

$$V = N^2(m^2(T)|u_1|^2 + b|u_1|^4); \qquad b \sim \lambda^2$$

b > 0



・ロト ・回ト ・ヨト ・ヨト

3

• Chemical potentials (μ_1, μ_2, μ_3) for $U(1)^3 \subset SU(4)_R$ global symmetry.

• The $\mathcal{N} = 4$ scalars ϕ_i transform as a **<u>6</u>** of $SU(4)_R$ <u>Fermions</u> ψ^A as a <u>**4**</u>.

▲□ → ▲ 臣 → ▲ 臣 → ○ ● ○ ○ ○ ○

►

• Chemical potentials (μ_1, μ_2, μ_3) for $U(1)^3 \subset SU(4)_R$ global symmetry.

• The $\mathcal{N} = 4$ scalars ϕ_i transform as a **<u>6</u>** of $SU(4)_R$ <u>Fermions</u> ψ^A as a <u>**4**</u>.

$$\Delta
ightarrow \Delta - \sum_{p} \mu_{p} J_{p}$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

►

• Chemical potentials (μ_1, μ_2, μ_3) for $U(1)^3 \subset SU(4)_R$ global symmetry.

• The $\mathcal{N} = 4$ scalars ϕ_i transform as a **<u>6</u>** of $SU(4)_R$ <u>Fermions</u> ψ^A as a <u>4</u>.

$$\Delta
ightarrow \Delta - \sum_{p} \mu_{p} J_{p}$$

 $\blacktriangleright \mathcal{L}_E \rightarrow \mathcal{L}_E - \frac{1}{2}\mu_p^2 \operatorname{Tr} \left(\phi_p^2 + \phi_{2p-1}^2\right) - \frac{i}{2}\mu_p \operatorname{Tr} \phi_{2p} D_0 \phi_{2p-1} + \dots$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

►

• Chemical potentials (μ_1, μ_2, μ_3) for $U(1)^3 \subset SU(4)_R$ global symmetry.

• The $\mathcal{N} = 4$ scalars ϕ_i transform as a **<u>6</u>** of $SU(4)_R$ <u>Fermions</u> ψ^A as a <u>4</u>.

$$\Delta \rightarrow \Delta - \sum_{p} \mu_{p} J_{p}$$

$$\blacktriangleright \mathcal{L}_E \rightarrow \mathcal{L}_E - \frac{1}{2}\mu_p^2 \operatorname{Tr} \left(\phi_p^2 + \phi_{2p-1}^2\right) - \frac{i}{2}\mu_p \operatorname{Tr} \phi_{2p} D_0 \phi_{2p-1} + \dots$$

• On S^3 , all scalars have a conformal mass $\frac{1}{R^2}$

$$V_0 = \frac{N}{\lambda} \text{Tr} \left(\frac{1}{2} (R^{-2} - \mu_p^2) (\phi_{2p}^2 + \phi_{2p-1}^2) - [\phi_a, \phi_b]^2 \right)$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

(Yamada, Yaffe)

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ

(Yamada, Yaffe)

• Energy unbounded from below for $\mu > \mu_c \equiv R^{-1}$

回 と く ヨ と く ヨ と

æ

(Yamada, Yaffe)

- Energy unbounded from below for $\mu > \mu_c \equiv R^{-1}$
- With $T \neq 0$, $\mu \leq \mu_c$ the grand canonical partition sum

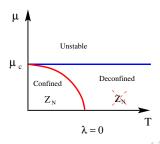
$$\mathcal{Z} = \mathrm{Tr} e^{-eta(\Delta-\mu_p J_p)} = \int [dU] \, \exp[\sum_m \, a_m(\mu_p, T) \, \mathrm{Tr} \, U^m \, \mathrm{Tr} \, U^{\dagger m}]$$

同 と く き と く き と

(Yamada, Yaffe)

- Energy unbounded from below for $\mu > \mu_c \equiv R^{-1}$
- With $T \neq 0$, $\mu \leq \mu_c$ the grand canonical partition sum

$$\mathcal{Z} = \mathrm{Tr} e^{-eta(\Delta-\mu_p J_p)} = \int [dU] \, \exp[\sum_m \, a_m(\mu_p, T) \, \mathrm{Tr} \, U^m \, \mathrm{Tr} \, U^{\dagger m}]$$



Small non-zero coupling

(Hollowood, SPK, Naqvi, to appear)

For μ_p > μ_c, classical theory is still unstable along mutually commuting scalar directions.

