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Heavy-ion collision timescales and “epochs” @ LHC
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Motivation – Isotropization/Thermalization

• Need to understand mechanisms and time scales necessary for
the isotropization and equilibration of a QGP at weak coupling.

• Consider pure glue. Processes include:

◦ 2 ↔ 2 elastic scattering (super slow)

◦ Inelastic processes, e.g. 2 → 3 and
3 → 2 processes

◦ Effect of soft background fields :
expansion is in g A not g; CGC A ∼ 1/g

• Equilibrium: background fields screen the interaction (Debye)

• Non-equilibrium: background fields can have non-trivial dynamics
and can have a large effect on the particles’ motion
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Improving upon Bottom-Up Thermalization
• Previous leading order perturbative results included 2 ↔ 2, 2 → 3,

and 3 → 2 processes [R. Baier, A. Mueller, D. Son, and D. Schiff, hep-ph/0009237]

• “Bottom-up” thermalization : soft modes isotropize and equilibrate

first, then the hard modes → τtherm ∼ α
−13/5
s Q−1

s

• At RHIC Qs ∼ 1.5 - 2 GeV and αs ∼ 0.3 → τtherm ∼ 2 - 3 fm/c

• Bottom-up calculation ignored effect of local anisotropy in
momentum space on soft physics (field dynamics)

In anisotropic systems plasma instabilities are
present which will accelerate isotropization and
thermalization.
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Momentum Space Anisotropy Time Dependence
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- Analytic Results from Linearized
Transport Theory -
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Gluon Polarization – The Chromo-Weibel Instability

The high-energy medium gluon polarization tensor can be obtained by
linearizing collisionless transport theory : f(p, x) → f(p) + δf(p, x)

[v · Dx, δf(p, x)] + gvµFµν ∂(p)
ν f(p) = 0

DµFµν = Jν = g

∫

p
vνδf(p, x)

or diagrammatically using “hard-loop” perturbation theory

= +Π
~ g ~ g 

~ 

~ 

hardp
hardp

hardp

hardp

Πij
ab(ω,k) = −g2δab

∫

p

vi ∂f(p)

∂pl

(

δjl − vjkl

ω − v · k + iǫ

)

S. Mrówczyński (1994); P. Romatschke and MS, hep-ph/0304092
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The nature of the anisotropy

For simplicity assume that the anisotropic distribution function can be
obtained from an arbitrary isotropic distribution function by a change of
its argument.

f(p2) → f(p2 + ξ(p · n)2)

The polarization tensor can then be written as

Πij
ab(ω, k) = m2

D δab

∫

dΩ

4π
vi vl + ξ(v · n)nl

(1 + ξ(v · n)2)2

(

δjl − vjkl

ω − v · k + iǫ

)

where mD is the isotropic Debye mass

m2
D = − g2

2π2

∫ ∞

0
dp p2 df(p2)

dp
∼ g2p2

hard

n

k

^

θ

P. Romatschke and MS, hep-ph/0304092.
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Anisotropic Gluonic Collective Modes ( ξ > 0)

ω/kIm

ω/kRe

Unstable Modes

Damped Modes

Stable Modes

-1 +1

Magnetic

"Electric"
{

x  :  isotropic

x  :  oblate

Unstable modes

are generic if

system is not

isotropic

Michael Strickland p. 9/29



Unstable Mode Spectrum – Oblate Distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 k/m
D

0

0.02

0.04

0.06

0.08

0.1

Γ
α

/m
D

Γ
-
/m

D

k*

Γ*
Magnetic Instability

'Electric' Instability

 /
m

D
(I

n
st

a
b

ili
ty

 G
ro

w
th

 R
a

te
s)

Instability growth rates as a function of momentum for 〈p2
T 〉/〈p2

L〉 ≃ 10
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Using αs = 0.3 and
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P. Romatschke and MS, hep-ph/0304092
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Time scales

• This picture strictly only holds at leading order in αs = g2/4π.

