From searches to precision measurements (Part I)

The Standard Model of Particle Physics

- The Standard Model of particle physics is a powerful theory that describes three of the four known fundamental forces in the universe and classifies all known elementary particles.
 - Higgs boson discovery in 2012 at the LHC
 - Wonderful agreement with experiments
- Even with such a successful description of Nature, a few, but major, pieces are missing in the puzzle:
 - Neutrino masses (and flavour oscillation) not predicted
 - Matter-antimatter imbalance
 - Unification of forces
 - No gravity
 - Missing dark matter/energy candidates
 - Hierarchy problem

But...

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2020

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	D ⁻¹] Limit	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ \geq 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ \hline \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4j\\ \\ -\\ 2j\\ \geq 2j\\ =3j\\ -\\ eI\\ 2j/1J\\ \geq 1b, \geq 1J\\ \geq 2b, \geq 3 \end{array}$	Yes - - - - Yes /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{SSM}\; W' \to \tau\nu \\ \mathrm{HVT}\; W' \to WZ \to \ell\nu qq \ \mathrm{mod} \\ \mathrm{HVT}\; V' \to WV \to qqqq \ \mathrm{mod} \\ \mathrm{HVT}\; V' \to WV \to qqqq \ \mathrm{mod} \\ \mathrm{HVT}\; V' \to WH / ZH \ \mathrm{model}\; \mathrm{B} \\ \mathrm{HVT}\; W' \to WH \ \mathrm{model}\; \mathrm{B} \\ \mathrm{LRSM}\; W_R \to tb \\ \mathrm{LRSM}\; W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ el \ B 1 \ e, \mu \\ el \ B 0 \ e, \mu \\ multi-channe \\ 0 \ e, \mu \\ multi-channe \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 \\ - \\ 2 j / 1 J \\ 2 J \\ el \\ \geq 1 b, \geq 2 \\ el \\ 1 J \end{array}$	– – Yes Yes Yes J	139 36.1 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 4.1 TeV $\Gamma/m = 1.2\%$ W' mass 6.0 TeV W' mass 3.7 TeV W' mass 3.8 TeV $g_V = 3$ V' mass 2.93 TeV $g_V = 3$ V' mass 2.93 TeV $g_V = 3$ V' mass 3.2 TeV $g_V = 3$ W' mass 3.25 TeV $g_V = 3$ We mass 5.0 TeV $m(N_R) = 0.5$ TeV, $g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 1801.06992 2004.14636 1906.08589 1712.06518 CERN-EP-2020-073 1807.10473 1904.12679
CI	CI qqqq CI ℓℓqq CI tttt	 ≥1 e,μ	2 j 	– – j Yes	37.0 139 36.1	$ \begin{array}{c c} \Lambda & & & & & \\ \hline \Lambda & & & & & \\ \hline \Lambda & & & & & \\ \hline \Lambda & & & & & & \\ \hline \Lambda & & & & & & \\ \hline \Lambda & & & & & & \\ \hline 2.57 \text{ TeV} & & & & C_{4t} = 4\pi \end{array} $	1703.09127 CERN-EP-2020-066 1811.02305
DM	Axial-vector mediator (Dirac D Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac D	M) 0 e, μ c DM) 0 e, μ 0 e, μ M) 0-1 e, μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1711.03301 1711.03301 1608.02372 1812.09743
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes – Yes	36.1 36.1 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe X $2(SS)/\geq 3 e,$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el el $\mu \ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 4 \text{ j}$	j Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass1.37 TeVSU(2) doubletB mass1.34 TeVSU(2) doublet $T_{5/3}$ mass1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ Y mass1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass1.21 TeV $\kappa_B = 0.5$ Q mass690 GeV	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton γ^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV only u^* and d^* , $\Lambda = m(q^*)$ q* mass 5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$ b* mass 2.6 TeV $\Lambda = 3.0 \text{ TeV}$ ℓ^* mass 3.0 TeV $\Lambda = 3.0 \text{ TeV}$ ν^* mass 1.6 TeV $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	1 <i>e</i> , μ 2 μ 2,3,4 <i>e</i> , μ (St 3 <i>e</i> , μ, τ - - - - - - - - - - - - - - -	≥ 2 j 2 j S) - - - - √s = 1 full d	Yes 3 TeV lata	79.8 36.1 36.1 20.3 36.1 34.4	N° mass560 GeVN _R mass3.2 TeVH** mass870 GeVH** mass400 GeVH** mass400 GeVMulti-charged particle mass1.22 TeVmonopole mass2.37 TeV10^{-1}110Mass scale [TeV]	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Where to look?

LHC (and future colliders) offer a unique place where to look directly for new particles.

Direct BSM searches

٠

- A plethora of kinematic regions and possible new resonances from heavy particles
- **Precision measurements of SM**
 - Each deviation could be an hint of new physics!
- Other focused experiments give alternative and fundamental opportunities!

