Order, Chaos, and Defects in Inclined Layer Convection

Karen E. Daniels

Experiments:
Eberhard Bodenschatz LASSP, Cornell University

Simulations:
Oliver Brausch, Werner Pesch
University of Bayreuth

Rayleigh-Bénard Convection

Inclined Layer Convection

— shear flow $]$ anistropic
\square two control parameters: \square and \square

Onset of Inclined Layer Convection

Cloud Bands

High Pressure Gas Experiment

Defect-Turbulence in Striped Patterns

Inclined Layer Convection

Ducci, Ramazza, Gonzalez-Vinas, Arecchi (1999)
Liquid Crystal Convection

Rehberg, Rasenat, Steinberg (1989)
Sand Ripples

J. Land

Undulation Chaos

$$
\square=0.03
$$

$$
\square=0.06
$$

$$
\square=0.12
$$

— Two complementary descriptions: defects and undulations
— Spatiotemporally chaotic motion of defects, undulations

- Defect density and undulation wavenumber increase with \square

$$
\epsilon=0.08
$$

Topological Defects

- defects occur where a roll-pair ends and convection amplitude is zero
- sign of phase jump determines topological charge
- defects climb and glide through pattern, changing orientation and wavenumber
- defects create and annihilate as pairs of $+/-$ defects
- +/- defects enter and leave through the boundaries of the system

Tracking Defects

— trim and Fourier-filter shadowgraph images
] recover phase information from Re/lm parts
] locate defects using zero-crossings and +/-2 \square phase jumps

- connect defects in adjacent frames to form tracks
] two types of tracks:
100 frames x 400-600 runs at each \square 80000 frames x 2-4 runs at each \square
. link tracks to find creations/annihilations
I determine velocities along track by local linear fit to $x(t), y(t)$
(total raw data: 1.5 terabytes

Defect Density

How can we explain defect density in terms of defect gain and loss rates?

Detailed balance/equilibrium requires:
$\mathcal{P}(\mathrm{N}) \operatorname{loss}(\mathrm{N})=\mathcal{P}(\mathrm{N}-1)$ gain $(\mathrm{N}-1)$

Defect Event Rates

N = \# of defect pairs ~\# of positive defects ~\# of negative defects

Entering

random, indepedent of \# defects $\mathrm{E}(\mathrm{N})=\mathrm{E}_{0}$

Leaving

depends on \# of defects in region $\mathrm{L}(\mathrm{N})=\mathrm{L}_{0} \mathrm{~N}$

Creation

random, indepedent of \# of defects $\mathrm{C}(\mathrm{N})=\mathrm{C}_{0}$

Annihilation

takes two defects of opposite sign $\mathrm{A}(\mathrm{N})=\mathrm{A}_{0} \mathrm{~N}^{2}$

Poisson-like Distributions

$$
P(N)=\frac{\operatorname{gain}(N-1)}{\operatorname{loss}(N)} P(N-1)
$$

Poisson

defects are gained/lost individually $\mathrm{N}=$ number of defects in system
defects enter: $\mathrm{E}(\mathrm{N})=\mathrm{E}_{0}$ defects leave: $\mathrm{L}(\mathrm{N})=\mathrm{L}_{0} \mathrm{~N}$

$$
\begin{array}{cc}
\mu=\frac{E_{0}}{L_{0}}=\langle N\rangle \quad P(N)=\frac{\mu}{N} P(N-1) & \gamma=\frac{C_{0}}{A_{0}}=\left\langle N^{2}\right\rangle \quad P(N)=\frac{\gamma}{N^{2}} P(N-1) \\
P(N)=\frac{\mu^{N}}{e^{\mu} N!} & P(N)=\frac{\gamma^{N}}{I_{0}(2 \sqrt{\gamma}) N!^{2}}
\end{array}
$$

Squared Poisson

defects are gained and lost as pairs requires infinite system or periodic B.C. $\mathrm{N}=$ number of defect pairs
creation: $\mathrm{C}(\mathrm{N})=\mathrm{C}_{0}$
annihilation: $A(N)=A_{0} N^{2}$

Gil, Lega, Meunier (1990) PRA

Measured Defect Event Rates

$$
\underset{\text { empircal rates }}{\triangle \square \times}
$$

expected behavior

Single-defect effects are significant: can't leave them out!

