The Final Chapter of Planet Formation

 Re'em Sari (Caltech)

Peter Goldreich (Caltech \& IAS)
Yoram Lithwick (UCB)

Questions

- When did oligarchy end?
- What set the number of solar system planets?
- How long did it take them to form?
- Why are their orbits circular and coplanar?

Answers

- When did oligarchy end?
- When $\Sigma=\sigma$!! GENERAL RESULT
- What set the number of solar system planets?
- Stability: No wide range chaos.
- How long did it take them to form?
- About 100 Myr at a~1AU. Faster at a~30AU !
- More time until ejection for Uranus-Neptune.
- Why are their orbits circular and coplanar?
- Velocity damping by small bodies.

Preliminary Simulation

Collide or Eject?

$$
\frac{V_{\text {esc }}}{V_{\text {orbit }}} \sim \alpha^{-3 / 2}\left(\frac{\sigma}{\rho a}\right)^{1 / 3} \sim\left\{\begin{array}{lr}
0.16 & a=1 \mathrm{AU} \\
3 & a=25 \mathrm{AU}
\end{array}\right.
$$

$$
V_{\text {esc }}=V_{\text {orb }} \quad \text { at } \quad a \sim 3 A U
$$

Collide

Eject

More Implications

- Small bodies:
- Inner planetary region:
- Most will be accreted.
- MMSN is sufficient!
- Outer solar system: ~ 5 MMSN to form Neptune.
- Large ejected bodies:
$-\sim 3$ bodies $>\mathrm{M}_{\text {earth }}$ could be in Oort cloud.
- Origin in outer planetary system
- Survival depends on their long term stability and solar environment.

- Giant impacts:
- Expected internal to 3AU.
- Our moon

Orbital Regularization

- Eccentricity decays due to leftover small bodies.
- Initial timescale $=$ ejection (outer) or collision (inner) timescale
- Gas effects?
- Could have helped in cooling the small bodies during oligarchy.
- Unlikely to be present at the end stages
- 100Myr for inner solar system
- 1 Gyr after ejection in outer solar system
- Must rely on small bodies.
- Residual mass (of small bodies) during regularization?
- Of order the initial mass in outer solar system
- Perhaps somewhat smaller in inner solar system (delicate balance between accretion and shattering).

Gap Formation

- Once e decays (e $<\Delta \mathrm{a} / \mathrm{a}$) planet disk torque open gaps.
- Size of gap:

$$
\frac{x}{a} \sim\left(\frac{M_{\text {Planet }}}{M_{\text {Sun }}}\right)^{2 / 5}(T \Omega)^{1 / 5} \approx\left(\frac{T}{1 \mathrm{Gyr}}\right)^{1 / 5}
$$

- Clean-sharp or dirty-smooth gaps?
- Could we have accretion through the gaps?

Smooth Gaps?

$$
\begin{gathered}
T_{\text {diffuse }} \sim \Omega^{-1}\left(\frac{M_{\text {sun }}}{M_{\text {Neptune }}}\right)^{2}\left(\frac{\Delta a}{a}\right)^{5} \sim 1 \mathrm{Myr} \\
T_{\text {accretion }} \sim T_{\text {isolation }}\left(\frac{\Delta a}{R_{H}}\right)^{\sim 4} \sim 100 \mathrm{Myr}
\end{gathered}
$$

Competition between diffusion and repulsion from planets

Sharp Gaps?

- Most of the mass in small bodies.
- Optical depth is high.
- Negative "viscosity"
- Angular momentum diffuses inward.

Neptune

Uranus

Saturn

Eccentricity evolution in clean gaps

- Similar question to exoplanets.
- BUT DIFFFERENT ANSWER!

$\mathrm{e}=0.2$ expansion in $\mathrm{m} \boldsymbol{\&} \boldsymbol{e}$

Planet disk interactions in gaps

Planet disk interaction in gaps

Apsidal Wave With Self Gravity

Eccentricity evolution in clean gaps

- Similar question to exoplanets.
- BUT DIFFFERENT ANSWER!
- Corotation resonance saturates.
- Relative importance of Apsidal waves:

$$
\alpha_{S S}\left(\frac{x}{a}\right)^{3}\left(\frac{\Omega a}{u}\right)^{2} \approx\left\{\begin{array}{lc}
10^{5} & \text { planetesimal disks } \\
0.1 & \text { gaseous disk }
\end{array}\right.
$$

Clean Up?

