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Talk Outline

� Motivation: Multi-frequency parametrically amplified 
surface waves: Why should you care?

� Review of theory/expt of two-frequency surface waves 
(Getting to know the neighborhood)

� Characterizing Spatio-temporally disordered states: 
A method to the madness

� Control of disordered states 
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Motivation:
• What nonlinear states are selectedwhen a few distinctly different nonlinear modes 

are allowed to interact?

� What mechanismsgovern their interactions andselection?

�What are the routes to complexityin both spaceand time?

� When a large number of spatially extended nonlinear states are concurrently 
possible in the system, how can we control the state of the system? 

Well -studied nonlinear systems:

Patterns: Singleexcited spatial mode + secondaryinstabilities  e.g. R-B, Couette-
Taylor, Faraday Instability...

Chaos: Order - Disorder in the temporaldomain

Turbulence: A large number ofconcurrently excited modes

Question:
What states are selected by nonlinear interactions between k1 and k2 ?

ω λλλλ

a > ac2ω

Single Frequency Forcing : a(ω) = Αcos(2ωt)

ω����k

The 2-frequency Faraday Instability

ω1 ���� k 1111

ω2 ���� k 2222

λ1 λ2

2ω1 2ω2

Two Frequency Forcing:  a(ω1,ω2) = Α1cos(2ω1t)+A2cos(2ω2t+φ )



Control of Spatio-temporal Disorder in Parametrically Forced Surface Waves

Dr. Jay Fineberg, Hebrew University (KITP Pattern Formation Program 12/10/03) 3

Why is the fluid response subharmonic (ω/2) ?

geff = g + a sin(ω t)

The most effective forcing occurs when the pendulum is 
accelerated downward when its amplitude is maximal

=>  geff oscillates at twice the response frequency 

geffgeff

geff

ω

θ

d2θ/θ/θ/θ/dt2 = geff(t) θθθθ =  [g + (a.sin(ωωωωt)]θθθθ +N.L
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Linear stability analysis:
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g 
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kc k (cm -1)

∼ω

∼3ω

∼5ω
∼4ω

∼2ω

subharmonic
harmonic

Spatially: Each tongue describes a well-defined wave number
Temporally: Each tongue is described by an infinite series of harmonics

having a well-defined parity when t � t + π/ω0 :

(odd parity) A  ���� -A  or (even parity) A  ���� A

a(ω) = Αcos(2ωt)

Harmonic tongue ΣAnn
Even parity exp[i ω0t]2

2n

n
Odd parity Subharmonic tongue ΣBn

exp[i ω0t]2
2n+1

K. Kumar and L. S. Tuckerman , JFM 279, 49 (1994).

Single Frequency Driving:

2-frequency Driving: 

Besson, Edwards, Tuckerman Phys. Rev E54, 507 (1996)

Linear stability analysis:

As for single frequency forcing, each tongue has:
• A well-defined critical wave number
• A well-defined temporal parity
• A dominant frequency of ~ ωi /2 = ni⋅ω0   ���� ki
• An important difference: New stable tongues corresponding to multiples of ωωωω0

ωeven� keven ωodd� kodd

{ {a(ωeven,ωodd) = Αevencos(2n1⋅⋅⋅⋅ω0t)+Aoddcos(2n2⋅⋅⋅⋅ω0t+φ )

For:
n1 = 4  n2 = 5

Aeven/odd ~ Ac

(Bicritical Point)
0 10 20 30 40

0

20

40

60

80

0 10 30 40
0

20

40

60

80

100

D
riv

in
g 

(g
)

k (cm -1)keven kodd

~ω0
~2ω0

~4ω0

~3ω0 ~5ω0

~6ω0
ωωωωeven

=
   

ωodd=



Control of Spatio-temporal Disorder in Parametrically Forced Surface Waves

Dr. Jay Fineberg, Hebrew University (KITP Pattern Formation Program 12/10/03) 5

Driving Amplitude (g) keven (ωωωωeven )

D
riving A

m
plitude (g)k

odd ( ωω ωω
odd )

