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• We study the discrete model of the irreversible reaction A + B → 2A in one
dimension, which is a version of the MSB model:
J. Mai, I.M. Sokolov and A. Blumen, Phys.Rev.Lett. vol. 77, 4462 (1996).
This can also be regarded as the simplest way to look at the spread of an epidemic.

• We are able to solve the model exactly in one dimension for low concentrations.

• We find that in the low-concentration limit the average velocity of propagation
approaches Dθ/2 where θ is the concentration and D the diffusion coefficient.

• The front propagation is entirely dominated by fluctuations in the density:
the front spends most of its time pinned behind gaps in the density.
Estimate: L ∼ 1/θ τ ∼ L2/D L/τ = D/L ∼ Dθ

• As a result, continuum modeling breaks down completely for this reaction.

Leonard M. Sander, University of Michigan September 2003 2



Discrete Model
• Consider a 1d lattice of length L populated with random walkers randomly

distributed with concentration θ. The leftmost particle is of type A, and all
of the other particles are of type B.

• The particles walk randomly and all the particles move simultaneously. Any
number of particles are allowed to occupy a site. If a B particle encounters
or passes an A particle, it becomes an A particle.

• The rightmost A particle defines the propagation front, and we are interested
in the velocity of this front.
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Continuum mean field limit
The concentration of A particles should be described by the Fisher-KPP equation.
R. A. Fisher, Annals of Eugenics 7, 355 (1937);
A. Kolmogorov, I. Petrovsky, and N. Piscounov, Moscow Univ. Bull. Math. A1, 1 (1937).
Write a conventional reaction-diffusion equation:

∂ta = D∆a + kab

= D∆a + ka(θ − a),

Here k is a rate constant, D the diffusion constant. and we have used the fact that on average
a + b = θ.

In one dimension, the last equation is the FK equation
∂tφ = ∂xxφ + φ(1− φ)

after changing variables.
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More than you ever wanted to know about the FK equation
Recent review: D. Panja, cond-mat/0307363

The FK equation describes a ‘pulled’ front. Standard approach:

. Make the substitution ξ = x− vt

. Look at ξ >> 1, and try φ ∝ e−λξ. This gives v = λ + 1/λ

If the initial condition is bounded the front approaches the minimum speed v∗ = 2, or, in the
original units, v∗ = 2

√
kDθ.
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FK equation with discreteness
Note that the velocity is determined where φ is very small.
For example, the equation has been used to model the spread of rabies in foxes.

The velocity depends on the behavior of nano-foxes!
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FK equation, continued
Moreover, simulations of the discrete MSB model showed that in 1d
v ∝ θ for small θ, NOT v ∝

√
θ

Thus v << v∗.

Partial answer, E. Brunet and B. Derrida, Phys. Rev. E 56, 2597 (1997)
Replace the discreteness by a cutoff on the growth term, so that

φ(1− φ) → φ(1− φ)Θ(φ− ε)

(We should think of ε ∼ 1/θ.)

The equation gives the analytic result v ∼ v∗ −K/ ln2(θ) where K is a constant.

Particle models exist which interpolate between discrete behavior and and the FK equation and
find the ln−2 correction.
Brunet and Derrida; D. A. Kessler, Z. Ner and L. M. Sander, Phys. Rev. E. 58, 107 (1998).
These are for the case θ >> 1, small reaction rate, k.
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Fluctuations
Brunet and Derrida represented a density fluctuation effect; cf. the stochastic FK equation:

∂tφ = ∂xxφ + φ(1− φ) + ε1/2
p

φ(1− φ)η(x, t)

L. Pechenik and H. Levine, Phys. Rev. E 59, 3893 (1999);
C. R. Doering, C. Mueller and P. Smereka, Physica A 325, 243 (2003).

Log-log plot of v/v∗ in the sFKPP equation on a discrete lattice as a function of noise
strength ε1/2. Open circles: simulation data for the sFKPP equation, solid lines: the theoretical
expressions (Derrida & Brunet) at weak noise and D/ε at strong noise.
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Simulation: Depletion zone
• In the simulation, the particles follow a simple random walk and thus are

Poisson distributed.

• However, taking into account particle types and following the front, the
distribution of particles near the front is not so distributed.

Average density of particles from simulation for various sites around the front for θ = 0.2.
Ignoring the fit for the moment, the density (conditioned on there being a front at i = 0), is
depleted to the right of the front.
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Matching condition
MSB analyzed the velocity in an approximate fashion, using the Smoluchowski approach. In this
method, centered in the rest frame of the front, B particles diffuse toward the front. The number
density n follows the one-dimensional diffusion equation in the frame moving with velocity v,

∂n

∂t
− vn

′
= n

′′
, (1)

where the diffusion constant D = 1. Assuming stationarity, the time derivative vanishes, and
the boundary conditions n(±∞) = θ, n′(±∞) = 0 and n(0+) = 0 lead to:

n(x) = θ if x < 0

= (1− e
−vx

)θ if x ≥ 0.

