Compartmentalized Reaction-Diffusion Systems

F. Chavez

R. Kapral

```
F. Chavez and R. Kapral, Phys. Rev. E, 63, 016211 (2000)
```

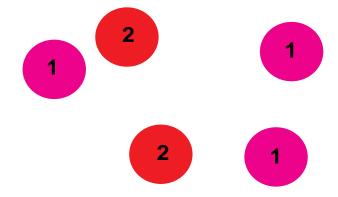
F. Chavez and R. Kapral, Phys. Rev. E, 65, 056203 (2002)

reactions often take place in

- open systems; complex reaction dynamics with feedback
- heterogeneous media with compartmentalization of species

what effects do these features have on pattern formation?

reactive compartments, each supporting one step of an autocatalytic mechanism, coupled by diffusion



example: bistable system - Schlögl model

$$k_1 \\ k_1 \\ k_2 \\ k_{-1}$$
 compartment $2: \qquad B+2X \quad \stackrel{k_2}{\rightleftharpoons} \quad 3X,$

neither step is bistable but the combined effect of both steps leads to bistability

general analysis: system with m chemically reactive species; overall reaction mechanism consists of n elementary steps

$$\sum\limits_{k=1}^{m}
u_k^{lpha}X_k\stackrel{k_{lpha}}{
ot}\sum\limits_{k=1}^{m}ar
u_k^{lpha}X_k, \qquad (lpha=1,\ldots,n)$$

 X_k , $(k=1,\ldots,m)$ are m chemical species ν_k^{α} and $\bar{\nu}_k^{\alpha}$ are stoichiometric coefficients for reaction step α

reaction-diffusion equations

$$rac{\partial ext{c}(ext{r},t)}{\partial t} = ext{D} oldsymbol{
abla}^2 ext{c}(ext{r},t) + R(ext{c}(ext{r},t)),$$

compartmentalized reaction rates on N domains

$$\mathcal{R}_k(\mathrm{c}(\mathrm{r},t)) = \sum\limits_{i=1}^N R_k^{\{lpha_i\}}(\mathrm{c}(\mathrm{r},t))\Theta_i(\mathrm{r}).$$

formal solution

$$c_k(ext{r},t) = \int_0^t \int G(ext{r},t; ext{r}_0,t_0) \mathcal{R}_k(ext{c}(ext{r}_0,t_0)) d^s ext{r}_0 dt_0 + c_k^0 + \mathcal{I}_k^\phi + D_k \mathcal{I}_k^B$$

first term accounts for the reaction rates; c_k^0 is the solution of the associated homogeneous problem; last two terms account for the initial and boundary conditions

 $G(\mathbf{r},t;\mathbf{r}_0,t_0)$ – time-dependent Green function

tough to solve; focus on volume average over domain j

$$c_{k,j}(t) = rac{1}{V_j} \int c_k(\mathbf{r},t) \Theta_j(\mathbf{r}) d^s \mathbf{r}$$

average over a domain and use a multipole expansion of the domain contributions

$$R_k^{\{lpha_i\}}(c(\mathbf{r},t))\Theta_i(\mathbf{r})pprox \left[\int d^s\mathbf{r}\; R_k^{\{lpha_i\}}(\mathbf{c}(\mathbf{r},t))\Theta_i(\mathbf{r})
ight]\delta(\mathbf{r}-\mathbf{r_i}), \quad (\mathbf{r}\in\Omega_j)$$

to obtain

$$c_{k,j}(t) = \sum\limits_{i}^{N} \int_{0}^{t} \omega_{k,ji}(t,t_{0}) R_{k}^{\{lpha_{i}\}}(ext{c}_{i}(t_{0})) dt_{0} + c_{k}^{0} + I_{k,j}^{\phi} + D_{k}I_{k,j}^{B}$$

integrals describe the effect of the reactions within domain \boldsymbol{i} on the mean concentration in domain \boldsymbol{j}

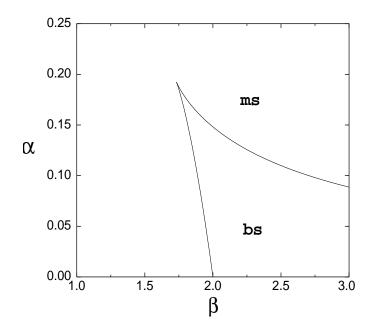
$$\omega_{k,ji}(t,t_0) = rac{1}{V_j} \int_{\Omega_j} G(\mathbf{r},t;\mathbf{r}_0,t_0) d^s \mathbf{r}_0 \; d^s \mathbf{r} \; \delta_{ji} + \int_{\Omega_j} G(\mathbf{r},t;\mathbf{r}_i,t_0) d^s \mathbf{r} \; (1-\delta_{ji})$$

