

	Parameters
<u>Reaction-diffusion equations</u>	<u>Hydrodynamic equation</u>
 Diffusion coefficient of S: 0.002 Diffusion coefficient of W: 0.002 Diffusion coefficient of N: D⁰ = 0.0004 Logistic growth coefficient for N: α = 1.0 Carrying capacity: N₀ = 1.0 Nutrient consumption coefficient: k₀ = 1.0 Cut-off value: 0.015 	- Friction: $\eta = 0.01$ - Viscosity: $v = 0.01$ - Bulk viscosity: $\zeta = 0$ - Small-scale forcing: $f_0 = 0.04$ - Support of forcing in Fourier space 35 < k < 55 - Forcing is maximum at $k = 45$ - Pressure coefficient γ : 0.001
 Noise on D^N of amplitude: 0 Evaporation: λ = 0.00 Initial conditions 	 <u>Simulations</u> Time step: 0.1 Number of points: 512 x 512
 Maximum amplitude of initial condition for N: 1.00 Initial condition for W: 2.00, 3.00, 5.00, 7.00, or 10.00 Initial condition for S: 0.2, 0.4,, 1.2 	