• Instability time scale: tinstability ∼ m−1
D,iso ∼ (

√
αsQs)

−1

• Collisional time scale: thard collisions ∼
(

α2
sQs

)−1

αs tcollisions/tinstability

0.01 1000
0.1 30
0.3 6

Can include collisions in the Boltzmann-Vlasov equation and it has
been shown that for ξ>∼ 1 instabilities persist even for αs = 0.3.
[ B. Schenke, MS, C. Greiner, and M. Thoma, hep-ph/0603029 ]
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Current Filamentation in Abelian (QED) Plasmas

x

v

v

F

F

v

v

F

F

xj

yB

y

z

z

Induced Current

Magnetic Fluctuation

Oblate

Distribution

+
+

E. Weibel, PRL 2, 83 (1959)

Michael Strickland p. 12/29



Anisotropic Abelian Plasma – Weibel Instability
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Anisotropic QCD Hard-loop Effective Action

Require gauge invariance
↓

Effective action for soft fields

Ssoft = SQCD + SHL
-2

-1
0

1
2

Φ1
-2

-1

0

1

2

Φ2-2

-1

0

1

V

SHL =
g2

2

∫

x,p

[

f(p) Fµν(x)
pνpρ

(p · D)2
F µ

ρ (x) + i
CF

2
f̃(p)Ψ̄(x)

p · γ
p · DΨ(x)

]

St. Mrówczyński, A. Rebhan, and MS, 2004
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- Real-Time Lattice Simulations -
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3+1 Real-Time Lattice Simulation (Pure Glue)

Numerically solve the equations of motion resulting from the hard-loop
effective action on a space + velocity lattice in temporal gauge.

jµ[A] = −g2

∫

p

1

2|p| pµ ∂f(p)

∂pβ
W β(x;v)

with
[p · D(A)]Wβ(x;v) = Fβγ(A)pγ

This has to be solved with the Yang-Mills equation

Dµ(A)Fµν = jν

where ν = 0 is the Gauss law constraint.

Rebhan, Romatschke, and MS, 2005; Arnold, Moore, and Yaffe, 2005
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3D SU(2) Hard-Loop Results
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Late growth is linear

and approx isotropic!

A. Rebhan, P. Romatschke, and MS, hep-ph/0505261; P. Arnold, G. Moore, and L. Yaffe, hep-ph/0505212;
D. Bodeker and K. Rummukainen, arXiv:0705.0180v1
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Kolmogorov cascade → Turbulent Fields?

Non-Perturbative

Soft Occupation

Number: f ~ 1/g2

Increasing simulation time

~ 1/k 2
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- Come to Kari Rummukainen’s
discussion for more details and

systematics -
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3D Colored-Particle-in-Cell Simulations (CPIC)

Hard-loop approximation strictly only applies when we
ignore the back-reaction of the particles on their self-
generated fields. How can we go beyond hard-loops?

Include back-reaction by solving collision-
less transport equation without linearization

pµ[∂µ−gqaF a
µν∂ν

p−gfabcA
b
µqc∂qa ]f(t,x,p, q) = 0

Coupled to the Yang-Mills equation for the
soft gluon fields

DµFµν = Jν = g

∫

d3p

(2π)3
dq q vνf(t,x,p, q)

t=1

t=2

A. Dumitru, Y. Nara, and MS, hep-ph/0604149
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CPIC Results – Ultraviolet Avalanche
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A. Dumitru, Y. Nara, and MS, hep-ph/0604149
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Instabilities in classical YM – The unstable glasma

Instabilities also seen in expanding classical Yang-Mills solutions
which include rapidity fluctuations.
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P. Romatschke and R. Venugopalan, hep-ph/0605045

Growth ∼ e
√

Qsτ

agrees with HL cal-
culation!
[P. Arnold, J. Lenaghan, and G.