- Many extension of the Standard Model predict new particles decaying into pair of SM particles (e.g. fermions, bosons, Higgs)
 - Composite models: X'—> W/Z +H
 - Extra dimensions : eg. Graviton—> HH
 - Supersymmetry models: new Higgses decaying to ZH

Look for a peak on a smooth background

What if?

• While the presence of resonances is the most dramatic signal for new phenomena, they may be too heavy or broad to be clearly seen at the LHC.

• We can still look for this type of new phenomena in tails of distributions at the LHC

Resonance searches vs cross-section measurements

- At the LHC we can do more than searching for bumps !!
- Because of remarkable progresses in:
 - pdf determination
 - high-order calculations
 - precise MC generators
 - analysis techniques

• Precision is not bureaucratic certification of SM success ! Exciting tool to discover BSM indirectly. Same chance of success as direct search strategy used to have.

At the LHC now:

• W boson mass

Directly

Physics:

• Higgs coupling

Search for New

Search for New Physics:

Indirect searches for New physics

Analysis strategies

- Trying to look for a small enhancement rather than a bump
 - to get a better S/sqrt(B) more ML methods are often used
- Systematics become important even at high mass

- Framework
- Non-resonant signals ==> which framework to use?
 - EFT? which flavor?

The EFT approach to New Physics

- In absence of new particles, the SM can be considered as an effective lowenergy theory.
- Any Beyond Standard Model physics can be thought of as modifications of the interactions containing only SM fields
- Assuming that the SM describes physics well in the energy range up to the scale Λ and new physics occurs only above that scale, the physics phenomena can be described by an effective Lagrangian

Classify the effect of any beyond SM model using operators with D > 4

$$\mathcal{L} = \mathcal{L}_4^{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$
$$\frac{1}{\Lambda^2} \mathcal{L}_6 \to \left(\frac{E}{\Lambda}\right)^2 \qquad \frac{1}{\Lambda^4} \mathcal{L}_8 \to \left(\frac{E}{\Lambda}\right)^4$$

For large scales $E/\Lambda \ll 1$, only operators with lower mass dimension will matter.

$$\begin{split} \mathcal{L}^{\text{eff}} &= \mathcal{L}_{\text{SM}} - \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots \\ & c_i^{(D)} \simeq \frac{(\text{coupling})^{n_i - 2}}{(\text{high mass scale})^{D - 4}} \end{split}$$

Approaches for an EFT interpretation

Similar to what we do in searches

Bottom-Up

(most common for combinations)

Experimental outputs

1.single process cross section under SM assumptions

- 2. one (or more) observable differential distribution affected by multiple processes (typically with SM assumption of the rest of the kinematics)
- 3. binned sub-process cross sections (SM assumptions in each bin) ==> STXS in Higgs ==> see Haider's talk
- 4. single-process cross-section per EFT operator
 - limited to a certain list of EFT operators
 - dedicated EFT measurements by experiments

5.dedicated EFT operator extraction by experiments

- pros: use full detector information, can be most optimal and correct
- cons: limited to pre-defined list of operators, no alternative reinterpretation
- questions: what information required to include in global fits?
- How do we move from searches to this? What are the differences?

Example 1: From VBF diboson analysis to VBS analysis

Example 1: From VBF diboson analysis to VBS analysis

Phys. Rev. D 100 (2019) 032007

- Tagging jets: large pT, large $\Delta \eta$
- The main experimental challenges are similar to those faced in the previous searches

Uncertainty source	σ_{μ}					
Total uncertainty	0.41					
Statistical	0.20					
Systematic	0.35					
Theoretical and modeling	uncertainties					
Floating normalizations	0.09					
Z + jets	0.13					
W + jets	0.09					
$tar{t}$	0.06					
Diboson	0.09					
Multijet	0.04					
Signal	0.07					
MC statistics	0.17					
Experimental uncertainties						
Large- R jets	0.08					
Small- R jets	0.06					
Leptons	0.02					
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.04					
b-tagging	0.07					
Pileup	0.04					
Luminosity	0.03					

Example 1: From VBF diboson analysis to VBS analysis

- Traces of heavy states from Beyond Standard Model Physics can be parameterized in terms of the Effective Field Theory (EFT) approach.
- ATLAS did not provide EFT limits but the corresponding CMS analysis did
- Limits on aQGCs are set via EFT approach. Dimension-8 operators that can modify VVjj production through aQGCs are considered; one at a time

