

Monte Carlo

Simulations with

Neural Networks
Part I: Maxim Perelstein, Cornell
Part 2: Christina Gao, Fermilab
KITP "Precision" Workshop, May I3 202I

- Long history of NN uses in particle physics, e.g. track reconstruction and combining observables in early top-physics discoveries (1990's)
- Exponential explosion of interest in machine learning and neural networks since 2015, driven by advances in computing and algorithms
- Many applications to classification problems (e.g. jet flavor tagging) and anomaly detection
- We will discuss another application: improving efficiency of Monte Carlo simulations

Multi-variate analyses, using high-level inputs e.g. D0 single-top search + discovery, 1999-2007

ML in a Nutshell

- Start with a "complete" set of maps \mathcal{F}, parametrized by "weights" \vec{w}
- Set the goal: Define "loss functional" (LF) $L[\mathcal{F}]$
- "Training": Find the best among all possible maps w.r.t. chosen LF

$$
\min _{\vec{w}} L[\mathcal{F}]
$$

- "Machine Learning" = numerical algorithms that solve this problem

Neural Networks

- NNs are a set of functions defined recursively: $\quad h_{i}^{(l)}=f\left(w_{i j}^{(l)} h_{j}^{(l-1)}\right)$
- Any map can be approximated by a sufficiently large NN ("universal approximation theorems") completeness
- Efficient training algorithms make large networks computationally practical, user-friendly packages (TensorFlow, MXNet) make it fun
- Many physics problems can benefit from this technology!

MC Simulation/Integration

- Monte Carlo Problem: Given a function $\mathbf{f}(y)$, such that $f(y) \geq 0$, generate a set of "random" points $\left\{y _i\right\}$ with density proportional to $f(y)$.
- In particle physics, typically $y=$ phase space points, $f(y)=$ differential cross section or decay rate, $\left\{y_{\mathrm{C}} \mathrm{i}\right\}=$ Monte Carlo sample ("pseudo-experiment")
- Most Naive MC algorithm: randomly select points in 2D box, discard the points with $z>f(y)$.
- Fraction of points that are actually used $=$ "unweighting efficiency": $\epsilon(y)=\frac{f(y)}{f_{\max }}$

integration: $\int f(y) d y=f_{\max } \int \epsilon(y) d y$

Problem: Resonances, Collinear/Infrared Singularities

$$
\Rightarrow \epsilon \ll 1
$$

In modern applications, $f(y)$ is often numerically expensive to evaluate (e.g. NNLO - may require numerical integrations)

Importance Sampling

- Classic solution: construct a number of "bounding boxes" in yz plane, covering the function's domain, with heights adjusted to correspond to local values of $f(y)$
- Classic implementation: VEGAS [Lepage, I978] (inside MadGraph, etc.)
- Divide the domain into \mathbf{N} bins, roughly compute "weight" $=\int_{\text {bin }} \epsilon(y) d y$ in each
bin
- Iteratively adjust bin boundaries until each bin contains the same weight
- Simulation: choose a bin at random (equal probabilities), then follow Naive algorithm in that bin. Repeat.

Construct a piecewise-constant approximation to $f(y)$, then sample from that distribution

Importance Sampling as a Map

- Importance sampling can also be described as a map from "input space" x to "target space" y
- Randomly choose $x \in[0,1]$ (uniform distribution)
- Deterministic, piecewise-linear map $x \rightarrow y(x)$
- Equivalent to "pick a box + random point within the box"
- Unweighting: keep the point with probability $P(y)=f(y)\left|\frac{d y}{d x}\right|$

MC with Neural Networks

- Idea: Generalize importance sampling from piecewise-linear to nonlinear maps
- Simulation would be 100% efficient if we found a nonlinear map such that

$$
\left|\frac{d y}{d x}\right|^{-1}=f(y)
$$

- Generalization to functions in N dimensions (same dimensionality for input and target spaces, =dimensionality of phase space)

$$
J=\operatorname{det} \frac{\partial y_{i}}{\partial x_{j}}, \quad|J|^{-1}=f(y)
$$