Schlögl model steady state bifurcation diagram – no compartments

$$rac{dc}{dt} = k_{-2}c^3 - k_2bc^2 + k_{-1}c - k_1a = 0$$

or in scaled variables $\alpha x^3 - x^2 + \beta x - 1 = 0$ where

$$lpha = rac{k_{-2}}{k_1 a} (rac{k_1 a}{k_2 b})^{3/2}, ~~eta = rac{k_{-1}}{k_1 a} (rac{k_1 a}{k_2 b})^{1/2}.$$



geometric effects on reaction dynamics

one-dimensional medium consisting of N reactive domains of length l centered at positions x_i

stable states - time-independent RD equation in 1d

$$Drac{\partial^2 c(x)}{\partial x^2} = -\mathcal{R}(c(x))$$

type-1 domains (step 1): $c_1 = k_1 a/k_{-1}$ type-2 domains (step 2): $c_2 = k_2 b/k_{-2}$

general equations can be solved analytically for the two-domain and periodic regular array Schlögl model

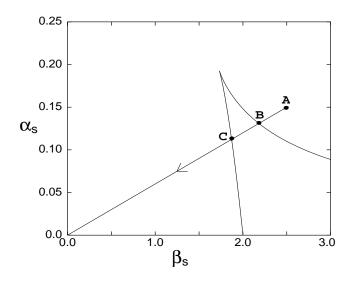
steady states are the solutions of $\alpha_s x^3 - x^2 + \beta_s x - 1 = 0$ where

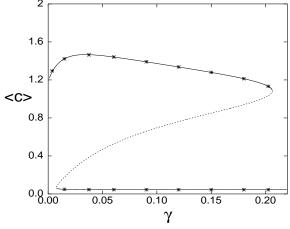
$$lpha_s = lpha \sqrt{rac{\gamma}{\gamma + k_{-1}}}. \quad eta_s = eta \sqrt{rac{\gamma}{\gamma + k_{-1}}}$$

$$\gamma = egin{cases} rac{6D}{3dl-2l^2}, & ext{fixed-concentration BC} \ rac{24dD}{l(24d^2+l^2-8dl)}, & ext{zero-flux BC}. \end{cases}$$

 \boldsymbol{l} is domain length and \boldsymbol{d} is the distance between the domain centers

induce bistability by variations of ${\it D}$ or ${\it l}$ – regular arrangement of N domains





$$lpha_s = lpha_s(k_i, a, b, \gamma) \quad eta_s = eta_s(k_i, a, b, \gamma).$$

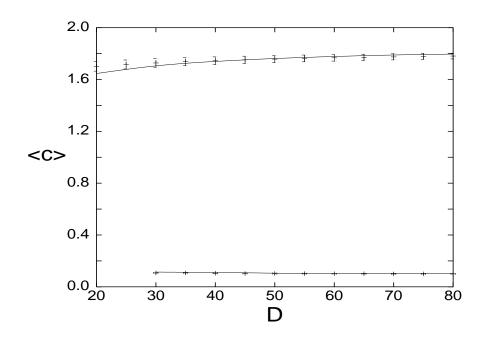
$$\gamma=24dD/l(24d^2+l^2-8dl)$$

random distribution of two types of domain — mean field approximation sum over all like domains to obtain coupled equations for their mean concentrations

$$egin{array}{lll} c_1 &=& W_{11}R^1(c_1) + W_{12}R^2(c_2) + c_0, \ c_2 &=& W_{22}R^2(c_2) + W_{21}R^1(c_1) + c_0 \end{array}$$

where

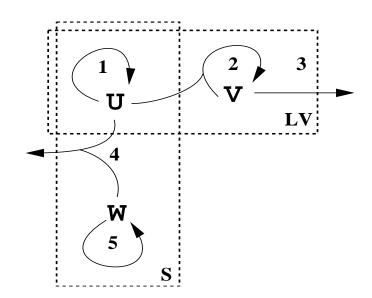
random distribution of domains — system parameters: $L=1000,\ N=50,\ l=10,\ 10$ realizations



solid line – mean field model solution of the compartmentalized RD equations

Oscillatory and Chaotic Dynamics in Compartmentalized Geometries Compartmentalized Willamowski-Rössler model

$$egin{align} (1) & A_1 + U \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} 2U \;, & (2) & U + V \stackrel{k_2}{\underset{k_{-2}}{\rightleftharpoons}} 2V \;, & (3) & A_5 + V \stackrel{k_3}{\underset{k_{-3}}{\rightleftharpoons}} A_2 \;, \ & (4) & U + W \stackrel{k_4}{\underset{k_{-4}}{\rightleftharpoons}} A_3 \;, & (5) & A_4 + W \stackrel{k_5}{\underset{k_{-5}}{\rightleftharpoons}} 2W \ & (4) &$$