Other possibilities: VH boosted Source of uncertainty Avg. impact 0.372Total 0.283Statistical Boosted VH (semile-ptonic) also started as a resonance Systematic 0.240Experimental uncertainties analysis Small-R jets 0.038Large-R jets 0.133Different approaches to reinterpret Higgs measurements $E_{\rm T}^{\rm miss}$ 0.007searching for BSM effects using the EFT framework Leptons 0.010*b*-jets 0.016*c*-jets 0.011In general, sensitivity to different types of operators from b-tagging ٠ light-flavour jets 0.008 different kinematic distributions extrapolation 0.004Pile-up 0.001Luminosity 0.013STXS in the 3rd generation with $VH \rightarrow bb$ with Sensitivity ٠ Theoretical and modelling uncertainties to Higgs pT above 300 GeV and mjj above 700 GeV Signal 0.038Backgrounds 0.100 $\hookrightarrow Z + jets$ 0.048 $\hookrightarrow W + \text{jets}$ 0.058 $\hookrightarrow t\bar{t}$ 0.035 \hookrightarrow Single top quark 0.027 \hookrightarrow Diboson 0.032 \hookrightarrow Multijet 0.009MC statistical 0.092 $B^{ m H}_{ m bb} imes B^{ m V}_{ m lep}$ [fb] $\sigma_{ m i} imes B_{ m bb}^{ m H} imes B_{ m lep}^{ m V}$ [fb] 12**⊢ATLAS** ATLAS VH, $H \rightarrow bb$, $V \rightarrow leptons$ cross-sections **Boosted VH. H** - Stat. unc. - Stat. unc. √s=13 TeV, 139 fb⁻¹ Observed - Tot. unc. Observed Tot. unc. 10[|] √s=13 TeV, 139 fb⁻¹ 10³ Expected Theo. unc Expected Theo. unc. 8 V = WV = ZV = WV = Z 6 10² х б 4⊢ 10 Ŧ 0 Ratio to SM Ratio to SM 1.5 0.5 150 ~ p^{W,t} ~ 250 GeV P, t 250 GeV 75 ~ p^{Zt} 150 Gev P^{2,t} 250 GeV 150 5 p² (7 50 GeV 250 < p^{W,t} T < 400 GeV Pr, 400 GeV P^{2,t} T → 400 GeV 250 ~ P_7 ~ 400 GeV

Phys. Lett. B 816 (2021) 136204

Other possibilities: VH boosted

- Boosted VH (semile-ptonic) also started as a resonance analysis
- Different approaches to reinterpret Higgs measurements searching for BSM effects using the EFT framework
 - In general, sensitivity to different types of operators from different kinematic distributions
 - STXS in the 3rd generation with VH → bb with Sensitivity to Higgs pT above 300 GeV and mjj above 700 GeV

Wilson coefficient	Operator	Impacted vertex		
		Production	Decay	
C _{HWB}	$O_{HWB} = H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	HZZ		
c_{HW}	$O_{HW} = H^{\dagger} H W^{I}_{\mu\nu} W^{\mu\nu}_{I}$	HZZ, HWW		
c_{Hq3}	${\cal O}^{(3)}_{Hq} = (H^\dagger i \overleftrightarrow{D^I_\mu} H) (\bar{q}_p \tau^I \gamma^\mu q_r)$	qqZH,qq'WH		
c_{Hq1}	$O^{(1)}_{Hq} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{q}_p\gamma^{\mu}q_r)$	qqZH		
C _{Hu}	$O_{Hu} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{u}_p\gamma^{\mu}u_r)$	qqZH		
C _{Hd}	$O_{Hd} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{d}_p\gamma^{\mu}d_r)$	qqZH		
C _{dH}	$O_{dH} = (H^{\dagger}H)(\bar{q}dH)$		Hbb	

arXiv:1908.06980

NOTE THE CHANGE ON THE X-AXIS

VH fully hadronic resonance analysis

- Basic Idea: Discriminate W/Z/H jets from quark/gluon background jets and hunt for 'bumps' on an otherwise smoothly falling mVH background.
- Primary Tools (H/W/Z Tagging):
 - Jet Mass

•

•

- Jet Substructure (D2)
 - Select for W/Z two-pronged structure
- Jet Ntrk
 - Reject gluon jets which have higher track multiplicity
- B-tagging
 - Pick out H->bb decays.
 - Variable Radius (VR) Track Jets $H \rightarrow bb^-$
- Background Estimation:
 - Use low-purity selection of events with 0 b-tags to produce background estimations with high statistics for 1/2-tag SR channels.

EFT search in VH resonance analysis

- Started looking at delphes to see if analysis looked promising in the fully hadronic final state
 - With no systematic limits on wilson coefficients are very good ==> comparable with semileptonic final states
- Need to be very careful about how to estimate the background and its uncertainty

Discussion points

- Variables and binning:
 - What variables to measure (in case of unfolded distributions)
 - Which are the most sensitive to EFT parameters?
 - Often only most obvious variables, correlated with the centre-of-mass energy are used
 - Useful to receive feedback on other interesting distributions (angular variables, 2 D distributions)

Discussion points

- Tools? What is the best approach to interpolate between EFT !=0 points?
 - MC@NLO, aMC@NLO (reweighting, possibility to generate single terms), etc...
- Theory uncertainties on tails
- \cdot On the SM predictions :
 - Are EFT effects large where SM corrections are also large (large energy spread)?
- On the EFT predictions:
 - Higher order in the SM couplings
 - Higher order in Λ
 - Scale (running) and PDF uncertainties (PDF at LO/NLO/NNLO)
 - EFT contribution to background
 - Scaling the EFT contribution as the SM?