Modified Poisson Distribution

\square accounts for both single defects and pairs
— doesn't require periodic boundary conditions
$N=$ number of positive defects
= number of negative defects
$=$ number of defects pairs

$$
\begin{aligned}
& \text { creation: } C(N)=C_{0} \\
& \text { entering: } E(N)=E_{0} \\
& \text { annihilation: } A(N)=A_{0} N^{2} \\
& \text { leaving: } L(N)=L_{0} N
\end{aligned}
$$

\square two parameters, \square and \square, determined from rate equations

$$
\begin{aligned}
& P(N)=\frac{\operatorname{gain}(N-1)}{\operatorname{loss}(N)} P(N-1) \\
& \begin{aligned}
P(N) & =\frac{E_{0}+C_{0}}{L_{0} N+A_{0} N^{2}} P(N-1) \\
& =\frac{\alpha}{\beta N+N^{2}} P(N-1)
\end{aligned} \\
& \begin{aligned}
\alpha \equiv \frac{E_{0}+C_{0}}{A_{0}} \quad \beta \equiv \frac{L_{0}}{A_{0}}
\end{aligned} \\
& P(N)=\frac{\alpha^{\frac{\beta}{2}+N}}{I_{\beta}(2 \sqrt{\alpha}) \Gamma(1+\beta+N) N!}
\end{aligned}
$$

Comparison of Distributions

Characterizing Undulations

First-order undulations:

$$
\psi(x, y)=e^{i q x}\left(A+i B e^{i p y}+i C e^{-i p y}+\cdots\right)
$$

measure q by local wavenumber technique* on Fourier-filtered (complex) data measure p by local wavenumber technique on modulus of data
measure A, B, C from local minima and maxima of \square I]

[^0]
Onset of Undulation Chaos

Undulation Wavenumber

Number of Defects

$$
\epsilon=0.17
$$

Undulation Chaos

spatial
autocorrelation

Ordered Undulations

$$
\begin{array}{r}
\square \square=0.08 \\
\square \square=0.17
\end{array}
$$

$$
S(t)=-\langle P(q, p, t) \ln P(q, p, t)\rangle
$$

$$
\text { Spectral }{ }^{7.0}{ }^{7.5}
$$

Transition to Order/Chaos Competition

Stability of Wavenumbers

Experiment
O

Δ
Simulation

\times

Galerkin

$$
\square=0.10
$$

Order and Chaos in 3-mode Ansatz

$$
\psi(x, y)=e^{i q x}\left(A+i B e^{i p y}+i C e^{-i p y}+\cdots\right)
$$

\square undulation chaos: broad C/A ordered undulations: sharp peak in C/A
— undulation chaos: B/C 1
v single Undulation Chaos image
O single Ordered Undulation image

- average for 500 images (OU \& UC)

$$
\square=0.17
$$

$$
\epsilon=0.08
$$

Tracking Defects

weight neighbors by (x, y, t)
to obtain smoothed trajectory
local linear fit with weights in (x, y, t) to obtain $v_{x}(t)$ and $v_{y}(t)$
flights: located where $\left|v_{x}\right|>1 d / \square$,
$\square X=$ displacement
$\square \mathrm{t}=$ duration

Defect Velocity and Direction

Defect Flights

defects "zip" along lines of weak convection

Defect Flight Distributions

Velocity PDFs

Defect Diffusion

$$
\begin{aligned}
& \left\langle x^{2}(t)\right\rangle-\langle x(t)\rangle^{2}=2 D_{x} t^{\alpha} \\
& \left\langle y^{2}(t)\right\rangle-\langle y(t)\rangle^{2}=2 D_{y} t^{\alpha}
\end{aligned}
$$

$\square=1$ diffusion
$\square<1$ subdiffusion
$\square>1$ superdiffusion

Conclusions

- exhibits a rich phase space with many spatiotemporally chaotic patterns
- provides for the study of spatiotemporal chaos in general and defect-turbulence in particular
- defects and undulations provide complementary descriptions
- measured defect creation and annihilation rates behave as expected, providing parameters for a modified Poisson distribution for the number of defects
- competing attractors observed for ordered undulations and undulation chaos (ordered undulations at stronger driving)
- defect motion exhibits Lévy-flight-like behavior associated with tearing of convection rolls

Outlook: Defect Turbulence

- What relationship exists between the relative position and velocity of neighboring defects?
- In intermittent phase, how do defect motions relate to the excursions between order and chaos?
- How does defect motion depend upon the local wavenumber of undulations?
- Can we obtain long-lived stable undulations in the experiment? At what (p, q, A, B, C)?
- To what extent are these results applicable to other defectturbulent systems?

Stability Balloons for Ordered Undulations

Comparing Undulations $\stackrel{\bullet}{\bullet q} \overbrace{p}^{B} \bigwedge^{A} c$

- experiment (quasistatic inscrease) (quasistatic decrease)
\square pseudospectral simulation
— square root fit
- Galerkin prediction for undulation onset

Shadowgraph Visualization

uphill

downhill

Cell Homogeneity

Cell Homogeneity

Cell Homogeneity

[^0]: * Egolf, Melnikov, Bodenschatz. PRL. 80: 3228 (1998)

