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Basic setup
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Consider an extension of SM with right-handed neutrinos:

L = LSM +
1

2
N̄ [i∂/ − M ]N − [hν ℓ̄ aR φ̃ N + H.c.] .

Motivation: offers for a simple description of experimentally

observed neutrino masses and mixing angles.

See-saw: mν ∼ |hν|2v2

M
⇒ certain combinations of the new

couplings are fixed, but the absolute scale of M is open.
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Many regimes are open for cosmological exploration.
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T >∼ 160 GeV.

This is not an exclusion plot, apart perhaps from Dark Matter,

but a reflection of human interests.
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Necessary conditions for [us explaining] baryogenesis:

• B/

• C/ , CP/

• non-equilibrium

• ability to compute reliably with thermal quantum field theory

Traditionally: CP/ and B/ are fascinating challenges, non-

equilibrium and reliable computation mundane ones.

Today: CP/ and B/ have been much studied and are rather well

understood; non-equilibrium and reliable computation less so.

Here: some ingredients on the latter two.
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Conceptual challenge: non-equilibrium
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There are infinitely many ways to deviate from equilibrium.

equilibrium

chemical non-eq.

kinetic non-eq.

spin-flip non-eq.

. . .

Basic principle: with time, the system relaxes back to equilibrium

(just because equilibrium is the most likely configuration).

The relaxation process is characterized by a rate, which is a

microscopic property of the system, and depends on the deviation.
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In most cases only a few deviations are “interesting”.

t ~ m
Pl

 / T
 2

ra
te

 / 
T

Hubble rate (~ T
 2

 / m
Pl

 )

in equilibrium

out of equilibrium

interesting 
dynamics

If an equilibration rate is fast, the excitation is in equilibrium; if

it is slow, there is a supplementary conserved charge.
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Most minimal scenario: one “interesting” variable.

If the deviation from equilibrium is small and we are looking at

long time scales, we can expand in the deviation:

∂tnL = −γL nL + O(n
2
L)

⇒ (∂t + 3H)nL = −γL nL + O(n
2
L)

⇔ ∂t(a
3
nL) = −γL a

3
nL + O(a

6
n

2
L) .

⇒ There is only one coefficient, γL, which is positive.

⇒ There is only a decaying mode.

⇒ No nL 6= 0 can be generated from close to equilibrium.
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Second most minimal scenario: two “interesting” variables.1

Apart from the asymmetry nL, consider a weakly interacting

particles speciesN whose energy density (particles + antiparticles,

like Dark Matter) is also close to falling out of equilibrium:

∂t(a
3
nL) = − γL a

3
nL − γL,N (a

3
nN − a

3
n eq) ,

∂t(a
3
nN) = − γN (a

3
nN − a

3
n eq) − γN,L a

3
nL .

CP-odd: a3nL.

CP-even: a3nN .

1
M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B

174 (1986) 45.
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Now something can be generated out of (almost) nothing!

n eq ∼ (MT
2π )3/2e−M/T at T ≪ M

⇒ nN − n eq 6= 0

⇒ 1st order equation with a source term for nL

⇒ nL 6= 0.

∂t(a
3
nL) = −γL a

3
nL − γL,N (a

3
nN − a

3
n eq) ,

∂t(a
3
nN) = −γN (a

3
nN − a

3
n eq) − γN,L a

3
nL .
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There are many less minimal scenarios.

• Kinetic non-equilibrium: nN → fN(k).

• Spin degrees of freedom: nN → fN(k, s).

• Flavour transitions: nL, fN → 3-component vectors.

• Resonant regime: quantum coherence.

• Quadratic deviations from equilibrium.

More complicated scenarios involve more coefficients. The

computation of each coefficient is however subject to the same

uncertainties to which we now turn.
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Technical challenge: IR problem
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Consider right-handed neutrino production rate γN

With linear response theory, γN can be determined in equilibrium.

Up to O(|hν|2):

N N

φ

ℓ

The external four-momentum is on-shell: K = (
√
k2 + M2, k).
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What are the scales of the problem?

• The properties of the SM plasma are characterized by

πT , gT (α ≡ g2

4π
) .

• To O(|hν|2), the scale M only appears “externally” in

k0 =
√

k2 + M2 .
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Low temperatures / large masses / late Universe

T <∼M

ML, Thermal right-handed neutrino production rate in the relativistic regime, JHEP 08

(2013) 138 [1307.4909].

Standard Model interactions up to NLO:

· · ·
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For illustration: corrections from the top Yukawa coupling

K
P

Q

P − Q

K − P

After cancelling numerator structures against propagators, the

most non-trivial structure left over is

Ĩh ≡ lim
λ→0

∑∫

P{Q}

K2

Q2P 2[(Q − P )2 + λ2](P − K)2
,

K
2 ≡ k

2
n + k

2
.
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The production rate is proportional to the cut:

ρĨ
h

≡ Im[Ĩh]kn→−i[k0+i0+] ,

K2 ≡ k
2
0 − k

2
.