- Universal Approximation Theorem: under mild assumptions, a neural network can approximate any continuous functional map $\mathcal{I}_{N} \rightarrow \mathcal{I}_{N}$ (where \mathcal{I}_{N} is an N dimensional hypercube)
[Cybenko,'89;Hornik, '91]
- This makes a NN a natural choice to implement nonlinear importance sampling

MC with Neural Networks

[M. Kilmek and MP, I8IO.I I509, SciPost Phys]

- $\mathrm{T}=\mathrm{N}$-particle phase space; can choose coordinates so that $\mathrm{T}=\mathrm{a}$ unit hypercube for any N (map from 4-momenta to these coordinates is in our paper)
- $f(y)=$ matrix element-squared (computed separately)
- Our goal is a "first principles" simulation, as opposed to bootstrapping with e.g. GAN approach
- Hope that ultimately NN-based algorithm replaces VEGAS inside standard tools

MC with Neural Networks

- Use classic fully-connected NN (fancier architectures left for future study)
- $3^{*} 128$ or $6 * 64$ hidden nodes
- An important subtlety is the choice of output function (=activation function for the last layer)

sigmoid:

$$
S(x)=\frac{1}{1+e^{-x}}
$$

"soft clipping function":

$$
S C(x)=\frac{1}{p} \log \left(\frac{1+e^{p x}}{1+e^{p(x-1)}}\right)
$$ phase space

MC with Neural Networks

[M. Kilmek and MP, I8IO.I I509, SciPost Phys]

- Error function: Kullbeck-Leibler divergence between $|J|^{-1}$ and $f(y)$:

$$
D_{\mathrm{KL}}\left[p_{y}(\mathbf{y}) ; f(\mathbf{y})\right] \equiv \int p_{y}(\mathbf{y}) \log \frac{p_{y}(\mathbf{y})}{f(\mathbf{y})} d \mathbf{y}
$$

- Training: generate a batch of 100 points, compute $D_{K L}$, adjust weights, iterate

MCNN Event Generator

[M. Kilmek and MP, I8I0.II509, SciPost Phys]

- Unweighting procedure: start with a raw sample produced by trained NN and discard events to obtain a "perfect" distribution, at the expense of reduced sample size
- Unweighting efficiency is a measure of "wasted" events; 100\% if NN map is already perfect
- We use unweighting efficiency as a measure of success

Sample Applications

- Simulate 3-body decay of a scalar X , with a resonance Y

- Choose phase-space coordinates $m_{23}, \theta_{1(23)}$
- Simulated with $\Gamma_{Y} / m_{Y}=10^{-2}, 10^{-3}, 10^{-4}$
- Achieved unweighting efficiency 30-70\%, depending on resonance width
- MadGraph (off-the-shelf) efficiency: 6\%

Sample Applications

- Simulate 3-body decay of a scalar X, with resonances in two channels

- $N N$ was able to learn both the feature aligned with coordinate axis, and the feature with complicated shape in these coordinates
- In contrast,VEGAS needs each feature to be aligned with a coordinate axis (coordinate choice handled separately by "multi-channeling")

NN output

VEGAS grid/output

Sample Applications

- A more realistic example: $e^{+} e^{-} \rightarrow q \bar{q} g$

$$
\frac{d \sigma}{d m_{q g}^{2} d m_{\bar{q} g}^{2}} \propto \frac{\left(s-m_{q g}^{2}\right)^{2}+\left(s-m_{\bar{q} g}^{2}\right)^{2}}{m_{q g}^{2} m_{\bar{q} g}^{2}}
$$

- Soft/collinear singularities need to impose kinematic cuts
- Simple rectangular cuts aligned with target-space coordinates can be simply handled by redefining the target space boundaries
- In practice we need to be able to handle more general cuts:

$$
Y \geq Y_{\text {cut }} \quad \text { where } \quad Y=Y\left(y_{1}, \ldots, y_{N}\right)
$$

- Naively, we could just replace $f(\mathbf{y}) \rightarrow \theta\left(Y(\mathbf{y})-Y_{\text {cut }}\right) f(\mathbf{y})$
- However NN target function must be differentiable! So we opt for
$f(\mathbf{y}) \rightarrow \kappa\left(Y(\mathbf{y})-Y_{c u t}\right) f(\mathbf{y}) \quad$ with $\quad \kappa(x)= \begin{cases}1 & x>x_{\mathrm{cut}} \\ \left(x / x_{\mathrm{cut}}\right)^{n} & x<x_{\mathrm{cut}}\end{cases}$