We will see later that v ∝ θ so that,
as x → 0+, n is order θ2.
This distribution agrees well with simulation.

However, this analysis does not determine v.
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Master equation for small θ
For θ � 1 consider a region containing the front particle and the “second” particle, i.e., that
nearest the front. The size of the region will be ∼ 1/θ.

Define a coordinate system in the rest frame of the front particle, whose position is defined to
be at i = 0. The number density of the second particle at site i at time t is ni(t).

Contributions to the average velocity occur only when the second particle is one behind
the front (i = −1) or on the front (i = 0). For all other positions, the front
particle undergoes an unbiased random walk, and the front does not move (on average).

When i = −1, with proper renaming of particles, the front will move forward one step with
probability 1/2, stay the same with probability 1/4 and move back one step with probability
1/4. Thus, given i = −1, the average velocity is v = 1/2− 1/4 = 1/4.

When i = 0, the front will move forward one with probability 3/4 and move back one with
probability 1/4, and the average velocity is v = 1/2. Thus,

v(t) =
1

4
n−1(t) +

1

2
n0(t). (2)
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Master equation: Dynamics & Stationary Solution
Each particle performs a random walk so that:

1 If the particle is at i = 0 at time t,
n−2(t + 1) = 1/2 and n0(t + 1) = 1/2.

2 If the particle is at i = −1 at time t,
n−1(t + 1) = 3/4 and n−3(t + 1) = 1/4.

3 If the particle is at i < −1 or i > 0,
ni+2(t + 1) = 1/4, ni(t + 1) = 1/2 and ni−2(t + 1) = 1/4.

. For positions away from the front, i < −2 or i > 2, from 3:
ni(t + 1) = ni(t)/2 + ni+2(t)/4 + ni−2(t)/4.
Thus, if n is stationary: ni = (ni−2 + ni+2)/2.
That is, ni is linear in i far from the front.

. In like manner, for positions around the front

n−2 = n−4/2 + n0

n−1 = n−3 + n1

n0 = (n−2 + n2)/2

n1 = n3/2

n2 = n4/2 (3)

Leonard M. Sander, University of Michigan September 2003 12



Solution
Since ni is linear in i far from the front, we only need the slope.

We have made the approximation of only one nonfront particle, which is only valid in the region
1/θ around the front.

Outside this region, we must match to the continuum solution of MSB
n(x) = θ if x < 0 (1− e−vx)θ if x > 0.

To order θ, this means:
n = θ behind the front
n = 0 in front.

Thus, to first order in θ, the solution to the equations above is:

ni = θ i < 0

= θ/2 i = 0

= 0 i > 0

From above, v(t) = 1
4n−1(t) + 1

2n0(t). Thus:

v = θ/2.
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Density near the front
Note that including the front particle, to first order, the stable total number density distribution
is

. Ni = θ for i < 0

. Ni = 1 + θ/2 for i = 0,

. Ni = 0 for i > 0.

That is we have average concentration to the left of the front, enhancement
at the front, and a depleted zone to the right, in agreement with simulations.
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Further developments: 2d
We have generalized the model to two dimensions.
G. Mikus, C. P. Warren, and L.M. Sander, Fluctuation Effects in An Epidemic Model Phys. Rev. E, 63, 056103 (2001)

We expect front wandering to give rise to KPZ-like behavior on large scales.
J. Riordan, C. Doering, D. Ben-Avraham, PRL 75, 565 (1995); R. Goodman, D. Graff, L. M. Sander, P. Leroux-Hugon, and E. Clement,

PRE 52, 5904 (1995); L. M. Sander and S. V. Ghaisas, Physica A 233, 629 (1996)

In 2d, we find a depletion zone, and v ∼ θ0.6, significantly different from the mean field result.
If we assume the front is self-affine, we measure scaling exponents of α = 0.84 ± 0.03 and
β = 0.344± 0.004, significantly different KPZ. This may be a crossover.
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Summary
. We have shown that in low concentration the dynamics of A + B → 2A are

significantly different from what would be expected from mean field theory,
even in 2d.

. We have seen that in 1d the behavior of v at low concentration can be traced
to the depletion zone to the right of the front. Near the front the distribution
of particles is very different from the Poisson distribution, and the motion of
the front is dominated by the depletion.

. In the low concentration limit, to order θ, the velocity is simply v = θ/2.

. For large θ, the velocity is approximated by 1− e−θ/2, and the distribution is
quite close to the truncated Poisson.
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