λ

λ λ

For λ → 0 virtual and real processes contain soft, collinear and

thermal divergences, which cancel in the sum.

Omitting one process and regulating λ → gT in the other leads

to a wrong result and an overestimate of NLO corrections.
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Cancellation of “naive” divergences

Summing together both processes, the limit λ → 0 can be taken,

and the result can be expressed as

ρĨh
= − M2

4(4π)3

[
1

ǫ
+ 2 ln

µ̄2

M2
+ 5 + φT (k0, k)

]
.

The function φT vanishes for T → 0 but, for T 6= 0, depends

separately on k0 and k (i.e. breaks Lorentz invariance).

(There exists a rapidly convergent 2d integral representation for

φT , but analytic expressions only as an “OPE” series in T 2/M2.)
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Breakdown of the loop expansion
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The dominant divergence can be resummed into a thermal

mass mφ ∼ gT , but this is only a partial solution.
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High temperatures / small masses / early Universe

M <∼ gT

A. Anisimov, D. Besak and D. Bödeker, Thermal production of relativistic Majorana

neutrinos: Strong enhancement by multiple soft scattering, JCAP 03 (2011) 042 [1012.3784];

D. Besak and D. Bödeker, Thermal production of ultrarelativistic right-handed neutrinos:

Complete leading-order results, JCAP 03 (2012) 029 [1202.1288].

Techniques (“LPM”) inspired by analogous QCD computations2

P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from ultrarelativistic plasmas,

JHEP 11 (2001) 057 [hep-ph/0109064]; Photon emission from quark gluon plasma:

Complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107].

2
See also: SLAC E-146 experiment, P.L. Anthony et al., An Accurate measurement of

the Landau-Pomeranchuk-Migdal effect, Phys. Rev. Lett. 75 (1995) 1949.
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What is going on?

The naive leading-order process at high temperatures if SM

particles are approximated as massless:

Hard Thermal Loop (HTL) resummation generates thermal

masses (and other features). At very high temperatures,

mφ ∼ gT > M , and new channels open up.
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Higher-order scatterings are not suppressed.

It does not cost anything to add soft gauge scatterings to these

reactions: ǫ ∼ g2T 2/m2
D ∼ 1.

All such processes need to be consistently summed together.

(Resummation amounts to a solution on an inhomogeneous

2d Schrödinger equation with an imaginary light-cone potential

representing the effects of these scatterings.)
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In addition there are “hard” 2 ↔ 2 scatterings which

contribute at the same order.

Some care is needed for adding the hard and soft contributions

together in a way which does not to introduce double counting.

(In fact a discrepancy3 remains to be resolved.)

3
B. Garbrecht, F. Glowna and P. Schwaller, Scattering Rates For Leptogenesis:

Damping of Lepton Flavour Coherence and Production of Singlet Neutrinos, Nucl. Phys.
B 877 (2013) 1 [1303.5498].
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How does all this affect leptogenesis?
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Even in the minimal framework there are several coefficients.

∂t(a
3
nL) = −γL a

3
nL − γL,N (a

3
nN − a

3
n eq) ,

∂t(a
3
nN) = −γN (a

3
nN − a

3
n eq) − γN,L a

3
nL .

Apart from γN , the lepton

number “washout rate”

has been computed up to

NLO: γL ∼ |hν|2 W Ξ−1.

[D. Bödeker and ML, Kubo relations

and radiative corrections for lepton

number washout, 1403.2755].

γN,L is unimportant.
10

-1
10

0
10

1

M
I
 / T

10
-5

10
-4

10
-3

10
-2

W
 / 

 T
 3

LO
NLO (relativistic)

NLO (non-rel.)

LPM-resummed

m
H

 = 126 GeV,  M
I
 = 10

7
 GeV

28



An outstanding challenge is to compute γL,N at T ∼ M .

Physics: An ensemble of right-handed neutrinos (nN −n eq 6= 0)

can decay with Γ(N→Hν) 6= Γ(N→Hν̄) and yield nL 6= 0.

Similarly to CP-violation in the kaon system, the origin might be

“indirect” (related to oscillations) or “direct” (related to decays).

(My guess: it makes physical sense to go after NLO only if can

do this in the relativistic and ultrarelativistic regimes.)
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In the end nL is converted to Ωb through “sphalerons”.4
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4
Rate is known with few percent accuracy through M. D’Onofrio, K. Rummukainen and

A. Tranberg, The Sphaleron Rate in the Minimal Standard Model, 1404.3565.
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Summary

Conceptual problem (non-equilibrium): factorization → define a

finite number of coefficients that can be computed in equilibrium.

(In the simplest scenario, there are just three coefficients.)

Technical problem (infrared divergences): the computation of the

coefficients requires all-orders resummations of the loop expansion

at temperatures larger than the particle mass.

Phenomenological consequences remain to be explored.
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