Sample Applications

- A more realistic example: $e^{+} e^{-} \rightarrow q \bar{q} g$

$$
\frac{d \sigma}{d m_{q g}^{2} d m_{\bar{q} g}^{2}} \propto \frac{\left(s-m_{q g}^{2}\right)^{2}+\left(s-m_{\bar{q} g}^{2}\right)^{2}}{m_{q g}^{2} m_{\bar{q} g}^{2}}
$$

- In this example, we used $\mathrm{n}=8$.
- Unweighting efficiency is 70\% (vs. 4\% for off-the-shelf MadGraph)

Leptonic Higgs Decay

[I. Chen, M. Kilmek and MP, 2009.078I9, SciPost Phys]

- Most interesting parton-level processes involve large \# of final-state particles \# of phase-space coordinates \rightarrow size of input/output spaces
- We want to explore how the NN approach can handle larger phase spaces
- Picked an example of great interest at the LHC, Higgs decay to 4 leptons
- Non-trivial resonance structure: typically I on-shell and I off-shell Z/W in each event
- Distributions carry information about Higgs spin/CP

[Frank, Rauch, Zeppenfeld, 'I4]

Leptonic -igos Decay

[I. Chen, M. Kilmek and MP, 2009.078I9, SciPost Phys]

- Construct a fully-connected ANN as before (5 input nodes, $6 * 64$ hidden nodes, 5 output nodes)
- Use tree-level $|\overline{\mathcal{M}}|^{2}$ (including all angular correlations) as the target function
- Train with batches of I,000 events each (larger batches needed as phase space grows)
- A new complication arises during training due to vanishing of target function on a phase space boundary, making the loss function log-singular there
- Could be solved by a judicious choice of phase-space coordinates, but that's precisely what we want to avoid!
- Opted for a brute-force solution:"gradient clipping". It worked.

Leptonic Higgs Decay

[I. Chen, M. Kilmek and MP, 2009.078I9, SciPost Phys]

- Unweighting efficiency of 26% achieved (compared to 8% for MadGraph)
- Generated distributions in perfect agreement with MadGraph

Leptonic Higgs Decay

[I. Chen, M. Kilmek and MP, 2009.078I9, SciPost Phys]

- Resonant structure correctly reproduced in various coordinate slices

Bijectivity ofthe NNN Nap

- The map defined by NN should be bijective (one-to-one) for the MC generation procedure to work correctly
- Non-surjective map would lead to empty regions in phase space, regardless of sample size
- Non-injective map would lead to incorrect evaluation of phase space density, invalidating both our training algorithm and unweighting procedure

$$
p_{y}(\mathbf{y}) \equiv p_{y}\left(\mathbf{y}_{\mathbf{w}}(\mathbf{x})\right)=\left|\frac{\partial y_{i}}{\partial x_{j}}\right|^{-1}
$$

- Fully-commented ANN is not necessarily bijective by construction

Bijectivity of the NN Map

[I. Chen, M. Kilmek and MP, 2009.078I9, SciPost Phys]

- Fortunately, the training procedure favors bijective maps
- Any continuous non-injective map would contain sub manifolds with small Jacobean

- This results in large local values of the loss function: $D_{\text {KL }}\left[p_{y}(\mathbf{y}) ; f(\mathbf{y})\right] \equiv \int p_{y}(\mathbf{y}) \log \frac{p_{y}(\mathbf{y})}{f(\mathbf{y})} d \mathbf{y}$
- Training would adjust the map to eliminate such "foldings"
- This "unfolding" feature works very efficiently in practice, but does place a constraint on the form of the loss function (as we discovered the hard way)

Biiectivity ofthe NN Nap

- Instead of "built in" surjectivity, we rely on training to create a surjective map, and check surjectivity post-factum
- To check: Divide target space into small cubes, examine the input-space coordinates of points that map into each cube. Do they form a single cluster?