EFT validity

EFT amplitudes grow with MVV and this growth is unphysical above a certain scale Λ ; this sets the limit of validity of EFT approach

Clipping? removing EFT signals above a certain threshold on truth level

- easiest to implement but not well studied
- Above Λ , since the data is consistent with SM, we replace prediction of EFT amplitudes with SM in that region; this leads to conservative bounds on EFT Wilson coefficients
- · With this method we would loose most of the sensitivity

From CMS:

 For aggc simulation, events violating unitarity (vary with operator values) are rejected ~ max 80% (WW) & max 50%(WZ). Data & SM processes are not affected.

 $W^{\pm}W^{\pm}$ & WZ with considering unitarity bounds

	Observed ($W^{\pm}W^{\pm}$) (TeV ⁻⁴)	Expected ($W^{\pm}W^{\pm}$) (TeV ⁻⁴)	Observed (WZ) (TeV ⁻⁴)	Expected (WZ) (TeV ⁻⁴)	Observed (TeV^{-4})	Expected (TeV ⁻⁴)
f_{T0}/Λ^4	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
$f_{\rm T1}/\Lambda^4$	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69, 0.97]	[-0.94, 1.3]
$f_{\rm T2}/\Lambda^4$	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6, 3.1]	[-2.3, 3.8]
$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11, 12]	[-15, 15]
$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15, 14]	[-18, 20]
$f_{\rm M6}/\Lambda^4$	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22, 25]	[-31, 30]
$f_{\rm M7}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16, 18]	[-22, 21]
$f_{\rm S0}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34, 35]	[-31, 31]
$f_{\rm S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86, 99]	[-91, 97]

W[±]W[±] & WZ without considering unitarity bounds

	Observed (W [±] W [±]) (TeV ⁻⁴)	Expected (W [±] W [±]) (TeV ⁻⁴)	Observed (WZ) (TeV ⁻⁴)	Expected (WZ) (TeV ⁻⁴)	Observed (TeV ⁻⁴)	Expected (TeV ⁻⁴)
$f_{\rm T0}/\Lambda^4$	[-0.28, 0.31]	[-0.36, 0.39]	[-0.62, 0.65]	[-0.82, 0.85]	[-0.25, 0.28]	[-0.35, 0.37]
$f_{\rm T1}/\Lambda^4$	[-0.12, 0.15]	[-0.16, 0.19]	[-0.37, 0.41]	[-0.49, 0.55]	[-0.12, 0.14]	[-0.16, 0.19]
f_{T2}/Λ^4	[-0.38, 0.50]	[-0.50, 0.63]	[-1.0, 1.3]	[-1.4, 1.7]	[-0.35, 0.48]	[-0.49, 0.63]
$f_{\rm M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]	[-5.8, 5.8]	[-7.6, 7.6]	[-2.7, 2.9]	[-3.6, 3.7]
$f_{\rm M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]	[-8.2, 8.3]	[-11, 11]	[-4.1, 4.2]	[-5.2, 5.5]
$f_{\rm M6}/\Lambda^4$	[-6.0, 6.5]	[-7.5, 7.6]	[-12, 12]	[-15, 15]	[-5.4, 5.8]	[-7.2, 7.3]
$f_{\rm M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]	[-10, 10]	[-14, 14]	[-5.7, 6.0]	[-7.8, 7.6]
$f_{\rm S0}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]	[-19, 19]	[-24, 24]	[-5.7, 6.1]	[-5.9, 6.2]
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-30, 30]	[-38, 39]	[-16, 17]	[-18, 18]

Analysis strategies and experimental outputs (I)

- Differential measurements and the best choice of observables for reinterpretation
 - pros: general-purpose information open for reinterpretation
 - cons: not necessarily optimal information, measured under SM assumption
 - questions: are SM assumption important?
- two approaches:
 - Fiducial differential measurements:
 - pros: matched to experimental phase-space \Rightarrow least model-dependent
 - cons: no separation of subprocesses; usually 1D or 2D, difficult to combine
 - Binned sub-process cross sections (e.g. STXS in Higgs)
 - pros: separated sub-processes; global binning based on multiple variables
 - cons: more model-dependence; coarser binning
 - questions: how to address "unfolding" uncertainties ? treatment of bkg ?