Moore, hep-ph/0307325]

[P. Romatschke and A. Rebhan,

hep-ph/0605064]

Initial spectrum of
rapidity fluctuations
from CGC camp
[K. Fukushima, F. Gelis, and L.

McLerran, hep-ph/0610416]
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Instabilities in classical YM – Non-expanding

Recently there have also been measurements of the instability growth
rate, induced spectrum, etc within classical SU(2) Yang-Mills by
Berges, Scheffler, and Sexty (arXiv:0712.3514v2).

Berges, Scheffler, and Sexty (arXiv:0712.3514v2)

3d+3v Hard-Loop Result - Strickland

Michael Strickland p. 23/29



- Including expansion + field-particle
coupling -
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Instabilities induced by expansion - Free Streaming Bkg

Assuming a color neutral background distribution function f0(p,x, t)
which satisfies

v · ∂ f0(p,x, t) = 0, vµ = pµ/p0,

the gauge covariant Boltzmann-Vlasov equations for colored
perturbations δfa of an approximately collisionless plasma have the
form

v · D δfa(p,x, t) = gvµFµν
a ∂(p)

ν f0(p,x, t),

which have to be solved self-consistently with the non-Abelian Maxwell
equations

DµFµν
a = jν

a = g

∫

d3p

(2π)3
pµ

2p0
δfa(p,x, t).

P. Romatschke and A. Rebhan, hep-ph/0605064; A. Rebhan, MS, and M. Attems, forthcoming.
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Instabilities induced by expansion - Free Streaming Bkg

Go to comoving coordinates x̃α = (τ, x1, x2, η) with metric
ds2 = dτ2 − dx2

⊥ − τ2dη2 and Ṽ α =
(

cosh(y − η), cosφ, sinφ, 1

τ sinh(y − η)
)

1

τ
D̃α(τF̃αβ) = j̃β

Ṽ · D̃W =

(

Ṽ iF̃iτ +
τ2

τ2
iso

Ṽ ηF̃ητ

)

Ṽ τ + Ṽ iṼ ηF̃iη

(

1 − τ2

τ2
iso

)

.

j̃α = −m2
D

1

2

∫ 2π

0

dφ

2π

∫ ∞

−∞

dy Ṽ α

(

1 +
τ2

τ2
iso

sinh2(y − η)

)−2

W(x̃;φ, y)

P. Romatschke and A. Rebhan, hep-ph/0605064; A. Rebhan, MS, and M. Attems, forthcoming.
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1s×3v Numerical Results - Energies and Pressures

Perform simulation assuming that induced fields only depend on
rapidity and are constant in the transverse directions → 1s × 3v
simulations. Captures the physics of the most unstable modes and
provides a reference point for future 3s × 3v simulations.
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A. Rebhan, MS, and M. Attems, forthcoming.
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1s×3v Numerical Results - Spectra

Spectra from (left) an abelian run and (right) a non-abelian run
showing Fourier decomposition of modes at different times.

Non-abelian run shows “quasi-thermal” spectra at intermediate times;
qualitatively different than abelian case.

A. Rebhan, MS, and M. Attems, forthcoming.
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Conclusions and Outlook
• Anisotropic plasmas are qualitatively different than isotropic ones.
• Hard-Loop : Fields show isotropic linear growth and UV cascade.
• CPIC : Rapid isotropic field growth followed by UV “avalanche”.
• Classical YM : rapidity fluctuations → the “glasma” is unstable to

becoming a QGP! Instabilities also seen in a static box.
• The same instability exists in weakly-coupled supersymmetric

gauge theories; just need to rescale the Debye mass. QUESTION:
Do these instabilities also exist in the strong coupling limit????

• Need to pin down the possible phenomenological effect of plasma
instabilities: Systematic calculations of pT -pL anisotropy
observables such as jet effects and E&M signatures.

• CPICv2 : code now includes stochastic collisions between
particles. Can now be used to measure transport properties, jet
energy deposition, medium response to energy deposition, etc.
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