- Conclusion: deviations from surjectivity, if any, are small in our simulation
- Likewise, the trained map is injective to an excellent approximation

Conclusions

- Neural Network seems a natural candidate to realize "nonlinear importance sampling" in Monte Carlo simulations
- With a bit of tweaking (e.g. proprietary "soft clipping" output function), we got simple fully-connected NNs to work in realistic parton-level simulations with up to 4 final-state particles
- Can handle resonances, in a nicely coordinate-choice-independent way
- Can handle soft/collinear enhancements, generic kinematic cuts
- High unweighting efficiency achieved in all examples
- This may be a crucial advantage in situations when matrix element is computationally expensive to evaluate, e.g. $\mathrm{N}^{\wedge} \mathrm{kLO}$ simulations
- Bijective (one-to-one) mapping is not built in, but is naturally imposed by training
- The approach seems quite promising, and applications to more challenging examples should be explored

Monte Carlo Simulations with Neural Networks II: Normalizing Flows

C. Gao, J. Isaacson, and C. Krause (2020), 2001.05486
C. Gao, S. Hoche, J. Isaacson, C. Krause, and H. Schulz (2020), 2001.10028

PRECISION21 - KITP May 13th 2021

NN based MC Integrator/Event Generator

- $\mathbf{x}^{\prime}=C(\mathbf{x})$, where $\mathbf{x} \sim g_{0}(\mathbf{x})$

$\mathbf{x}^{\prime} \sim g^{\prime}\left(\mathbf{x}^{\prime}\right)=g_{0}\left(C^{-1}\left(\mathbf{x}^{\prime}\right)\right)\left|\frac{\partial C^{-1}}{\partial \mathbf{x}^{\prime}}\right|$

- can model C or C^{-1} as NN
- requires inverting NN (i.e. computing determinant of Jacobian of a matrix) $\sim \mathcal{O}\left(D^{3}\right)$

Normalizing Flows

- $\mathbf{x}_{K}=C_{K} \circ C_{K-1} \cdots C_{2} \circ C_{1}(\mathbf{x})$, where C_{k} is bijective, invertible, differentiable
. If $\mathbf{x} \sim g_{0}(\mathbf{x})$, then $\mathbf{x}_{K} \sim g_{K}\left(\mathbf{x}_{K}\right)=g_{0}\left(C_{1}^{-1} \cdots C_{K}^{-1}\left(\mathbf{x}_{K}\right)\right) \prod_{k=1}^{K}\left|\frac{\partial C_{k}^{-1}}{\partial \mathbf{x}_{k}}\right|$
- C or C^{-1} can be designed such that the Jacobian-determinant computation $\sim \mathcal{O}(D)$

Normalizing Flows

1912.02762 [stat.ML]

- $\mathbf{x}_{K}=C_{K} \circ C_{K-1} \cdots C_{2} \circ C_{1}(\mathbf{x})$, wher Autoregressive flows Transformer type:
- Affine

Conditioner type:

- Combination-based
- Recurrent
- Integration-based

Masked
. If $\mathbf{x} \sim g_{0}(\mathbf{x})$, then $\mathbf{x}_{K} \sim g_{K}\left(\mathbf{x}_{K}\right)=$

- Spline-based

Coupling layer

Linear flows	Permutations
	Decomposition-based: - PLU - QR
	Orthogonal: - Exponential map - Cayley map - Householder
Residual flows	Contractive residual
	Based on matrix determinant lemma: - Planar - Sylvester - Radial

Table 1: Overview of methods for constructing flows based on finite compositions.

Coupling Layer

- C is an easy, invertible Coupling Transform function or a transformer
$g_{y}=|\partial y / \partial x|^{-1} g_{x},\left|\frac{\partial y}{\partial x}\right|^{-1}=\left|\left(\begin{array}{cc}\overrightarrow{1} & 0 \\ \frac{\partial C}{\partial m} \frac{\partial m}{\partial x_{A}} & \frac{\partial C}{\partial x_{B}}\end{array}\right)\right|^{-1}=\left|\frac{\partial C\left(x_{B} ; m\left(x_{A}\right)\right)}{\partial x_{B}}\right|^{-1}$
- e.g. Affine CT: $C\left(x_{B} ; s, t\right)=x_{B} \odot e^{s}+t \quad s, t \in \mathbb{R}^{|B|} \quad\left|\partial C / \partial x_{B}\right|=e^{\sum s_{i}}$