Flat

Squares

Squares

H
exagons

Disordered

H
exagons

0

1

2

3

4

5

6

0 1 2 3 4

a

c

b

q q’

kc

{

kodd dominated (2MS)
2 Mode Superlattices Unlocked

Subharmonic Superlattices

keven dominated
2 Mode Superlattices

Typical 2 frequency Phase Diagram (for “high” dissipation)

H. Arbell and J. F., Phys. Rev. Lett. 81, 4384 (1998).
A. Kudrolli, B.  Peir and J. P. Gollub, Physica 123D, 99 (1998).
H. Arbell and J. F.,  Phys. Rev. Lett. 84, 654 (2000).
H. Arbell and J. F.,  Phys. Rev. Lett. 85, 756 (2000).
H. Arbell and J. F. Phys. Rev E 65, 036224 (2002)
W. S. Edwards and S. Fauve,  Phys. Rev. E47, 788 (1993)
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From now on: we’ll concentrate on the area of 
phase space in the vicinity of  the bicritical point
for “dissipative” systems
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The 2MS state is constructed using both keven andkodd.

k3

koddkeven

Multiwave resonant mixing in time and space
keven and kodd orientations are determined by:

ωodd − ωeven = ω3{ kodd - keven = k3      

Observed for all parities and driving frequency 
combinations
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2MS superlattices can have different underlying symmetries
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The 2MS superlattice state inherits the spatial symmetry of the dominant wave number
�(harmonic) keven� hexagonal/square symmetry; 
� (subharmonic)  kodd� square symmetry

Hexagons

|ki|=keven

• Three wave coupling of  degenerate wavevectors of length k(ωeven) = keven

• Temporally harmonic(even parity state)
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"Unlocked" States: 2 Wave Numbers  
No Phase Locking in Time or Space

� Both keven and kodd present
� No locking or well-defined 

symmetry in space
�"chaotic" temporal behavior
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Characterizing the symmetry of  a given state

k1

Superlattice states
• Multiple wave numbers
• Each wave number could 

have its own symmetry

Simple Patterns
• Single wave number
• Well defined symmetry
(Hexagons 60 degree symmetry)

Unlocked States
• Multiple wave numbers
• No well-defined symmetry

How does one quantify the degree of symmetry of a given wave number?

kodd

keven
k3

Pattern Spatial spectrum
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Angular Correlation Functions

The degree of correlation of a given wave number can be quantified 

by means of the angular correlation function � Ck(θθθθ):

Ck(θ)= 〈|1/fk|〉2 Σα [fk(α)⋅fk(α+θ)]
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N. B. Tufillaro, R. Ramshankar, and J. P. Gollub, PRL 62, 422 (1989).

D. Binks, M. T. Westra, and W. van de Water,  PRL 79, 5010 (1997).

H. Arbell and J. Fineberg, PRL 81, 4384 (1998).

The transition between the spatially locked and unl ocked states
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How does the transition between S-T ordered to S-T disordered states occur? 
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The loss of order occurs gradually as the unlocked phase boundary (ε=0)(ε=0)(ε=0)(ε=0) is approached
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How does the transition from order to disorder occur?

What mechanism leads to disorder in the unlocked state?

As the unlocked state is approached:
• The angular correlations of each wave number show signs of intermittencywith increased
fluctuationsof the angular correlation as the phase boundary (ε=0) is approached
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Reminder:

• Each driving frequency generates linearly stable tongues having the same temporal 
parity as the driving

Open loop control and selection of nonlinear states by the use of a third 
driving frequency

We can now understand the unlocked state:

The loss of coherence is due to competition between degenerate modes that possess
different temporal and spatial symmetries

0 10 20 30 40
0

20

40

60

80

0 10 30 40
0

20

40

60

80

100

D
riv

in
g 

(g
)

k (cm -1)keven
kodd

~ω0
~2ω0

~4ω0

~3ω0 ~5ω0

~6ω0



Control of Spatio-temporal Disorder in Parametrically Forced Surface Waves

Dr. Jay Fineberg, Hebrew University (KITP Pattern Formation Program 12/10/03) 13

Reminder:

• Each driving frequency generates linearly stable tongues having the same temporal 
parity as the driving

Open Loop Control1 and selection of nonlinear states 
- by the use of a third driving frequency

We can now understand the unlocked state:

