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Motivations
Understanding heavy ion collisions

Not weakly coupled system

Classical-statistical description at earliest times

At                      all diagrams become large

Cannot describe approach 
to thermal equilibrium

High occupation numbers prevent perturbative 
treatment even for weak couplings

First principle calculations of QFT needed

On the lattice: mainly equilibrium methods so far, static quantities 
                       with few exceptions

n=O 1/ 

High occupation numbers



Non equilibrium + Quantum fields=?

 

Direct Method:  Schödinger equation for the wave function: [A
a x ]

Impossible!

Late times approaching thermal equilibrium: 

Classical approximation breaks down

quantum effects become important

e i SMaverages with complex weight is needed!

Z [J ]=∫D e
i∫C

L ,J dtFormulation with non-equilibrium generator function

Importance sampling doesn't work



∫O  x e x p−S  x d x

∫e x p−S x d x
=〈O 〉Weighted, normalized  average:

Stochastic process for  x
d x
d 

=−
∂S
∂ x



〈 ' 〉=2 − ' 〈〉=0Gaussian noise

Averages are calculated along the trajectories:

〈O 〉=
1
T
∫

0

T

O  x d 

Fokker-Planck equation for the probability distribution of P(x):

∂P
∂

= ∂
∂ x


∂P
∂ x

P
∂ S
∂ x

=−H FP P
Real action         positive eigenvalues

for real action the Langevin method is 
convergent

Stochastic Quantization Parisi, Wu (1981)



Real-time evolution
〈O t 〉=〈 i∣U 0 , t O U t , 0 ∣i 〉

Nonequilibrium generating functional Z [J ]=∫D e
i∫C

L ,J dt

Schwinger-Keldysh contour

Real time= Langevin method with complex action!

The field is complexified

real scalar            complex scalar

link variables: SU(2)              SL(2,C)

Runaway trajectories present (supressed by small Langevin time-step)

No general proof of convergence

d 
d 

= i
∂S
∂



compact          non-compact

Is it still the same theory?

5D classical langevin system                        4D quantum averages 

Yes:  real (SU(2)) averages
        Schwinger-Dyson equations
                fulfilled

Klauder '83, Parisi '83, Hueffel, Rumpf '83,
Okano, Schuelke, Zeng '91, ...
applied to nonequilibrium: Berges, Stamatescu '05, ...



Scalar Theory

S=∑
t  t 1−t 

2

2 t

−t

V t V t 1 

2 
Complex countour given by:    C t , t=C t 1−C t , C0=0 , C N t

=−i 

 

d t

d 
=
∂S
∂t

t 

action discretised 
on the contour

Langevin updating 
 in “5th” coordinate

Interacting scalar 
oscillator

V =
1
2

m 2


2



2 4


4

Thermal equilibrium periodic boundary conditions

0=N t

discretised: t =t  i 
∂S
∂t

t 

〈t 〉=0

〈t t '  ' 〉=2 − ' t t '



Type of contours
Eigenvalues of the free action
(positive Imaginary part = convergence)

downwards sloped countour: regulator



Real-time two point function

=24 ,=1

Asymmetric
contour:

0.01

0.99

Im t

Re t

Reproduces the Schrodinger equation result.

Thermal equilibrium: 
     periodic boundary cond.

     Imaginary extent 
        gives =

1
T



Two point function in thermal equilibrium 
with longer contour

=6,=8



Including            in the path integral

Non-equilibrium time evolution

Z  J, =T r T C e
i∫C

J x  x  =∫ d 1 d 2 1 ,2 ∫
1

2

D 'e
i∫C

L  x  J x  x 

Generating functional with initial density matrix:

Exponentializing the density matrix

1 ,2

〈 A 〉=∫Du Dl e x p iS u , l  A u 

S[u ,l ]=S [u ]−S [l ]−
i

a t

S0 u ,l Langevin simulation with new “action”:

S0 u ,l = i ̇u−l −


2
1

8 2 u−
2l−

2 


i 
2 

u−
2
−l−

2 
2−1

4 2
u− l−

Most general gaussian density 
matrix with 5 parameters:



Non-equilibrium time evolution

Bigger real time extent           worse agreement

Contour with 5% slope



SU(2) pure gauge 
theory

S=−0∑
x , i

1
2 T r 1

T r U x , 0 iT r U x , 0 i
−1
−1

s ∑
x , i j

1
2 T r 1

T r U x , i jT r U x , i j
−1 −1

0=
2 T r 1 a s

g 0
2 a t

s=
2 T r 1 a t

g 0
2 a s

Updating  the link variables:

U ' x ,=e x p  i a  i D x a S [U ]x  a U x 

D a f U =  ∂∂ f e i aU 
=0

〈x  a 〉=0

〈x  ay b 〉=2 x ya b

Left derivative:

U=e x p  i  n 
2 =co s

2 1 i s i n
2  n 

U=a 1 i b i i a2
b i b i=1

complexifed link variables

SU(2)             SL(2,C)

become complex variablesa , b icompact              non-compact



Schwinger Dyson equations for lattice gauge theory

Langevin-time equilibrium reached:

〈U x a d 〉=〈U x a 〉 ⇒ 〈Dx a S 〉=0 First Schwinger Dyson equation

〈U x ,d 〉=〈U x ,〉 ⇒Schwinger Dyson equation for plaquette average

Plaquette average is Langevin time independent 

can also be derived using 
the properties of Haar 
integration in the original 
integration over group 
space

This method gives 
solutions of SD equations (all of them!) 

