The Final Chapter of Planet Formation

Re'em Sari (Caltech)

Peter Goldreich (Caltech & IAS) Yoram Lithwick (UCB)

Questions

- When did oligarchy end?
- What set the number of solar system planets?
- How long did it take them to form?
- Why are their orbits circular and coplanar?

Answers

- When did oligarchy end? – When $\Sigma = \sigma !!$ GENERAL RESULT
- What set the number of solar system planets?
 Stability: No wide range chaos.
- How long did it take them to form?
 - About 100 Myr at a~1AU. Faster at a~30AU !
 - More time until ejection for Uranus-Neptune.
- Why are their orbits circular and coplanar?
 Velocity damping by small bodies.

Preliminary Simulation

N=5 μ=0.0001 σ=0.25

Collide or Eject?

$$\frac{V_{esc}}{V_{orbit}} \sim \alpha^{-3/2} \left(\frac{\sigma}{\rho a}\right)^{1/3} \sim \begin{cases} 0.16 & a = 1 \text{AU} \\ 3 & a = 25 \text{AU} \end{cases}$$

$$V_{esc} = V_{orb}$$
 at $a \sim 3AU$

Collide

Eject

More Implications

- Small bodies:
 - Inner planetary region:
 - Most will be accreted.
 - MMSN is sufficient!
 - Outer solar system: ~5 MMSN to form Neptune.
- Large ejected bodies:
 - $-\sim$ 3 bodies >M_{earth} could be in Oort cloud.
 - Origin in outer planetary system
 - Survival depends on their long term stability and solar environment.

- Giant impacts:
 - Expected internal to 3AU.
 - Our moon

Orbital Regularization

- Eccentricity decays due to leftover small bodies.
 - Initial timescale = ejection (outer) or collision (inner) timescale
- Gas effects?
 - Could have helped in cooling the small bodies during oligarchy.
 - Unlikely to be present at the end stages
 - 100Myr for inner solar system
 - 1Gyr after ejection in outer solar system
 - Must rely on small bodies.
- Residual mass (of small bodies) during regularization?
 - Of order the initial mass in outer solar system
 - Perhaps somewhat smaller in inner solar system (delicate balance between accretion and shattering).

Gap Formation

- Once e decays ($e < \Delta a/a$) planet disk torque open gaps.
- Size of gap:

$$\frac{x}{a} \sim \left(\frac{M_{Planet}}{M_{Sun}}\right)^{2/5} \left(T\Omega\right)^{1/5} \approx \left(\frac{T}{1 \text{ Gyr}}\right)^{1/5}$$

- Clean-sharp or dirty-smooth gaps?
- Could we have accretion through the gaps?

Smooth Gaps?

Sharp Gaps?

- Most of the mass in small bodies.
- Optical depth is high.
- Negative "viscosity"
- Angular momentum diffuses inward.

Neptune

Uranus

Saturn

Eccentricity evolution in clean gaps

- Similar question to exoplanets.
- BUT DIFFFERENT ANSWER!

e=0.2 expansion in m & e

Planet disk interactions in gaps

Planet disk interaction in gaps

Apsidal Wave With Self Gravity

Eccentricity evolution in clean gaps

- Similar question to exoplanets.
- BUT DIFFFERENT ANSWER!
- Corotation resonance saturates.
- Relative importance of Apsidal waves:

$$\alpha_{SS} \left(\frac{x}{a}\right)^3 \left(\frac{\Omega a}{u}\right)^2 \approx \begin{cases} 10^5 & \text{planetesimal disks} \\ 0.1 & \text{gaseous disk} \end{cases}$$
$$10^2 - 10^4 \end{cases}$$

Clean Up?

- Tight limits on residual mass.
 - For a>30 AU, $M_{disk} < 10M_{earth}(a/100)^3$ Halley's 10-86
- If all bodies are very small (as we suggest):
 - Gaps are clean no accretion.
 - No ejection.
 - Cannot form the Oort cloud.
- What size is small?

 $-S_{cross} \text{ no collision in planet crossing time.}$ $S_{cross} \approx \frac{\sigma}{\rho} \left(\frac{M_{sun}}{M_{planet}} \right)^{2} \left(\frac{x}{a} \right)^{5} \approx \begin{cases} 60 \text{ km} & a \sim 1 \text{AU} \\ 1 \text{ km} & a \sim 30 \text{AU} \end{cases}$ $S_{eject} \approx \frac{\sigma}{\rho} \left(\frac{M_{sun}}{M_{planet}} \right)^{2} \approx 100 \text{ km}, \quad a \sim 30 \text{AU}$

Ejection & Oort Cloud

Gravitational Disk Instabilities

• In very cold disk:

Largest unstable wavelength

$$R_{\max} \sim \alpha^{-2} \frac{\sigma}{\rho} \approx \begin{cases} 2km & a \sim 1au \\ 100km & a \sim 30au \end{cases}$$

Quick collapse

No angular momentum lost Energy dissipates by collisions

$$S_* \sim \alpha^{-3/2} \frac{\sigma}{\rho} \approx \begin{cases} 0.05 \ km & a \sim 1au \\ 2 \ km & a \sim 30au \end{cases}$$

Meech, Hainaut and Marsden 2001

Setup for instabilities - what is s

• From Q~1:

$$u_{stab} \approx \frac{\pi G \sigma}{\Omega} \approx \begin{cases} 10 \text{ cm/s} & a \sim 1AU \\ 200 \text{ cm/s} & a \sim 30AU \end{cases}$$

• Required size for setup of such velocities:

$$s_{stab} \approx \frac{x}{a} \frac{\sigma}{\rho} \approx \begin{cases} 0.2 \text{ cm} & a \sim 1AU \\ 0.5 \text{ cm} & a \sim 30AU \end{cases}$$

• Required size for $u \sim v_H$

$$s_{u=v_H} \approx \alpha^{3/2} \left(\frac{\sigma a}{\rho}\right)^{1/2} \approx \begin{cases} 10 \text{ m} & a \sim 1AU \\ 1 \text{ m} & a \sim 30AU \end{cases}$$

Summary

Oligarchy ends when $\Sigma = \sigma$

With small bodies, last stage of isolation is fast:

Could be 0.1Myr for Uranus and Neptun Even faster for earth.

Ejection (outer) or collisions (inner). Then,

Orbital regularization by small bodies

Regularization works also in clean gaps - unlike exoplanets

Difficult (but possible) to get rid of small bodies

Gravitational instability - key player:

Reforms 1km size bodies.

Sets minimum to velocity dispersion.

May set minimum to size of particles.

Most likely - ejection by Jupiter.

Cannot form Oort cloud directly out of U-N region

Total mass too high - collision will happen first.

1km size can be ejected out of Jupiter-Saturn without collisions.

Unlikely to have sub-km bodies in Oort cloud $\Sigma \propto s^1$