The loss of coherence is due to competition between degenerate modes that possess
different temporal and spatial symmetries
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• The coupling (or “slaving”) of  linearly stable states to the excited 
ones can determine2 which nonlinear state is selected by the system

1 Y. Braiman and I. Goldhirsch, Phys. Rev. Lett. 66, 2545 (1991)
2 J. Porter and M. Silber, PRL 89, 084501 (2002)

The influence of 3-wave interactions and symmetries
on the selected nonlinear states

• Far from the bicritical point � mechanism for enhanced dissipation when 
unstable states couple to stable (slaved) ones

• Near the bicritical point � coupling to stable near-critical modes  plays an 
important role in pattern selection; either enhancing or suppressing various 
nonlinear states

• Modes of the same parity can only couple to harmonic modes

• On the harmonic side of the phase diagram: selected statesbelong to invariant 
subgroupsof the broken hexagonal symmetry (each state has different spatial 
and temporal symmetries)

• Near the bicritical pointbroken approximate symmetriesmay determine the 
selection of nonlinear states.

Zhang and Vinals, JFM 341, 225 (1997)

M. Silber and A. C. Skeldon, Phys. Rev. E59 5446 (1999)

M. Silber, C. M.Topaz, and A. C. Skeldon, Physica D143, 205 (2000)

J. Porter and M. Silber, PRL 89, 084501 (2002)

D.P. Tze, A. M. Rucklidge, R.B. Hoyle, and M. Silber, Physica 146D 367 (2000)

keven

kodd
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k’odd/even

keven
Spatial resonance condition: Temporal resonance condition:

odd + odd     =  even parity 
even + even =  even parity

ki + kj = k harmonic

keven
koddkslaved

keven
kodd

kslaved• The coupling (or “slaving”) of  linearly stable
states to the excited ones can determine which 
nonlinear state is selectedby the system
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By regulating both the amplitude and parity of a third driving frequency, ΩΩΩΩ,  it is possible
to both stabilize and control the overall nonlinear state of the system 

Examples:

Unlocked + Ωodd� Ω couples to wavenumbers with odd parity
� kodd (odd parity) - dominated 2MS states

Unlocked + Ωeven � Ω couples to wavenumbers with even parity 
� Hexagons or keven (even parity) -dominated 2MS states

k odd

keven

k
3(odd)

|ki | = k(ω1(even))

We will show that:

Does the control work?

The unlocked state “locks” to the (odd) kodd-dominated 2MS state
at small aΩ amplitudes when Ω (=ω0) is odd
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For Harmonic States
• Locking to multiplestates occurs as Ω of an even

frequency is added
• aΩ(lock) increases with the distance from the

unlocked phase boundary
• Locking can  persistwell into opposite parity

-dominated regions of phase space

What about the harmonic state?

The unlocked state “locks” to both the (even) keven-dominated 2MS state
at small aΩ amplitudes when Ω (=2ω=2ω=2ω=2ω0000) is even as well as to the even hexagonal state at
higher driving amplitudes:
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The unlocked state rapidly becomes “controlled”:
The time needed to lock decreases with increased aΩ

aΩ ~ 1.2⋅acontrolaΩ ~ 1.08⋅acontrol

“Unlocked”� 2MS states (2/ω0) per frame
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By switchingbetween two control frequencies, rapid transitionsbetween different states
are accomplished

When switching: control is achieved in times of order of a single time step(~ 1/ω0):

Hexagons � 2MS Transitions in slow motion

2MS � Hexagons

Conclusions:

• Open-loop controlof nonlinear states with different ST behavior can be

performed by small perturbationshaving well-defined temporal symmetries

• We have presented the following specific examples:
With even forcing:ST chaotic (unlocked) state � either hexagons or harmonic 2MS states
With odd forcing:  ST chaotic (unlocked) state � subharmonic 2MS states
Subharmonic 2MS � Harmonic hexagons or Harmonic 2MS states

• This type of control should be generally relevant for any parametrically forced system
e.g. nonlinear optics;  forced mechanical systems;  globally forced reaction diffusion

• Next…
Use shapedcontrolling waveforms for more efficient control??
Pattern engineeringby incorporation of additional types of symmetriesin the driving??
…