回 と く ヨ と く ヨ と

Small non-zero coupling

(Hollowood, SPK, Naqvi, to appear)

- For μ_p > μ_c, classical theory is still unstable along mutually commuting scalar directions.
- ▶ New light, interacting scalar degrees of freedom appear for $\mu_p \simeq \mu_c$ and T = 0.

・日・ ・ ヨ・ ・ ヨ・

Small non-zero coupling

(Hollowood, SPK, Naqvi, to appear)

- ► For µ_p > µ_c, classical theory is still unstable along mutually commuting scalar directions.
- ▶ New light, interacting scalar degrees of freedom appear for $\mu_p \simeq \mu_c$ and T = 0.
- ► Classically, at µ_p = µ_c, flat directions parametrized by constant diagonal modes of (φ_{2p}, φ_{2p-1}).

・回 ・ ・ ヨ ・ ・ ヨ ・

Small non-zero coupling

(Hollowood, SPK, Naqvi, to appear)

- ▶ For µ_p > µ_c, classical theory is still unstable along mutually commuting scalar directions.
- ▶ New light, interacting scalar degrees of freedom appear for $\mu_p \simeq \mu_c$ and T = 0.
- ► Classically, at µ_p = µ_c, flat directions parametrized by constant diagonal modes of (φ_{2p}, φ_{2p-1}).
- Along the classically flat directions

$$\begin{pmatrix} \phi_{a1} & \cdot & \cdot & \cdot \\ \cdot & \phi_{a2} & \cdot & \cdot \\ \cdot & \cdot & \phi_{a3} & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

integrate out all heavy off-diagonal modes, $m^2 \sim |\phi_j - \phi_j|^2 + \ell^2$.

S. Prem Kumar Aspects of thermodynamics of the $\mathcal{N} = 4$ theory on S^3

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

• Background field gauge on S^3

$$\mathcal{L}^{(\mathrm{gf})} = \frac{1}{2g^2} \mathrm{Tr} \left[\left(\nabla_i A^i + \tilde{D}_0 A^0 - i[\phi, \delta\phi] \right)^2 + \bar{c} (-\tilde{D}_0^2 - \Delta^{(s)} + [\phi, .]^2) c \right].$$

イロン イヨン イヨン イヨン

き わえで

Background field gauge on S³

$$\mathcal{L}^{(\mathrm{gf})} = \frac{1}{2g^2} \operatorname{Tr} \left[\left(\nabla_i A^i + \tilde{D}_0 A^0 - i[\phi, \delta\phi] \right)^2 + \bar{c} (-\tilde{D}_0^2 - \Delta^{(s)} + [\phi, .]^2) c \right]$$

With µ_p ≠ 0, A₀ and scalar fluctuations mix; Fermions also mix.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Background field gauge on S³

$$\mathcal{L}^{(\mathrm{gf})} = \frac{1}{2g^2} \operatorname{Tr} \left[\left(\nabla_i A^i + \tilde{D}_0 A^0 - i[\phi, \delta\phi] \right)^2 + \bar{c} (-\tilde{D}_0^2 - \Delta^{(s)} + [\phi, .]^2) c \right]$$

- With µ_p ≠ 0, A₀ and scalar fluctuations mix; Fermions also mix.
- Fluctuation determinants yield Casimir sums at T = 0:

$$V_{1-\mathrm{loop}} \sim \sum_{\mathrm{species}} \sum_{ij=1}^{N} \sum_{\ell} \mathrm{deg}(\ell) \ arepsilon(\ell, |\phi_i - \phi_j|)$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Background field gauge on S³

$$\mathcal{L}^{(\mathrm{gf})} = \frac{1}{2g^2} \operatorname{Tr} \left[\left(\nabla_i A^i + \tilde{D}_0 A^0 - i[\phi, \delta\phi] \right)^2 + \bar{c}(-\tilde{D}_0^2 - \Delta^{(s)} + [\phi, .]^2)c \right]$$