Lotka-Volterra (LV) and switch (S) steps in separate compartments

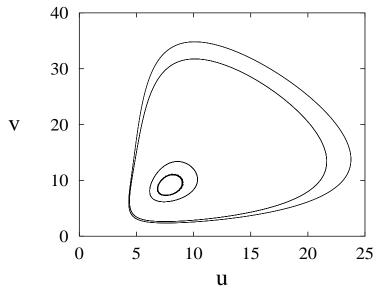
• LV domains – single stable focus; S domains – two stable nodes separated by an unstable node

1d medium of length L with alternating LV and S domains; domain length l=L/2, center-to-center inter-domain distance d=L/2; $D_u=D_v=D_w=D$; periodic BC

scaled time and length units, $t\to t/\tau$ and $x\to x/\sqrt{D\tau}$; then with $\tau=1$, D=I

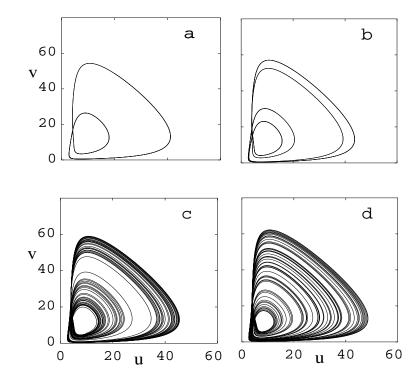
diffusion length $\ell_D=\sqrt{Dt_c}\to\sqrt{t_c/\tau}$, where t_c is characteristic time scale taken to be the period of one oscillation which lies in the range $1.5\geq t_c/\tau\geq 5$ and thus $1.2\geq \ell_D\geq 2.2$

globally averaged concentration fields projected onto the uv-plane for $k_{-2}=0.11$ and different values of L



- well-mixed WR system has a period-1 limit cycle
- ullet large L, system evolves to a stable fixed point determined by the stationary states of the independent LV and S domains
- limit cycle develops at L=0.777, as L decreases size of limit cycle grows until it resembles that of the well-mixed WR system

 $k_{-2} = 0.072$: well-mixed WR system has a chaotic attractor – system size L again plays role of bifurcation parameter



development of a chaotic attractor in the compartmentalized WR system; (a)-(d): L=0.283, 0.258, 0.2309 and 0.179

boundary conditions have important effects - integral representation

$$c_{k,j}(t) = I_{k,j}^{\phi} + D_k I_{k,j}^B + \sum\limits_{i=1}^N \int_0^t \omega_{k,ji}(t,t_0) R_k^{\{lpha_i\}}(ext{c}_i(t_0)) dt_0$$

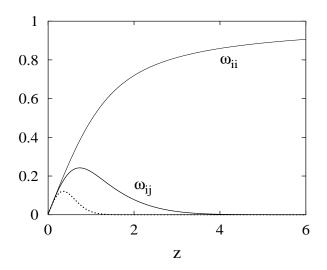
infinite system with zero concentrations at $x=\pm\infty$ – Green function is given by

$$G(x,x_0;t,t_0)=rac{e^{-rac{(x-x_0)^2}{4(t-t_0)}}}{2\sqrt{\pi(t-t_0)}}$$

prefactors are

$$egin{array}{lll} \omega_{ii}(t,t_0) &=& rac{2}{l} \sqrt{rac{t-t_0}{\pi}} \left[e^{-l^2/4(t-t_0)} - 1
ight] + ext{erf} \left(l/2\sqrt{t-t_0}
ight) \;, \ \omega_{ij}(t,t_0) &=& rac{1}{2} \left[ext{erf} \left(rac{2d_{ij}+l}{4\sqrt{t-t_0}}
ight) - ext{erf} \left(rac{2d_{ij}-l}{4\sqrt{t-t_0}} \;,
ight)
ight] \end{array}$$

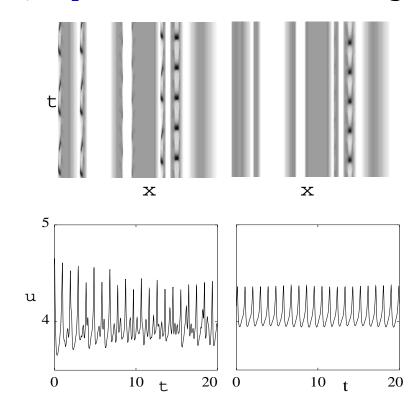
prefactors ω_{ii} and ω_{ij} as a function of z; off-diagonal term: (dotted line) a=2, (solid line) a=1