Analysis strategies and experimental outputs (II)

• Most of the analysis are limited by the MC modeling

• Would it help to measure a simplified cross section in searches sidebands? From BSM to SM:

- Precision Standard Model cross-sections are **usually (there are exceptions)** performed in phase-spaces which are not so sensitive to BSM physics (e.g. Z boson mass peak)
 - SM MC predictions in 'exotic' phase spaces are less well known
- → Exotic Cross Sections:
 - cross-section of final-state, rather than one particular process
 - Useful for theory community to reinterpret ATLAS results with their models ==> Is this true?
 - Particle-based fiducial cross-section measurements are good way to get Monte Carlo generators that describe our final state.
- Why not measure in extreme phase space of control region of particular searches ?
 - → Would allow to tune MC in new phase space corners e.g. Met+jets, MET+ttbar, ttbar+HF, W+HF, large multiplicity physics objects.

Exotic cross-section

- Standard Model fiducial cross section for a particular process
- Same basic formula for exotic cross section:
 - Treat multi-jet processes / fake leptons as background
 - Other SM processes are signal
- Updated definition of C to account for multiple SM processes, i
- not covered by existing SM analyses
- Could be measured inclusively or differentially
- Good agreement with SM + data in control plots would be demanded
- In addition to uncertainties detailed in original analysis would need to evaluate theoretical and modeling uncertainties on the cross section

$$\frac{1}{C} = \sum_{i}^{N} \frac{\sigma_i}{\sigma_{total}} \cdot \frac{1}{C_i}$$

LeptoQuark analysis

- Pair-produced LeptoQuark analysis
- New J. Phys. 18 (2016) 093016 [paper]
- Final state of interest
- 2 leptons + 2 jets
- Unfold and extract cross section in CR:
 - Z CR where m_ll is compatible with the Z
 - tt bar CR
- Produce correction factor, C, using tt⁻ and Z→µµ MC (fiducial measurement)
 - inclusive: i.e. one value of C per MC
 - differential measurement would also be possible in the future
 - Include all systematics
 - MC theoretical uncertainties such as scale and PDF variations
- Theoretical cross section uncertainty important when adding C factors
- Other interesting final states are the DarkMatter ones:
 - Missing $E_T + b$
 - Missing E_T+bb

Other possibilities: control regions in diboson analysis

- Many diboson exotics analysis use control regions
- Defined as mJ sidebands
- Allows to really constrain W+jets and t tbar modeling and normalization systematics
- Different phase spaces give different constraints: Resolved, Boosted and VBF
- W+jets normalization constrained to 3%

Summary of first part

- Naturalness and Dark Matter point to new physics in reach of the LHC
 - Higher energy, more luminosity
 - Goal: discover new physics if it is in our data (only 5% of the overall project luminosity analyzed)
- At the LHC we can do more than searching for bumps !!
- Start looking at tails!
 - This needs some thoughts both on the framework side and on the analysis strategies
 - More on the STXS from Haider!

EFT on VV, VVjj

$$\mathcal{L}^{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_{i} rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j} rac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

n=5,7 : violate lepton number

- Full-lep
- (Full-had)

- Full-lep
- Full-had

Operators

	$1: X^3$		2	$2: H^6$		$3:H^4D^2$		$5:\psi^2 H^3 + \text{h.c.}$	
	Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$Q_{H\Box}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
Gauge	$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_\mu G^{B ho}_ u G^{C\mu}_ ho$			Q_{HD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	$) Q_{uH}$	$(H^{\dagger}H)(ar{q}_{p}u_{r}\widetilde{H})$	
Fields	Q_W	$\epsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$		Hie	ggs		Q_{dH}	$(H^{\dagger}H)(ar{q}_p d_r H)$	
	$Q_{\widetilde{W}} \mid \epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$			Fields					
_		$4: X^2 H^2$		$6:\psi^2 XH$	f + h.c.	fermion	$7:\psi^2 H^2$	D	
	Q_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	\cdot $(\bar{l}_p \sigma^{\mu\nu} e$	$e_r) au^I H W$	$Q^{I}_{\mu u} \qquad Q^{(1)}_{Hl}$	$(H^{\dagger}i\hat{I})$	$\vec{D}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$	
	$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^\mu)$	$^{ u}e_{r})HB_{\mu}$	$_{ u} \qquad \qquad Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_{\mu}H)(\bar{l}_{p} au^{I}\gamma^{\mu}l_{r})$	
Gauge	Q_{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$\left \left(\bar{q}_p \sigma^{\mu \nu} T \right) \right $	$(\Gamma^A u_r) \widetilde{H} $	$G^A_{\mu u} \qquad Q_{He}$	$(H^{\dagger}i\overleftarrow{L})$	$\overrightarrow{O}_{\mu}H)(\overline{e}_p\gamma^{\mu}e_r)$	
&	$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$q = \left(\bar{q}_p \sigma^{\mu\nu} q \right)$	$(u_r) au^I \widetilde{H} W$	$V^I_{\mu u} \qquad \qquad Q^{(1)}_{Hq}$	$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r)$	
Higgs	Q_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu n})$	$^{ u}u_r)\widetilde{H}B_{\mu}$	$_{\mu u}$ $Q^{(3)}_{Hq}$	$(H^{\dagger}i\overleftrightarrow{D})$	${}^{I}_{\mu}H)(ar{q}_{p} au^{I}\gamma^{\mu}q_{r})$	
Fields	$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$\left(\bar{q}_p \sigma^{\mu u} \right)$	$(\Gamma^A d_r) H Q$	$G^A_{\mu u} \qquad \qquad Q_{Hu}$	$(H^{\dagger}i\overleftarrow{L})$	$\overrightarrow{\partial}_{\mu}H)(\overline{u}_{p}\gamma^{\mu}u_{r})$	
	Q_{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	Q_{dW}	$\left \left(\bar{q}_p \sigma^{\mu u} \sigma^{\mu $	$(d_r) \tau^I H W$	$V^{I}_{\mu u} \qquad Q_{Hd}$	$(H^{\dagger}i\overleftarrow{L})$	$\overrightarrow{\partial}_{\mu}H)(\overline{d}_{p}\gamma^{\mu}d_{r})$	
	$Q_{H\widetilde{W}B}$	$H^{\dagger} au^{I} H \widetilde{W}^{I}_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu})$	$^{ u}d_{r})HB_{\mu}$	$_{\mu u} \qquad \qquad Q_{Hud} + { m h.c.}$	$i(\widetilde{H}^{\dagger}L)$	$(\bar{u}_p \gamma^\mu d_r)$	