Coupling Layer

- domain and co-domain are restricted to unit hypercube
. separability: $C\left(x_{B} ; m\left(x_{A}\right)\right)=\left(C_{1}\left(x_{B_{1}} ; m\right), C_{2}\left(x_{B_{2}} ; m\right), \cdots, C_{|B|}\left(x_{B_{|B|} ;} ; m\right)\right)^{\mathrm{T}}$
- if $y \sim g_{y}$ is uniform, then C_{i} acts as the cumulative distribution function (CDF) of $x_{B_{i}}$: $g_{y} d C_{i}=g_{x} d x_{B_{i}}$
- each CDF/transformer can be modeled by a piecewise monotonically increasing polynomial

Example of Transformer

- Piecewise linear: Given fixed bin width w, NN predicts pdf bin heights $\sim Q_{i}$

$$
\begin{gathered}
C_{i}\left(x_{B_{i}} ; Q\right)=\alpha Q_{i b}+\sum_{k=1}^{b-1} Q_{i k} \\
b=\left\lfloor\frac{x_{B_{i}}}{w}\right\rfloor \quad \alpha=\frac{x_{B_{i}}-(b-1) w}{w} \\
\left|\frac{\partial C\left(x_{B} ; Q\right)}{\partial x_{B}}\right|=\prod_{i}\left|\frac{\partial C_{i}\left(x_{B_{i}}, Q\right)}{\partial x_{B_{i}}}\right|=\prod_{i} \frac{Q_{i b}}{w}
\end{gathered}
$$

$$
\text { Forward } \begin{aligned}
& y_{A}=x_{A} \\
& y_{B}=C\left(x_{B} ; m\left(\vec{x}_{A}\right)\right) \quad g_{y}=g_{x}
\end{aligned}\left|\frac{\partial C\left(x_{B} ; m\left(x_{A}\right)\right)}{\partial x_{B}}\right|^{-1}
$$

Example of Transformer

- Rational quadratic spline: NN predicts widths, heights, and derivatives of each

$$
\text { Forward } \begin{aligned}
& y_{A}=x_{A} \\
& y_{B}=C\left(x_{B} ; m\left(\vec{x}_{A}\right)\right) \quad g_{y}=g_{x}\left|\frac{\partial C\left(x_{B} ; m\left(x_{A}\right)\right)}{\partial x_{B}}\right|^{-1}, ~
\end{aligned}
$$ knot of the spline.

How Many Coupling Layers are needed?

- $\mathbf{x}_{K}=C_{K} \circ C_{K-1} \cdots C_{2} \circ C_{1}(\mathbf{x})$, where $C_{k}=$ NN based CL that transforms roughly half of \mathbf{x}
- capture all the correlations between every dimension of \mathbf{x}
- transform (or train) each dimension equal number of times
- D layers for $D \leq 5,2\left\lceil\log _{2} D\right\rceil$ for $D>5$
- e.g. $D=12$

Dimension	0	1	2	3	4	5	6	7	8	9	10	11
Transformation 1	0	1	0	1	0	1	0	1	0	1	0	1
Transformation 2	0	0	1	1	0	0	1	1	0	0	1	1
Transformation 3	0	0	0	0	1	1	1	1	0	0	0	0
Transformation 4	0	0	0	0	0	0	0	0	1	1	1	1

i-flow: Integration and Sampling with Normalizing Flows

2001.05486 [physics.comp-ph] https://gitlab.com/i-flow/i-flow

FIG. 2: Illustration of one step in the training of i-flow. Users need to provide a normalizing flow network, a function f to integrate, and a loss function. \tilde{I} stands for the Monte-Carlo estimate of the integral using the sample of points \vec{x}_{i}, and $g\left(\vec{x}_{i}\right)$ is the probability of a given point occurring in the i-flow sampling.
$. I=\int d^{D} x g(\mathbf{x}) \frac{f(\mathbf{x})}{g(\mathbf{x})}=V\langle f / g\rangle_{G}$, where g resembles the shape of f (ideally $g \rightarrow f / I$)
. Now can sample uniformly in $d^{D} G=g(\mathbf{x}) d^{D} x$, with uncertainty: $\Delta I=V \sqrt{\frac{\left\langle(f / g)^{2}\right\rangle_{G}-\langle f / g\rangle_{G}^{2}}{N-1}}$
戋 Fermilab