(loophole: one might get unphysical solution)



Numerical check of the Schwinger-Dyson equation

SU(2) field theory

SD equations are fulfilled in both regions



SU(2) gauge theory without gaugefixing

without gauge fixing, non-physical fixpoint is always present

How to stabilize the first (physical) result?



U(1) One  plaquette model

S0= i co s 〈 f 〉=
1
Z
∫
0

2 

d e i cos f 

Failure of the naïve method

〈e i 
〉=i 0 . 5 7 5

−0 . 0 0 9±0 . 0 0 6 i 0 . 0 0 0 0 6±0 . 0 0 0 0 7

d 
d 

=−i s i nLangevin equation:

We are interested 
        in averages:

stochastic result:

Distribution of     on the complex plane

exact result:

symmetric distribution
result compatible with zero



d
d 

=−i  sin i pLangevin equation:

generalization: Sp= i cos i p

Stochastic reweighting
〈O 〉p=

1
Zp
∫
0

2

deS p O 

p=expS0−S p

〈O 〉0=

∫
0

2

de i Spp O p

∫
0

2

de i Spp

=
〈p O〉p

〈p〉p

reweighting factor:

〈e i〉0=
〈1〉p=1

〈e−i
〉p=1

=−0.02±0.02 i 0.574±0.001

〈e i
〉p=0=i 0.575Exact result: with reweighting it works!

Reweigting formula

averages with       calculated 
from averages with 

S0

S p



Correct results obtained for                     in the region: ≤p

Using the generalized action Sp= i cos i p

p=1

〈expi〉



shows fixedpoint (zero drift term) 
structure on the complex     plane

Flowchart:  normalized drift vectors 
on the complex plane

=0.5 , p=1 =1.5 , p=1

Attractive fixedpoint present

smaller distribution
correct results 

No attractive fixedpoint present
    (only indifferent)
larger distribution
incorrect results 



One-plaquette model  in classical limit

S=i  cos i p

Classical limit:  =p∞

fluctuations supressed

=p=1 =p=10 =p=100

classical averages in the limit

Distributions of      on the complex plane

d
d 

=−i  sin i pLangevin equation:

=p∞



Gaugefixing in SU(2) one plaquette model

SU(2) one plaquette model: S= i T r U U∈SU 2 

U=exp  i  n 2 =cos
2 1i sin

2  n parametrized with Pauli matrices

Langevin updating U '=e x p  i a  i D a S [U ]a  U

“gauge” symmetry: UW U W −1 complexified theory: U , W ∈SL2 ,ℂ

After each Langevin timestep: fix gauge condition

U=a 1 i bi i a2
bi bi=1

U=a 1 i 1−a2
3 b i=0 ,0 ,1−a2



〈 f U 〉=
1
Z
∫

0

2 

d ∫d s i n2 

2
e

i cos 
2 f U  , n 

exact averages by 
  numerical integration:



SU(2) one-plaquette model 
Distributions of Tr(U) on the complex plane

Without gaugefixing With gaugefixing

〈T r U 〉=i 0 . 2 6 1 1

−0 . 0 2±0 . 0 2 i −0 . 0 1±0 . 0 2 −0 . 0 0 4±0 . 0 0 6 i 0 . 2 6 0±0 . 0 0 1

Exact result from integration:

From simulation:

With gauge fixing, all averages are correctly reproduced



SU(2) field theory

Without gauge fixing

non physical fixed point

Gauge fixing 
small lattice coupling            

Correct result stabilizes

large

I m T r U 2 measures size 
of distribution

However: a~exp −b0/ g2 

With the coupling g=0.5

1 /m pion~10
15alat



Conclusions

Without optimization: short real time simulation of scalar oscillator 
   in equilibrium and non-equilibrium  
   gives correct results (Schrodinger)

Langevin method: Schwinger Dyson equation solver

Optimization methods to reduce fluctuations:  
            reweighting
            gaugefixing
            using small lattice-coupling

with optimization:
    Method gives physical solution for SU(2) lattice gauge theory  



Scalar Theory

S=∑
t  t 1−t 

2

2 t

−t

V t V t 1 

2 
Complex countour given by:    C t , t=C t 1−C t , C0=0 , C N t

=−i 

Free theory: V =m 2


2

2

The action can be diagonalized: S=
1
2
∑

a

c a


a


a , 
a
=∑t

t
a
t

d a

d 
=i c aaa

Langevin equation diagonalized coords.: 
convergent if I m c a

0

d t

d 
=
∂S
∂t

t 

action discretised 
on the contour

Langevin updating 
 in “5th” coordinate



Numerical check of the Schwinger-Dyson equation

∑
G0,t 
−1 〈t '〉−tt '=−i 〈tttt '〉



Non-Physical fixpoints

long countour       non-time translation invariant solution



Correct results obtained for
≤

=

classical fixed point (zero drift term)
 on the real axis

= integer

action can be uniqly written as 
S U  U∈U 1 

Using the generalized 
action S

With reweighting correct 
results for S0

=1

= S for

Correct results for 〈 f U 〉 U∈U 1 


