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Heavy-ion collision timescales and “epochs” @ LHC
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Determining plasma initial conditions
• The fact that hydrodynamic modeling of RHIC collisions seems to

describe the elliptic flow, v2, for pT < 2 GeV has been taken as
evidence for early isotropization (and possibly thermalization) of
the QGP.

• Hydro results for v2 depend on initial conditions but also details of
the late-time modeling of the plasma lifetime: hadronization
prescription (Cooper-Frye?), viscous hadronic phase, nuclear
resonance “feed- downs”, radial flow, etc.

• It would be better to have observables which were primarily
sensitive to the first 1-2 fm/c (and not dependent on fully 3d
viscous hydro simulations + . . . ).

The catch-22 of thermalization: If complete thermalizatio n is achieved (and main-
tained) then subsequent emissions are independent of the in itial condition and
how precisely thermalization was achieved. So . . .
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Hydro Results 1
http://online.itp.ucsb.edu/online/partcosmo08/romatschke/oh/60.html
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Hydro Results 2
http://online.itp.ucsb.edu/online/partcosmo08/romatschke/oh/60.html

Preliminary
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- Electromagnetic Observables -
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E&M Probes to determine plasma isotropization time

• Can we experimentally determine when/if the plasma becomes
locally isotropic in momentum-space?

• Need observables which provide complementary ways of probing
early-time dynamics.

• Ideal candidates for this are E&M observables, eg photon and
dilepton emission.

• Dependence of photon rate on anisotropy has been evaluated to
LO (Schenke and MS, hep-ph/0611332); rates folded over model
evolution are forthcoming.

• Dileptons offer a better opportunity since one can study production
as a function of invariant pair mass (photon virtuality) and
transverse momentum. In addition, leading order Drell-Yan has
support only at pT = 0 so you have to go to NLO at finite pT .
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Dileptons from an Anisotropic Plasma

• The dilepton rate d4R/d4p depends on plasma
anisotropy and the angle of the dilepton pair with
respect to the beam axis.   

q̄

q l+

l -

• To leading order it can be obtained using anisotropic momentum
space distributions of the form

f q,q̄(p,x) = f q,q̄
iso

(

p2
T + (1 + ξ)p2

L

)

• ξ = 0 gives isotropic plasma and ξ = 10 corresponds to a squish
by a factor of approximately three along the longitudinal
momentum direction.

〈p2
T 〉

2〈p2
L〉

∼ 1 + ξ

M. Guerrero and MS, arXiv:0709.3576.
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Rate variation with ξ

ξ=10g=2

B. Schenke and MS, hep-ph/0611332
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Momentum Space Anisotropy Time Dependence
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Model parameters
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Dileptons from an Anisotropic Plasma

For a free streaming plasma

ξ(τ) =

(

τ

τ0

)2

− 1

lim
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(τ0
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)

“T”(τ) = T0

For an isotropic plasma

ξ(τ) = 0

E(τ) = E0

(τ0

τ

)4/3

T (τ) = T0

(τ0

τ

)1/3

Can construct models which interpolate between free streaming and
isotropic hydrodynamic expansion, eg:

λ(τ, τhydro, γ) =
1

2
tanh

(

γ(a − ahydro)
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M. Guerrero and MS, arXiv:0709.3576.
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Space-time evolution incorporating anisotropies (LHC)
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• τhydro/τ0 → 1 : instant
isotropization/thermalization.

• τhydro/τ0 → ∞ : never
isotropizes or thermalizes;
free-streaming.

M. Guerrero and MS, arXiv:0709.3576.
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Model - Smaller Gamma

Can take larger transition widths, say γ = 0.05.
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Results - Dileptons vs M with backgrounds

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV
Cuts: pT > 8 GeV
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M. Guerrero and MS, arXiv:0709.3576.
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Results - Dileptons vs PT with backgrounds

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV
Cuts: 0.5 < M < 1 GeV
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Results - Model variation

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV
Cuts: 0.5 < M < 1 GeV

Model Variation: 0.05 < γ < 10

M. Guerrero and MS, arXiv:0709.3576.Michael Strickland p. 17/23



Conclusions

• We need more observables which are sensitive to the initial 1-2
fm/c of the plasma lifetime.

• We now have simple models which allow us to calculate the effect
of anisotropies on experimental observables, eg jet and E&M
signatures. More to come . . .

• At LHC energies, our dilepton results show a window from pT ∼ 3 -
7 GeV where is it possible to determine much-needed information
about the initial 1 fm/c of the QGP’s lifetime.

• TODO: Calculation of NLO rate underway; inclusion of possible
chemical non-equilibrium (effect will remain but overall rates will
be modified); modification of jet-medium production due to
early-time anisotropies; . . .
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- Backup Slides -
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Results - Time scales

T0 = 845 MeV, τ0 = 0.088 fm/c, Tc = 160 MeV
Cuts: 0.5 < M < 1 GeV

M. Guerrero and MS, arXiv:0709.3576.
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Cause for despair

Naive application of resummed finite-temperature perturbation theory
to thermodynamics fails to converge at any reasonable temperature so
should we abandon it?
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Cause for (limited) hope

4d Lattice "Pure Glue" (Boyd et al)

   Hard Thermal Loop
   Perturbation Theory
   (Andersen, Braaten, 
   Petitgirard, MS)

NLO Approximately 

Self-Consistent

HTL Phi-Derivable

(Blaizot, Iancu, Rebhan)
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What about strong-coupling AdS/CFT?

Strong-coupling calculations in N = 4 SUSY theories show that the
high-energy photon rate is insensitive to whether you take the weak or
strong coupling limits. [Caron-Huot, Kovtun, Moore, Starinets, Yaffe, arXiv:hep- th/0607237]
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