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Talk Outline

* Motivation: Multi-frequency parametrically amplitie
surface waves:

* Reviewof theory/expt of two-frequency surface waves

( )

* Characterizing Spatio-temporally disordered states:

e Control of disordered states
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Well -studied nonlinear systems:

Patterns: Singleexcited spatial mode secondarynstabilities

Chaos: Order - Disorder in theemporaldomain

Turbulence: A large number ofoncurrently excited modes

Motivation:

* What nonlinear states aselectedvhen a few distinctly different nonlinear mod
are allowed to interact?

* Whatmechanismgovern theiinteractionsandselectior?

*What are the routes tmmplexityin bothspaceandtime?

* When a large number of spatially extended nonlinesgstae concurrently
possible in the system, how can w@nirolthe state of the system?

The 2-frequency Faraday | nstability

Single Frequency Forcinga(w) = AcosRuwt)

w ¢

Two Frequency Forcinga(w;,w,) = A;C0SRw;t)+A,cog20,t+@)

w Ky
w, @K,

=

Question:
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Why is the fluid response subharmonic (w/2) ?
Jeff =g +asin(wt)
d?0/dt? = g4(t) 6 = [g + (asin(wt)]6 +N.L

The most effective forcing occurs when the pendulum is
accelerated downward when its amplitude is maximal

=> geff oscillates at twice the response frequency

I maging system Experimental System
CCD

Gradient lit cylinder

Gradient Lit Cylinder

12 Lamps in Circle

Reflecting surface wave

L ocal slope measur ement
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K. Kumar and L. S. Tuckerman , JFM 279, 49 (1994).

Single Frequency Driving: a(w) = Acos(2wot)
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Spatially: Each tongue describes a well-defineal/e number

Temporally: Each tongue is described byiafinite series oharmonics
having awell-defined parity whent = t + 1/, :

(odd parity) A = -A (evenparity) A = A

10

Even parity == Harmonic tongue mmp 2ZApexpliat wf]
n

Odd parity === Subharmonic tongue ==» 2B expli 2n7+1 ]
n

Besson, Edwards, Tuckerman Phys. Rev E54, 507 (1996)
2-frequency Driving:
A(Wayen Wogd) = Aevert0SN [AKH)+A o4 £OS2N,[A)t+()
even® Keven  Wodg @ Koag
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As for single frequency forcing, each tongue has: o

* A well-defined critical wave number

* A well-defined temporal parity

* A dominant frequency of ~ w /2 = nldy, © k

» An important difference: New stable tongues corresponding to multiples of w,
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(PP%0) PPOy(B) spniduwiy Buinug

Typical 2 frequency Phase Diagram (for “high” dissipation)
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Typical 2 frequency Phase Diagram (for “low” dissipation)

Double Hexagon Lattice

L ﬁven
st e
- 'keven

Rhomboids

4

Quasicrystals

(P%m) PP95(6) apnijdwy Buinug

Driving Amplitude (9)Kqen (Wgen)
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From now on: we’ll concentrate on the area of
phase space in the vicinity ohe bicritical point
for “dissipative” systems

Squares
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odd
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(PP%0) PP93(6) apnudwy Buiaug

Driving Amplitude (9)K aen (0uyen)

The 2V S stateis constructed usingoth k., andkyq.

Keven @nd k44 Orientations are determined by:
Multiwave resonant mixing in time and gpace

kodd - keven = k3
Observed for all parities and driving frequency

* *’ combinations
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2MS superlattices can have different underlying symmetries

Koqg dominated I
26MS Superlattices

Keven dominate

d
2MS Superlattices

The 2MS superlattice state inherits the spatial symnuétitye dominant wave numiper
=>(harmonic) k .,< hexagonal/square symmetry;
=> (subharmonic) k< square symmetry

Hexagons
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2MS Superlattices
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2MS Superlattices
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® Three wave coupling of degenerate wavevectors of lengi (= K. en
e Temporally harmoni¢even parity state)
* No odd-parity wavenumbers in the spatial spectrum
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"Unlocked" States: 2 Wave Numbers
No Phase Locking irTirQe or Space
o

Koqq dominated
2MS Superlattices

* Both k.., and k.., present
* No locking or well-defined
symmetry in space

K., dominate

even

2MS Superlattid|

es

*"chaotic" temporal behavior

(PP0) PPy (B) apnytjdwy Buial

Characterizing the symmetry of a given state

Simple Patterns
« Single wave number
* Well defined symmetry
(Hexagons 60 degree symmetry)

Superlattice states

* Multiple wave numbers

« Each wave number could
have its own symmetry

Unlocked States
« Multiple wave numbers
« No well-defined symmetry

How does one quantify the degree of symmetry of a given wave number?
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Angular Correlation Functions

The degree of correlation of a given wave number can be quantified
by means of the angular correlation function < Ck(e):

Cr(B)= {11/ 1)? 2 [fic(c) H(0+6)]

Square
state
30 g e90 120 150 180
2MS
state /

30 60 e90 120 150 180

N. B. Tufillaro, R. Ramshankar, and J. P. Gollub, PRL 62, 422 (1989).
D. Binks, M. T. Westra, and W. van de Water, PRL 79, 5010 (1997).
H. Arbell and J. Fineberg, PRL 81, 4384 (1998).