- With µ_p ≠ 0, A₀ and scalar fluctuations mix; Fermions also mix.
- Fluctuation determinants yield Casimir sums at T = 0:

$$V_{1-\text{loop}} \sim \sum_{\text{species}} \sum_{ij=1}^{N} \sum_{\ell} \deg(\ell) \varepsilon(\ell, |\phi_i - \phi_j|)$$

► With critical μ_p fermions can have integer moding on S^3 : $\varepsilon_F = \sqrt{(\ell + \frac{1}{2})^2 + \phi_{ij}^2} \rightarrow \sqrt{(\ell + \frac{1}{2} \pm \frac{\mu_1}{2})^2 + \phi_{ij}^2} \pm \frac{\mu_2}{2} \pm \frac{\mu_3}{2}.$

- Perform Casimir sums using energy cutoffs on S^3
- Regularized Casimir sums at T = 0 and with critical μ_p :

(1日) (日) (日)

≡ • ク へ (~

- Perform Casimir sums using energy cutoffs on S^3
- Regularized Casimir sums at T = 0 and with critical μ_p :

$$\begin{split} V_{1}^{\mathrm{b}} = & (2\pi^{2}R^{3})^{-1}\sum_{ij=1}^{N}\Lambda^{4}R^{3} - \frac{1}{2}R\Lambda^{2} - R^{3}\phi_{ij}^{2}\Lambda^{2} + \frac{1}{12R} - \frac{1}{4}\phi_{ij}^{2}R \\ & + \frac{1}{2}\phi_{ij}^{4}R^{3}\log\left(\frac{|\phi_{ij}|e^{1/4}}{2\Lambda}\right) + 8\int_{R\phi_{ij}}^{\infty}\frac{x^{2}\sqrt{x^{2}R^{-2}-\phi_{ij}^{2}}}{e^{2\pi x} - 1}. \end{split}$$

(1日) (日) (日)

≡ • ク へ (~

- Perform Casimir sums using energy cutoffs on S^3
- Regularized Casimir sums at T = 0 and with critical μ_p :

$$\begin{split} V_{1}^{\mathrm{b}} = & (2\pi^{2}R^{3})^{-1}\sum_{ij=1}^{N}\Lambda^{4}R^{3} - \frac{1}{2}R\Lambda^{2} - R^{3}\phi_{ij}^{2}\Lambda^{2} + \frac{1}{12R} - \frac{1}{4}\phi_{ij}^{2}R \\ & + \frac{1}{2}\phi_{ij}^{4}R^{3}\log\left(\frac{|\phi_{ij}|e^{1/4}}{2\Lambda}\right) + 8\int_{R\phi_{ij}}^{\infty}\frac{x^{2}\sqrt{x^{2}R^{-2}-\phi_{ij}^{2}}}{e^{2\pi\varkappa}-1}. \end{split}$$

$$V_{1}^{f} = (2\pi^{2}R^{3})^{-1} \sum_{ij=1}^{N} -\Lambda^{4}R^{3} + \frac{1}{2}R\Lambda^{2} + R^{3}\phi_{ij}^{2}\Lambda^{2} + \frac{5}{48R}$$
$$+ \frac{1}{4}\phi_{ij}^{2}R - \frac{1}{2}\phi_{ij}^{4}R^{3}\log\left(\frac{|\phi_{ij}|e^{1/4}}{2\Lambda}\right) - 8\int_{R\phi_{ij}}^{\infty} \frac{x^{2}\sqrt{x^{2}R^{-2}-\phi_{ij}^{2}}}{e^{2\pi x}-1}$$

▲圖▶ ★ 国▶ ★ 国▶

$$V_1^{\rm b} + V_1^{\rm f} = \frac{N^2}{\text{Vol}(S^3)} \frac{3}{16R}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

$$V_1^{\rm b} + V_1^{\rm f} = \frac{N^2}{\text{Vol}(S^3)} \frac{3}{16R}$$

▲圖▶ ▲屋▶ ▲屋▶

$$V_1^{\rm b} + V_1^{\rm f} = \frac{N^2}{\text{Vol}(S^3)} \frac{3}{16R}$$

► For
$$\mu_1 = \mu_c$$
; $\mu_2 = \mu_3 = 0$, the new Hamiltonian $\Delta - J_1$ vanishes on all $\frac{1}{2}$ BPS states.

