g-2 discussion: Lattice HVP

Aida X. El-Khadra

KITP Program on New Physics from Precision at High Energies
9 April 2021

Lattice OCD Introduction

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{f} \bar{\psi}_{f}\left(\not D+m_{f}\right) \psi_{f}+\frac{1}{4} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}
$$

- discrete Euclidean space-time (spacing a) derivatives \rightarrow difference operators, etc...
- finite spatial volume (L)
- finite time extent (T)
adjustable parameters
* lattice spacing:

$$
a \rightarrow 0
$$

* finite volume, time: $L \rightarrow \infty, T>L$

$$
\Theta
$$

* quark masses (m_{f}):

$$
\begin{aligned}
& M_{H, \text { lat }}=M_{H, \text { exp }} \\
& m_{f} \rightarrow m_{f, \text { phys }}
\end{aligned}
$$

$m_{u d}$ numerically using monte carlo methods.
m_{s}
m_{c}
m_{b} extrapolations/interpolations

Lattice HVP: Introduction

Calculate a_{μ}^{HVP} in Lattice QCD:

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=\sum_{f} a_{\mu, f}^{\mathrm{HVP}, \mathrm{LO}}+a_{\mu, \mathrm{disc}}^{\mathrm{HVP}, \mathrm{LO}}
$$

- Separate into connected for each quark flavor + disconnected contributions (gluon and sea-quark background not shown in diagrams)
Note: almost always $m_{u}=m_{d}$

$$
\sum_{f} \vee \underbrace{}_{f}+\cdots \quad f=u d, s, c, b
$$

- need to add QED and strong isospin breaking ($\sim m_{u}-m_{d}$) corrections:

- either perturbatively on isospin symmetric QCD background
- or by using QCD + QED ensembles with $m_{u} \neq m_{d}$

Lattice HVP: Introduction

Q light-quark connected contribution:
~90\% of total

- s,c,b-quark contributions
$\sim 8 \%, 2 \%, 0.05 \%$ of total
Q disconnected contribution:
~2\% of total
Q Isospinbreaking (QED $+m_{u} \neq m_{d}$) corrections:
~1\% of total

Lattice HVP: Introduction

mur $\quad \hat{\Pi}\left(q^{2}\right)$
Leading order HVP correction: $a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=\left(\frac{\alpha}{\pi}\right)^{2} \int d q^{2} \omega\left(q^{2}\right) \hat{\Pi}\left(q^{2}\right)$

- Calculate $a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}$ in Lattice QCD

Compute correlation function: $C(t)=\frac{1}{3} \sum_{i, x}\left\langle j_{i}(x, t) j_{i}(0,0)\right\rangle$
Obtain $a_{\mu}^{\text {HVP,LO }}$ from an integral over Euclidean time:

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d t \tilde{w}(t) C(t)
$$

Lattice HVP: Introduction

Q Target: < 0.5\% total error

- Challenges:
\checkmark needs ensembles with (light sea) quark masses at their physical values \checkmark finite volume corrections
- continuum extrapolation
- include QED and strong isospin breaking corrections $\left(m_{u} \neq m_{d}\right)$
- growth of statistical errors at large Euclidean times
[A. Gerardin et al, PRD 2019]

HVP: Comparison

Precision21, 09 April 2021

A hybrid method: windows in Euclidean time

Hybrid method: combine LQCD with R-ratio data
[T. Blum et al, arXiv:1801.07224, 2018 PRL]

- Convert R-ratio data to Euclidean correlation function (via the dispersive integral) and compare with lattice results for windows in Euclidean time
- intermediate window: expect reduced FV effects and discretization errors

Lattice HVP: Cross Checks

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d t \tilde{w}(t) C(t)
$$

- Use windows in Euclidean time to consider the different time regions separately.

Short Distance (SD)

$$
t: 0 \rightarrow t_{0}
$$

Intermediate (W) $\quad t: t_{0} \rightarrow t_{1}$
Long Distance (LD) $t: t_{1} \rightarrow \infty$

- Compute each window separately (in continuum, infinite volume limits,...) and combine

$$
a_{\mu}=a_{\mu}^{\mathrm{SD}}+a_{\mu}^{\mathrm{W}}+a_{\mu}^{\mathrm{LD}}
$$

Lattice HVP: Cross Checks

H. Wittig @ Lattice HVP workshop

$$
t_{0}=0.4 \mathrm{fm}, t_{1}=1.0 \mathrm{fm}
$$

$$
a_{\mu}=a_{\mu}^{\mathrm{SD}}+a_{\mu}^{\mathrm{W}}+a_{\mu}^{\mathrm{LD}}
$$

$$
\Delta=0.15 \mathrm{fm}
$$

"Window" quantities

(Plots from Davide Giusti)

$$
\left(t_{1}, \Delta\right)=(1.0,0.15) \mathrm{fm}
$$

$\left(t_{1}, \Delta\right)=(1.0,0.15)$ fm

- Straightforward reference quantities
- Can be applied to individual contributions (light, strange, charm, disconnected,...)

Lattice HVP: results from BMW

- Small statistical errors and large discretization effects (before corrections)
- Intermediate window a_{μ}^{W} :
-3.7 $\boldsymbol{\sigma}$ tension with data-driven evaluation (KNT)
-2.2σ tension with RBC/UKOCD18
- Need to quantify the differences between data-driven evaluations and the BMW results for the various energy/distance scales

Windows: Euclidean time vs \sqrt{s}

Martin Hoferichter @ Lattice HVP workshop

$\left[t_{0}, t_{1}\right]$			
intermediate window	percentage captured of $\pi \pi$ channel $\leq 1 \mathrm{GeV}$ SD intermediate		LD
$[0.4,1.0] \mathrm{fm}$	3	28	69
$[1.0,2.0] \mathrm{fm}$	31	51	18
$[1.0,2.5] \mathrm{fm}$	31	61	9
$[1.0,3.0] \mathrm{fm}$	31	65	4

SD: $\left[0, t_{0}\right]$
LD: $\left[t_{1}, \infty\right]$
intermediate: $\left[t_{0}, t_{1}\right]$
For intermediate window:
$\sim 30 \%$ from $\sigma(\pi \pi) \lesssim 1 \mathrm{GeV}$