i-flow + Sherpa: Phase Space Integration

- Sherpa computes matrix element squared with color sampling
- recursive multi-channel algorithm maps the integration domain in i-flow (a unit hypercube) to physical variables: $n_{\text {dim }}=\left(3 n_{f}-4\right)+\left(n_{f}-1\right)+n_{\text {ihadrons }}$

- integrating over final color configurations adds $2 n_{c}-1$ more variables

Example: $e^{+} e^{-} \rightarrow q \bar{q} g$

Example: $p p \rightarrow V+$ jets

unweighting efficiency$\langle w\rangle / w_{\max }$		$n=0$	$n=1$	$\begin{gathered} \text { LO QCD } \\ n=2 \end{gathered}$	$n=3$	$n=4$	$\begin{aligned} & \mathrm{NLO} \\ & n=0 \end{aligned}$	$\begin{array}{r} \mathrm{CD}(\mathrm{RS}) \\ n=1 \end{array}$
$W^{+}+n$ jets	Sherpa	$2.8 \cdot 10^{-1}$	$3.8 \cdot 10^{-2}$	$7.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$8.3 \cdot 10^{-4}$	$9.5 \cdot 10^{-2}$	$4.5 \cdot 10^{-3}$
	NN+NF	$6.1 \cdot 10^{-1}$	$1.2 \cdot 10^{-1}$	$1.0 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$	$8.9 \cdot 10^{-4}$	$1.6 \cdot 10^{-1}$	$4.1 \cdot 10^{-3}$
	Gain	2.2	3.3	1.4	1.2	1.1	1.6	0.91
$W^{-}+n$ jets	Sherpa	$2.9 \cdot 10^{-1}$	$4.0 \cdot 10^{-2}$	$7.7 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$	$9.7 \cdot 10^{-4}$	$1.0 \cdot 10^{-1}$	$4.5 \cdot 10^{-3}$
	NN+NF	$7.0 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$	$1.1 \cdot 10^{-2}$	$2.2 \cdot 10^{-3}$	$7.9 \cdot 10^{-4}$	$1.5 \cdot 10^{-1}$	$4.2 \cdot 10^{-3}$
	Gain	2.4	3.3	1.4	1.1	0.82	1.5	0.91
$Z+n$ jets	Sherpa	$3.1 \cdot 10^{-1}$	$3.6 \cdot 10^{-2}$	$1.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$		$1.2 \cdot 10^{-1}$	$5.3 \cdot 10^{-3}$
	NN+NF	$3.8 \cdot 10^{-1}$	$1.0 \cdot 10^{-1}$	$1.4 \cdot 10^{-2}$	$2.4 \cdot 10^{-3}$		$1.8 \cdot 10^{-3}$	$5.7 \cdot 10^{-3}$
	Gain	1.2	2.9	0.91	0.51		1.5	1.1

TABLE II: Unweighting efficiencies at the LHC at $\sqrt{s}=14 \mathrm{TeV}$ using the NNPDF 3.0 NNLO PDF set and a correspondingly defined strong coupling. Jets are identified using the k_{T} clustering algorithm with $R=0.4, p_{T, j}>20 \mathrm{GeV}$ and $\left|\eta_{j}\right|<6$. In the case of Z / γ^{*} production, we also apply the invariant mass cut $66<m_{l l}<116 \mathrm{GeV}$.

Conclusion

- Discrete variables like multi-channel or color may not be modeled well by a spline, which could be the reason why it does not work so well for $n \geq 2$ jets.
- i-flow takes significantly longer to achieve optimal performance compared to VEGAS.
- After all, it is a MC technique, to get the corners/tails right requires some luck or a very large number of samples to train, which then runs into memory problem.
- New developments in Normalizing Flows could potentially improve the prospect of NN based MC integrator/event generator.
- Thank you!