イロト イヨト イヨト イヨト

$$V_1^{\rm b} + V_1^{\rm f} = \frac{N^2}{\text{Vol}(S^3)} \frac{3}{16R}$$

► For
$$\mu_1 = \mu_c$$
; $\mu_2 = \mu_3 = 0$, the new Hamiltonian $\Delta - J_1$ vanishes on all $\frac{1}{2}$ BPS states.

 \blacktriangleright These parametrize the ground states since $\{Q^{\dagger},Q\}\sim\Delta-J_{1}$

▲圖▶ ▲屋▶ ▲屋▶

$$V_1^{\rm b} + V_1^{\rm f} = \frac{N^2}{\text{Vol}(S^3)} \frac{3}{16R}$$

► For
$$\mu_1 = \mu_c$$
; $\mu_2 = \mu_3 = 0$, the new Hamiltonian $\Delta - J_1$ vanishes on all $\frac{1}{2}$ BPS states.

- \blacktriangleright These parametrize the ground states since $\{Q^{\dagger},Q\}\sim\Delta-J_{1}$
- At a generic point on this moduli space, there is a charged condensate

$$V_1^{\rm b} + V_1^{\rm f} = \frac{N^2}{\text{Vol}(S^3)} \frac{3}{16R}$$

For
$$\mu_1 = \mu_c$$
; $\mu_2 = \mu_3 = 0$, the new Hamiltonian $\Delta - J_1$ vanishes on all $\frac{1}{2}$ BPS states.

- ▶ These parametrize the ground states since $\{Q^{\dagger}, Q\} \sim \Delta J_1$
- At a generic point on this moduli space, there is a charged condensate
- For two and three critical μ_p , the ground states are the $\frac{1}{4}$ and $\frac{1}{8}$ BPS states.

|TR| << 1 and $|\mu_1 - \mu_c| \lesssim \mathcal{O}(\lambda)$

- At $\mu_1 = \mu_c$, switch on a small non-zero T ($TR \ll 1$)
- Joint potential for α_i and scalars:

$$V_{1} = \sum_{ij=1}^{N} \left(\frac{1}{\operatorname{Vol}(S^{3})} \left[\frac{3}{16R} - 8Te^{-\frac{1}{TR}\sqrt{1+R^{2}\phi_{ij}^{2}}} \times \cos\left(\frac{\alpha_{i}-\alpha_{j}}{T}\right) + \mathcal{O}(e^{-2/TR}) \right] \right).$$

| ◆ □ ▶ ◆ 三 ▶ → 三 = → ○ < ○

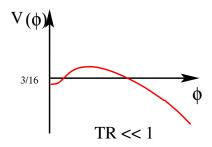
|TR| << 1 and $|\mu_1 - \mu_c| \lesssim \mathcal{O}(\lambda)$

- At $\mu_1 = \mu_c$, switch on a small non-zero T ($TR \ll 1$)
- Joint potential for α_i and scalars:

$$V_{1} = \sum_{ij=1}^{N} \left(\frac{1}{\operatorname{Vol}(S^{3})} \left[\frac{3}{16R} - 8 T e^{-\frac{1}{TR} \sqrt{1 + R^{2} \phi_{ij}^{2}}} \times \cos\left(\frac{\alpha_{i} - \alpha_{j}}{T}\right) + \mathcal{O}(e^{-2/TR}) \right] \right).$$

- All $\alpha_i = 0$ deconfined phase: $u_1 = 1$.
- 1-loop term vanishes at large φ_{ij}, and has positive curvature near φ_i = 0.
- For some values of µ ≥ µ_c, V₁ can overcome tree level instability near φ_i = 0.