Object performance

•H \rightarrow bb tagging in ATLAS matched pairs of b-tagged R = 0.2 track jets to R = 1.0 jets

Breaks down at high pT as b-hadron decays
 overlap → switch to variable-radius (VR) jets

 or CenterOfMass jets: Boost to Higgs frame to reconstruct two subjets

•CMS: DeepCSV algorithm ==> deep neural network applied to small or large R jets by providing information on tracks and secondary vertices associated with the jet input.

- CMS: PFlow jets with Nsubjettiness
- •ATLAS: new TCC jets to combine calorimeter info with superior angular resolution of trackers. ATL-PHYS-PUB-2017-010

VH operators

arXiv:2008.02508

Wilson coefficient	Operator	Impacted vertex		
		Production	Decay	
C _{HWB}	$O_{HWB} = H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	HZZ		
c_{HW}	$O_{HW} = H^{\dagger} H W^{I}_{\mu\nu} W^{\mu\nu}_{I}$	HZZ, HWW		
c _{Hq} 3	${\cal O}_{Hq}^{(3)} = (H^\dagger i \overleftrightarrow{D_\mu^I} H) (\bar{q}_p \tau^I \gamma^\mu q_r)$	qqZH, qq'WH		
c_{Hq1}	${\cal O}^{(1)}_{Hq}=(H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{q}_p\gamma^{\mu}q_r)$	qqZH		
c_{Hu}	$O_{Hu} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{u}_p\gamma^{\mu}u_r)$	qqZH		
c_{Hd}	$O_{Hd} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{d}_p\gamma^{\mu}d_r)$	qqZH		
c _{dH}	$O_{dH} = (H^{\dagger}H)(\bar{q}dH)$		Hbb	

- CHq(3) probes the high ptW/H bin
- The other operators grow more slowly with s that does CHq(3) but we should still expect an improvement when adding a high pT bin.
- Note that this paper uses the linearized approach, i.e. only the term linear in the EFT coefficient is included
- if you square the amplitude (which generates pieces quadratic in the eft coefficient) you get a larger effect

From searches to precision measurements

EFT limits using Higgs measurements

Viviana & Haider April 27th, 2021 KITP

Higgs boson & discovery

- In 2012, discovery of a new particle by the ATLAS and CMS collaborations
- Initial studies showed the particle was consistent with the SM Higgs
- A new sector to understand and probe for new physics
 - Results were mostly of inclusive properties + statistically limited
- Some early data/MC differences, but no conclusive evidence

Focus of Run 2

- LHC delivered an unprecedented amount of data between 2015-2018
 - Collision energy changed to 13 TeV ~ 2.3x increase in the Higgs production XS
- Coupled with: •
 - Better understanding of the detector \rightarrow eg. Improved reconstruction
 - Advanced analysis techniques \rightarrow eg. Machine learning
- - Improved theoretical predictions \rightarrow eg. N3LO for ggF
- Precision measurements of the Higgs boson! •
 - Inclusive/ggF Higgs XS ~ 7% precision, others at O(10%)

What can we do with it?

- · Measure the fundamental parameters as well as possible
- · Feedback to improve our theoretical predictions
 - · Previously acceptable approximations not good enough with increased experimental precision

What can we do with it?

• But hints of new physics might lie in the same places

What measurements can we do?