- Tight limits on residual mass.
- For a >30 AU, $M_{\text {disk }}<10 \mathrm{M}_{\text {earth }}(\mathrm{a} / 100)^{3}$ Halley's 10-86
- If all bodies are very small (as we suggest):
- Gaps are clean - no accretion.
- No ejection.
- Cannot form the Oort cloud.
- What size is small?
$-\mathrm{S}_{\text {cross }}$ no collision in planet crossing time.

$$
\begin{gathered}
S_{\text {cross }} \approx \frac{\sigma}{\rho}\left(\frac{M_{\text {sun }}}{M_{\text {planet }}}\right)^{2}\left(\frac{x}{a}\right)^{5} \approx\left\{\begin{array}{cc}
60 \mathrm{~km} & a \sim 1 \mathrm{AU} \\
1 \mathrm{~km} & a \sim 30 \mathrm{AU}
\end{array}\right. \\
s_{\text {eject }} \approx \frac{\sigma}{\rho}\left(\frac{M_{\text {sun }}}{M_{\text {planet }}}\right)^{2} \approx 100 \mathrm{~km}, \quad a \sim 30 \mathrm{AU}
\end{gathered}
$$

Ejection \& Oort Cloud

Gravitational Disk Instabilities

- In very cold disk:

Largest unstable wavelength

$$
R_{\max } \sim \alpha^{-2} \frac{\sigma}{\rho} \approx\left\{\begin{array}{cl}
2 \mathrm{~km} & a \sim 1 \mathrm{au} \\
100 \mathrm{~km} & a \sim 30 \mathrm{au}
\end{array}\right.
$$

Quick collapse
No angular momentum lost
Energy dissipates by collisions

$$
S_{*} \sim \alpha^{-3 / 2} \frac{\sigma}{\rho} \approx\left\{\begin{array}{cl}
0.05 \mathrm{~km} & a \sim 1 \mathrm{au} \\
2 \mathrm{~km} & a \sim 30 \mathrm{au}
\end{array}\right.
$$

Sizes of comets

Meech, Hainaut and Marsden 2001

Setup for instabilities - what is s

- From Q 1 :

$$
u_{\text {stab }} \approx \frac{\pi G \sigma}{\Omega} \approx \begin{cases}10 \mathrm{~cm} / \mathrm{s} & a \sim 1 A U \\ 200 \mathrm{~cm} / \mathrm{s} & a \sim 30 A U\end{cases}
$$

- Required size for setup of such velocities:

$$
s_{\text {stab }} \approx \frac{x}{a} \frac{\sigma}{\rho} \approx\left\{\begin{array}{cc}
0.2 \mathrm{~cm} & a \sim 1 A U \\
0.5 \mathrm{~cm} & a \sim 30 A U
\end{array}\right.
$$

- Required size for $u \sim v_{H}$

$$
s_{u=v_{H}} \approx \alpha^{3 / 2}\left(\frac{\sigma a}{\rho}\right)^{1 / 2} \approx\left\{\begin{array}{ccc}
10 \mathrm{~m} & a \sim 1 A U \\
1 & \mathrm{~m} & a \sim 30 A U
\end{array}\right.
$$

Oligarchy ends when $\Sigma=\sigma$
With small bodies, last stage of isolation is fast:
Could be 0.1 Myr for Uranus and Neptun Even faster for earth.
Ejection (outer) or collisions (inner). Then,
Orbital regularization by small bodies
Regularization works also in clean gaps - unlike exoplanets
Difficult (but possible) to get rid of small bodies
Gravitational instability - key player:

Reforms 1km size bodies.

Sets minimum to velocity dispersion.
May set minimum to size of particles.
Most likely - ejection by Jupiter.
Cannot form Oort cloud directly out of U-N region
Total mass too high - collision will happen first.
1 km size can be ejected out of Jupiter-Saturn without collisions.
Unlikely to have sub-km bodies in Oort cloud $\Sigma \propto s^{1}$