소리가 소문가 소문가 소문가



A D > A D >

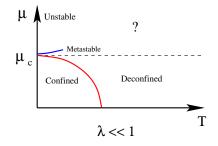
999

æ

< ≣⇒



- For $TR \ll 1$ metastable state with $(\mu_1 \mu_c) \leq \frac{1}{R} \lambda \exp(\frac{-1}{TR})$
- Thermal activation and tunnelling rates $\propto \exp(-Ne^{-rac{1}{TR}})$



 \bullet Width of metastable band $~\sim \lambda ~e^{\frac{-1}{TR}}$

・ロ・ ・ 日・ ・ 日・ ・ 日・

うみで

æ

(Yamada, Yaffe)

▲御▶ ▲理▶ ▲理▶

æ

(Yamada, Yaffe)

- At high temperatures $\frac{1}{\sqrt{\lambda}} \gtrsim TR \gg 1$, theory is deconfined $(\alpha_i = 0)$.
- Scalars have a thermal mass λT^2 near the origin $\phi_i = 0$.
- At large $|\phi_{ij}|$, quantum corrections vanish, effective potential has classical behaviour.

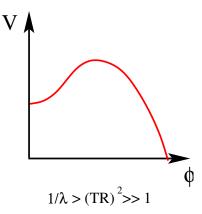
・回 ・ ・ ヨ ・ ・ ヨ ・

(Yamada, Yaffe)

- At high temperatures $\frac{1}{\sqrt{\lambda}} \gtrsim TR \gg 1$, theory is deconfined $(\alpha_i = 0)$.
- Scalars have a thermal mass λT^2 near the origin $\phi_i = 0$.
- ► At large |φ_{ij}|, quantum corrections vanish, effective potential has classical behaviour.
- ▶ Thus for $\mu_c < \mu < \sqrt{\lambda T^2 + \mu_c^2}$, there is a metastable phase near the origin, with decay rate $\sim e^{-N/\lambda^2}$.

- 4 回 5 - 4 日 5 - - - 日

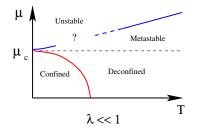
High T metastable potential



@ ▶ ▲ 臣

< ∃⇒

Weak-strong comparison



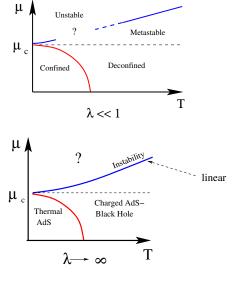
₫ ▶

990

æ

< ≣⇒

Weak-strong comparison



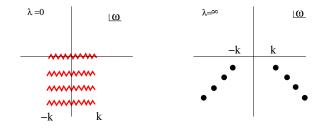
(Cvetic,Gubser;Behrndt,Cvetic,Sabra;Yamada)

- Unitary matrix model for on S³, truncted to the 'b' term, as a model for extracting small black holes; blackhole -string phase transition. (Alvarez-Gaume, Gomez, Liu, Wadia; Basu, Wadia; Dutta, Gopakumar)
- An effective potential for the Polyakov loop from gravity. (Headrick)
- Eigenvalue distributions for the Polyakov-Maldacena both at weak and strong coupling. (Hartnoll,SPK)

・ 同 ト ・ ヨ ト ・ ヨ ト

• Real time correlators at high temperature, $TR \rightarrow \infty$ - Poles vs. Cuts.

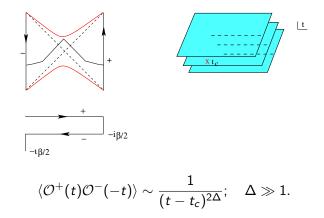
E.g. $\langle \mathrm{Tr} F^2(t, \vec{x}) \mathrm{Tr} F^2(0) \rangle_{\omega, \vec{k}}^{\mathrm{ret}}$



(Hartnoll,SPK)

• More generally, branch cuts from graphs at $\lambda \ll 1$ should turn into poles corresponding to BH quasinormal frequencies at $\lambda \to \infty$.

• Real time correlators as probes of black hole singularities. (Fidkowski,Hubeny,Kleban,Shenker)



• Exponential falloff of correlator at large imaginary frequency. (Festuccia,Liu)

• Remnants of such signals in weakly coupled field theory?