Inclusive XS

Best precision

but no sensitivity to any new physics that leaves the overall XS unchanged

Production XS

New channels available with more data, but level of granularity still can cause tail effects to washout **Differential XS**

Least dependant on SM & more bins but hard to combine and limited to few variables

Simplified Template XS (STXS)

- With larger dataset, opportunity to make new measurements
- Combine the best parts of production modes and differential XS STXS measurements
- Motivations for STXS:
 - Factorize out phase spaces that are difficult to compute theoretically
 - Target regions where new physics is most likely to show up
 - Simplify combination between measurements in various decay channels
 - Limit model dependancy to only one STXS bin relationship between bins are free from SM assumption

Simplified Template Cross-Section

STXS merging

- · Scheme is designed with 300/fb of data and sensitivity for all channels in mind
 - Typically merge bins that one analysis can't measure with the intention of undoing this when combining other channels in future

Example of bin merging for ATLAS H \rightarrow ZZ \rightarrow 4I analysis

Higgs - Why $H \rightarrow ZZ \rightarrow 4I$?

- H4I: 'The Golden Channel'
 - Fully leptonic final state → Precise measurement
 - Fully reconstructable → Resolution ~ O(2GeV)
- The cost: low statistics
 - Branching ratio is small $H \rightarrow 4I \sim O(0.01\%)$
- Saving Grace:
 - Very small backgrounds → S/B ~ 2.4

H4I Analysis

- Usual optimization of cuts, background estimations, statistical modelling
- Extension to STXS amounts to just categorizing the events and measuring XS

Mirror STXS bins on the analysis side

H4I Results

- Extract nominal STXS results •
 - Interpret them in the SMEFT formalism in Warsaw basis
 - Limit to dimension 6 operators that this analysis is • sensitive to

EFT

Deconstruct what went into making this in the • upcoming slides

11

Designing the analysis

- In $H \rightarrow ZZ \rightarrow 4I$ decay, sensitivity comes from both the decay and • the production
 - Goal for EFT interp: Measure each production mode as • BSM like phase space

σ/σ_{SM}

1.8

1.6

H→ZZ*→4I

ATLAS Simulation Work in Progress

p < 60 GeV

0.01

с_{НG}

ML - 2jet example

- H+2jet topology is particularly sensitive to many EFT operators
 - Various topologies contribute Have to optimize for all of them, ML techniques

- Use reconstructed Higgs and jet kinematics to make a multi-dimensional rNN classifier
 - Limited by having no ME level generators for H+3j at NLO & theory prediction large uncertainties
 - · Can't rely on parton showers either

EFT interpretation: Parametrization

Parametrize all the ingredients

- $\sigma * \mathrm{BR}_{4l} = \sigma * \frac{\Gamma_{4l}}{\Gamma_{\mathrm{Total}}}$
- Actual impact of operators on the XS can have a linear (interference) or a quadratic term (Pure BSM)
 - · With current sensitivity, cannot ignore the quadratic term and need to include both

$$\sigma \propto |\mathcal{M}_{\rm SMEFT}|^2 = \left|\mathcal{M}_{\rm SM} + \sum_i \frac{C_i}{\Lambda^2} \mathcal{M}_i\right|^2 = |\mathcal{M}_{\rm SM}|^2 + \sum_i 2Re\left(\mathcal{M}_{\rm SM}^* \mathcal{M}_i\right) \frac{C_i}{\Lambda^2} + \sum_{ij} 2Re\left(\mathcal{M}_i^* \mathcal{M}_j\right) \frac{C_i C_j}{\Lambda^4},$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$= \int_{i}^{i} \frac{\sigma^p(\vec{c})}{\sigma_{\rm SM}^p} = 1 + \sum_i A_i^p c_i + \sum_{ij} B_{ij}^p c_i c_j,$$

$$+ \qquad \mathcal{B}^{4\ell}(\vec{c}) = \frac{\Gamma^{4\ell}(\vec{c})}{\Gamma^{\rm tot}(\vec{c})} = \mathcal{B}_{\rm SM}^{4\ell} \cdot \frac{1 + \sum_i A_i^{4\ell} c_i}{1 + \sum_j B_{ij}^{4\ell} c_i c_j},$$

- Caveat: EFT predictions are not at the same precision as SM ones SM ggF is N3LO, while EFT is NLO
 - Parametrize the ratio of BSM XS/SM XS within an EFT model and multiply with the best known SM
- This makes calculating theory uncertainty difficult How do we mix NLO errors on the ratio with N3LO errors on SM prediction?
 - Currently, assume the ratio uncertainties cancel out, but that is most likely not true as EFT operators will introduce new terms in the calculations

Acceptance effects

- Extrapolate results into full phase space using fiducial acceptance -Estimated using a SM MC
 - Typically, BSM physics doesn't change this too much and results are ~ valid
- · But for H4I, these effects are large for many operators
 - Modelled these using a Lorentzian function -Is there a better theoretically motivated parametrization?

$$\sigma * \mathrm{BR}_{4l} = \frac{N}{A_{SM} * \epsilon * \mathcal{L}}$$

This part not measured due to detector acceptance + reconstruction efficiency Impact of acceptance can drastically change the sensitivity

Results again!