 $z=l/\sqrt{4(t-t_0)}$; a_{ij} is the distance between domains in units of the domain length ℓ , $d_{ij}=a_{ij}l$

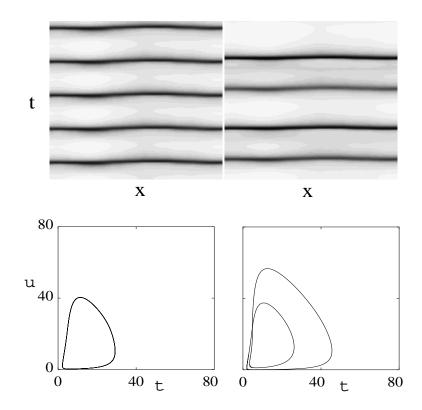
- self contributions from reactive domains are always much larger than the contributions from the neighboring domain when $t_0 \to t$, except for very small l; all prefactors tend to zero and boundaries dominate
- strong boundary effects preclude the appearance of oscillations when the reactive domains are strongly coupled

random distributions: N domains randomly chosen to be of types LV and S; if domains overlapped, overlapping regions assumed to support full WR mechanism; $k_{-2}=0.072$ in the chaotic regime



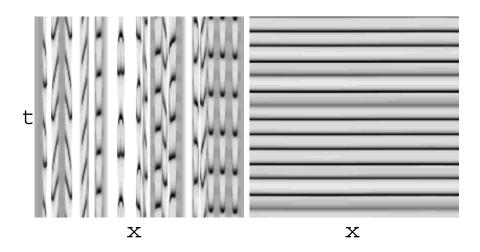
space-time plots for N=26 and L=200 (left) and L=115.47 (right); bottom – globally averaged u fields versus t – low $<\rho_C>=0.053$

Further decrease of L leads to a region of global oscillations when $L \approx \ell_D$



space-time plots for N=26 for small L: L=2.82 (left) and L=2.39 (right); (bottom) phase plane plots of the globally averaged u and v

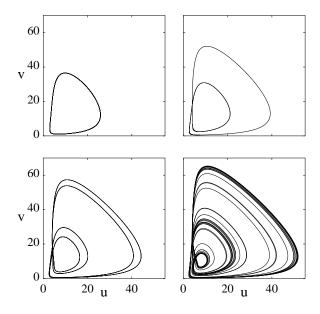
higher average density of overlapping domains $<\rho_C>=0.43$; the medium contains larger clusters of C domains and clusters close to each other tend to synchronize



space-time plots for N=80: L=200 (left) and L=0.70 (right)

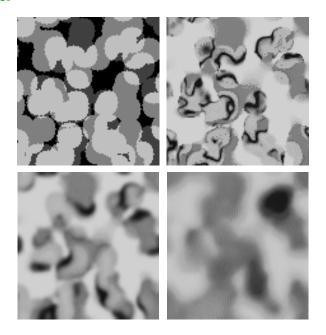
global attractors for one realization for different L

globally averaged dynamics shows a partial period doubling cascade and a chaotic attractor corresponding to the dynamics in the right panel of previous figure



phase plane plots of the globally averaged u and v fields for N=80 and L=2.0 (upper left) , 1.41 (upper right), 1.15 (lower left) and 0.70 (lower right).

two-dimensional media



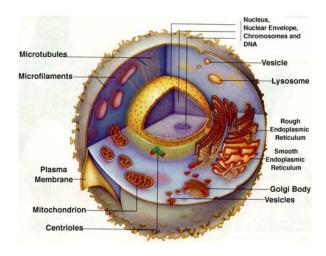
top left: One realization of the random configuration of LV, S and C domains. The domain type is color coded by shades of gray; the darkest shades correspond to inactive areas of the medium and the lightest to C-type overlapping domains. The other panels are instantaneous configurations of the u field for L=112 (top right), 35.42 (bottom left) and L=11.20 (bottom right)

magnitude of u is proportional to the intensity of gray shade

comments

- compartmentalization can influence nature of chemical dynamics and patterns
- applications to chemical patterns on catalytic surface; inhomogeneous reactor beds; reations in heterogeneous media
- extensions derivation of effective reaction-diffusion equations for heterogeneous media

biological systems



features of biochemical reactions in cells

- open systems; complex reaction dynamics with feedback
- heterogeneous media with compartmentalization of species
- some species present in very small numbers, sometimes one or a few molecules
- transport by simple diffusion, protein or other motors, etc.