The transition between the spatially locked and unl ocked states
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How does the transition between S-T ordered to S-T disordered states occur?
180°
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Time dependence of Angular Correlation Functions (in ordered states)
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How does the transition from order to disorder occur?
2MS Time dependence of C ;) Histogram of C | (90°) (for K 44)
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Unlocked 90° Correlation Coefficient

The loss of order occurs gradually as the unlocked phase boundary (¢=0) is approached

What mechanism leads to disorder in the unlocked state?
2MS state X £=-0.07
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As the unlocked state is approached: ()

* The angular correlations of each wave number show signgahittencywith increasedl
fluctuationsof the angular correlation as the phase bound=ar)(is approached
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The loss of coherence of the unlocked state is due to competition between modes with different symmetries
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As the unlocked state is approached:
* Fluctuations of the angular correlation increase
* The fluctuations of the symmetries of the two wave berrs are correlated

* Momentarydecrease@0° correlation ofk , ¢ increase®0° correlation of,,.,

Open loop control and selection of nonlinear states by the use of a third
driving frequency
We can now understand the unlocked state:

The loss of coherence is due to competition between degenerate modes that possess
different temporal and spatial symmetries

Reminder:

« Each driving frequency generates linearly stable tongues having the same temporal
parity as the driving

100 b

80 -

60 -

30, . 60
40 T % 4%
0 ] -2

’ klgfé k(cl’:i) QIkOdd 40.

Driving (g)
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Open Loop Control! and selection of nonlinear states
- by the use of a third driving frequency

We can now understand the unlocked state:

The loss of coherence is due to competition between degenerate modes that possess
different temporal and spatial symmetries

Reminder:

« Each driving frequency generates linearly stable tongues having the same temporal
parity as the driving

100

80

60
40

Driving (g)

20
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keﬁ k (cm™1 \ K

odd
* The coupling (or “slaving”) of linearly stable states to the excited
ones can determine? which nonlinear state is selected by the system

1Y. Braiman and I. Goldhirsch, Phys. Rev. Lé&, 2545 (1991)
2J. Porter and M. Silber, PRR9, 084501 (2002)

K%) The influence of 3-waveinteractions and symmetries
s K on the selected nonlinear states

states to the excited ones can determai
* Near fypypidiifralapii? avpepljagtocstapte m@asy@taemays

important role in pattern selection; either en ir suppressing various
nonlinear statesw. siiber, c. M.Topaz, and A. C. Skeldon, Physica D143, 205 (2000)

¢ Modes of the same parity canly couple to harmonic modes

M. Silber and A. C. Skeldon, Phys. Rev. E59 5446 (1999) kodd/eve\
Spatial yesopance condition: Temporal resonance condition: k

_ _ . k1 even
ki + ki =k odd + odd  =even parity

. odd/even
even + even =even parity

« On the harmonic side of the phase diagrasfected statdselong tonvariant
subgroup®of the broken hexagonal symmetry (each state lif@sedit spatial
and temporal symmetriesy. Tze, A. M. Ruckiidge, R.B. Hoyle, and M. Silber, Physica 146D 367 (2000)

« Near thebicritical pointbrokenapproximate symmetrianay determine the
selection of nonlinear statesa. porter and M. silber, PRL 89, 084501 (2002)
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We will show that:

By regulating both the amplitude and parity of a third driving frequency, Q, it is possible
to both stabilize and control the overall nonlinear state of the system

Examples:

Unlocked + Q_ = Q couples to wavenumbers with odd parity
= k,,, (odd parity) - dominated 2MS states

o
4 Ks(oag)

k

even

Unlocked + Q_ ., 2 Q couples to wavenumbers with even parity
=>» Hexagons or k., (even parity) -dominated 2MS states

Dw = k(e (even))

Does the control work?
The unlocked state “locks” to thedd) k,ydominated 2MS state
atsmall a, amplitudes whe® (=uy) is odd

Locked 2MS state
0.7 T

e Controlled state
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m 05 | : N
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. ; ; - Unlocked i
Lockln_g occurs aSr_naIIaQ amplltudes g )
* (00 INCreases with the distance fromthe & .« S
unlocked phase boundary = L g
* Locking can persistwell into opposite parity = o I:
-dominated regions of phase space <
14

22

1.9 20 2.1
a, Driving Amplitude (g)
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What about the harmonic state?

atsmall a, amp"tUd'i":S Wr]fiarﬂqzﬁi)csse

higher driving amplltu es.

05

* Lockingto multiple states occurs:éﬁt@f)métemate

The unlocked state “locks” to both thevér) k, ;dominated 2MS state

\ée;[réas well as to the even hexagonal state at

Normalized 3! frequency forcinga,/a, it
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The unlocked state rapidly becomes “controlled”:
The time needed to lock decreases with increaged a

aQ 1 083control

aQ - 1'2|3control ]

“Unlocked” -) 2MS states?/wy) per frame
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o o "f' Locklnq thresh%d
Y P S

ol g T
0.2 5 "__-..,

Ci(90°)
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Time (14oy)
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By switchingbetween two control frequenciespid transitionbetween different states
are accomplished

When switching: control is achieved in times ofardf asingle time stejf~ 1/iy,):

Hexagons® 2MS

Transitions in slow motion

b

2MS = Hexagons

Conclusions:

* Open-loop controof nonlinear states with different ST behavior ban
performed bysmall perturbationhavingwell-defined temporal symmetries

* We have presented the following specific examples:
With even forcingST chaotic (unlocked) sta® either hexagons or harmonic 2MS statsg
With odd forcing: ST chaotic (unlocked) sta#® subharmonic 2MS states
Subharmonic 2MS~> Harmonic hexagons or Harmonic 2MS states

* This type of control should begenerally relevant for any parametrically forcedteyn
e.g. nonlinear optics; forced mechanical systeghsbally forced reaction diffusion

* Next...
Useshapeccontrolling waveforms for morefficient control ??
Pattern engineeringy incorporation ofidditional types of symmetriés the driving??
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