- Interpreting the measurement into limits on EFT operators
 - Many assumptions and simplifications Areas to improve
- There are still things to account for that can change the picture
 - Acceptance effects taken into account for the first time in an interpretation

Parameter Value

Impact of acceptance corrections

Combined Results

- One analysis limits how far we can go and what we can measure
- · Combine channels with various sensitivities
 - Finer STXS bin possible
- More information to constrain even more EFT operators

Even a first limit on single top associated production

Increased sensitivity

- The latest combined STXS results in H \rightarrow ZZ \rightarrow 4I, VH \rightarrow bb & H \rightarrow yy
- VH \rightarrow bb targets the largest BR final state in the vector associate production
 - Provides the best SM to this production & decay
- New class of operators can be probed :

- H4I has some sensitivity to these but washed due to correlation + limited stats
- $H \rightarrow yy$ better statistical precision on VBF and high pT regime
- Indirect constraints on Higgs-top and Higgs-W coupling through the decay loop
 - Can resolve the sign on the Higgs-top coupling through interference effects

Parametrization

• Similar ideas as before - parametrize XS/BR and Acceptance

$$(\sigma \times B)_{\mathrm{SM}+\Lambda^{-4}}^{i,H \to X} = (\sigma \times B)_{\mathrm{SM},((\mathrm{N})\mathrm{N})\mathrm{LO}}^{i,H \to X} \left(1 + \sum_{j} A_{j}^{\sigma_{i}} c_{j} + \sum_{jk} B_{jk}^{\sigma_{i}} c_{j} c_{k}\right) \left(\frac{1 + \sum_{j} A_{j}^{\Gamma H \to X} c_{j} + \sum_{jk} B_{jk}^{\Gamma H \to X} c_{j} c_{k}}{1 + \sum_{j} A_{j}^{\Gamma H} c_{j} + \sum_{jk} B_{jk}^{\Gamma H} c_{j} c_{k}}\right)$$

- Both linear only and linear + quadratic parameterizations are consider
- Quadratic terms are suppressed by Λ^{-4}
 - Dimension 8 operators enter at the same power
 - But without MC or predictions for d8 operators, cannot take into account and effects are fully ignored

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots,$$

Flat Directions

- · However, considering all the various operators leads to flat directions
 - Limit the number of operators? Or one-at-a-time
- Can do better by finding a Eigen rotation and holding the flat direction constant

- · Use a mixture of experimental sensitivity and theoretical information to create various subspaces
 - cHW, cHB and cHWB are primarily constrained by Hγγ and match well the predicted direction from the analytical calculation for H→ γγ decay width
 - Various Higgs lepton operators derive sensitivity from Hbb, but analysis is not setup for measure these and hence are very correlated

Eigen-direction

• Final subspaces of operators considered:

 $\{c_i\} = \{c_{Hq}^{(3)}\} \times \\ \{c_{HG}, c_{uG}, c_{uH}, c_{qq}^{(1)}, c_{qq}, c_{qq}^{(3)}, c_{qq}^{(31)}, c_{uu}, c_{uu}^{(1)}, c_{ud}^{(8)}, c_{qu}^{(1)}, c_{qd}^{(8)}, c_G\} \times \\ \{c_{HW}, c_{HB}, c_{HWB}, c_{HDD}, c_{uW}, c_{uB}, \} \times \\ \{c_{Hl}^{(1)}, c_{He}\} \times \\ \{c_{Hl}^{(3)}, c_{ll}^{\prime}\} \times \\ \{c_{Hu}, c_{Hd}, c_{Hq}^{(1)}\}.$

· Approximately half of eigenvectors are held constant

Sensitivity for eigenvector combinations

- Examples of various combinations and their sensitivity & correlations
- Acceptance effect still play a significant role
 - Manifest as non-linear correlations between parameters

Conclusions

- Tried to deconstruct and peel back some of the considerations that go in interpretations from an experimental perspective
- Many areas where we can benefit from increased collaboration with experts:
 - Want to push ML \rightarrow Need to improve MC accuracy
 - Many correlated effects in EFT models Ex acceptance effects
 - Closer collaborations with theory community
 - Know the models the best + STXS is independent of analysis choice
 - Can there be theoretical parametrization for various model? Or theory
 motivated operator combinations? Or better treatment of acceptances
 - Tons of results from experimental community How best can they be provided to be useful to a wider audience?
- This is just the beginning of the Higgs measurement era Many full Run 2 results to come, and another LHC data run at the horizon
 - Exciting times ahead!