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ML/NN in Particle Physics
• Long history of NN uses in particle physics, e.g. track reconstruction and combining 

observables in early top-physics discoveries (1990’s)


• Exponential explosion of interest in machine learning and neural networks since 2015, 
driven by advances in computing and algorithms


• Many applications to classification problems (e.g. jet flavor tagging) and anomaly 
detection


• We will discuss another application: improving efficiency of Monte Carlo simulations


• Congratulations: You’ve come to the right conference!


• … and sorry if I don’t mention your paper
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FIG. 6. The structure of the neural networks used to re-
ject each background. Each network has one hidden layer;
the notation (n1, n2, n3) gives the number of units in the
input, hidden, and output layers of each network, respec-
tively. The following variables are used in addition to those
defined in the text. nj2 is 1 if the event has exactly
two jets and 0 otherwise; nj3 is 1 if the event has three
or more jets and 0 otherwise. The jet for which the in-
variant mass of the lepton, neutrino, and jet is closest to
172 GeV/c2 is denoted jbest; the notation jall − jbest means
all jets except jbest. Also, ∆pT (W, jall) = pT (W )−

∑

jet
p⃗jetT ,

∆M(mW ,mj1,mj2) = |mW − m(j1, j2)|/mW , and
∆Mt = |m(e, ν, jbest)− 172|/172.
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FIG. 7. Outputs of each of the neural networks for sin-
gle top signal (dashed) and the indicated background (solid).
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FIG. 8. A comparison of the combined output of the
five networks for data (the open symbols) and a Monte
Carlo model of signal and all backgrounds (the solid sym-
bols). The individual network outputs are combined using
1/Otot = (1/5)

∑5

i=1
1/ONNi.

Classical and NN Cuts Efficiency.
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FIG. 9. Comparison of signal/background efficiencies for
NN and conventional analyses. Each point represents one
specific set of cuts.
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Multi-variate analyses, using high-level inputs
e.g. D0 single-top search + discovery, 1999-2007



ML in a Nutshell
Input  
Space

Output  
Space

• Start with a “complete” set of maps      , parametrized by “weights”   


• Set the goal: Define “loss functional” (LF) 


• “Training”: Find the best among all possible maps w.r.t. chosen LF


• “Machine Learning” = numerical algorithms that solve this problem 

Weight  
Space



• NNs are a set of functions defined recursively: 


• Any map can be approximated by a sufficiently large NN (“universal 
approximation theorems”)            completeness


• Efficient training algorithms make large networks computationally 
practical, user-friendly packages (TensorFlow, MXNet) make it fun


• Many physics problems can benefit from this technology!

Neural NetworksNeural Network Basics

• ANN is a highly non-linear (but fully deterministic) map from N inputs to 1 output

•  Our ANN has 30x30=900 inputs (~0.1x0.1 HCAL cells); 2 hidden layers of 100 
nodes each; and 1 output node

• There are ~100,000 “neurons” (connections), each with its own “weight” W
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Figure 1. Graphical representation of the Artificial Neural Network (ANN).

Networks in the context of image recognition, see for example [42].) Mathematically, the
ANN can be thought of as a succession of non-linear transformations:3

✏i ! h(1)
i = f (W(1)

i j ✏ j + b(1)
i )! · · ·! h(l)

i = f (W(l)
i j h(l�1)

j + b(l)
i )! Y = f (W(O)

j h(l)
j + b(O)),(3.1)

where f is the so-called activation function, chosen to be

f (z) =
1

1 + e�z . (3.2)

The inputs ✏i are simply the normalized energy deposits "ab defined above, rearranged
in a single 900-dimensional vector: "ab ⌘ ✏30a+b. The weights W(L)

i j and the biases b(L)
i are

numbers determined by the training procedure, which we will now describe.
To train the network, we use a set of N/2 top and N/2 QCD jets, where N is a large

number. For the i-th jet, we assign the “target output” variable: yi = 1 if it is a top jet,
and yi = 0 if it is a QCD jet. Training consists of adjusting the weights so that the actual
outputs of the ANN Yi correspond as close as possible to the target outputs yi, across the
training set. To quantify the error, we use the logarithmic loss variable

Log-loss = �
1
N

NX

i=1

⇥
yi log(Yi) + (1 � yi) log(1 � Yi)

⇤
. (3.3)

The goal of training is to choose weights that minimize this function. We use the back-
propagation algorithm [43], combined with gradient-descent minimization. In its simplest
version, the algorithm can be summarized as follows [44]:

1. Initialize the weights of each link to small random values.
3In Eq. (3.1) and below, repeated indices are always summed over.
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“Activation Function”: (sigmoid)



MC Simulation/Integration
• Monte Carlo Problem: Given a function f(y), such that                , generate a set 

of “random” points {y_i} with density proportional to f(y).

• In particle physics, typically y=phase space points, f(y)=differential cross section 
or decay rate,  {y_i}=Monte Carlo sample (“pseudo-experiment”)

• Most Naive MC algorithm: randomly select points in 2D box, discard the points 
with z > f(y).

• Fraction of points that are actually used = “unweighting efficiency”:,I�WKH�IXQFWLRQ�LV�KLJKO\�SHDNHG�DQG�YDULDEOH��WKH�XQZHLJKWLQJ�HIILFLHQF\�
ZLOO�DOVR�EH�ORZ�

$FFXUDWH�LQWHJUDWLRQ�JHQHUDWLRQ�EHFRPHV�FRPSXWDWLRQDOO\�H[SHQVLYH�

3K\VLFDO�FURVV�VHFWLRQV�DUH�RIWHQ�KLJKO\�YDULDEOH�SHDNHG�LQ�VRPH�UHJLRQV�RI�
SKDVH�VSDFH��RQ�VKHOO�UHVRQDQFHV��FROOLQHDU�VLQJXODULWLHV��HWF�

6ROXWLRQ��,PSRUWDQFH�6DPSOLQJ

7KH�EDVLF�WHFKQLTXH

y

z

Problem: Resonances, 
Collinear/Infrared Singularities

In modern applications,        is often 
numerically expensive to evaluate

(e.g. NNLO - may require numerical 
integrations)

integration: 



Importance Sampling
• Classic solution: construct a number of “bounding boxes” in yz plane, covering 

the function’s domain, with heights adjusted to correspond to local values of f(y)

• Classic implementation:  VEGAS [Lepage, 1978]    (inside MadGraph, etc.)

• Divide the domain into N bins, roughly compute “weight” =                in each 
bin

• Iteratively adjust bin boundaries until each bin contains the same weight

• Simulation: choose a bin at random (equal probabilities), then follow Naive 
algorithm in that bin. Repeat.,I�WKH�IXQFWLRQ�LV�KLJKO\�SHDNHG�DQG�YDULDEOH��WKH�XQZHLJKWLQJ�HIILFLHQF\�

ZLOO�DOVR�EH�ORZ�

$FFXUDWH�LQWHJUDWLRQ�JHQHUDWLRQ�EHFRPHV�FRPSXWDWLRQDOO\�H[SHQVLYH�

3K\VLFDO�FURVV�VHFWLRQV�DUH�RIWHQ�KLJKO\�YDULDEOH�SHDNHG�LQ�VRPH�UHJLRQV�RI�
SKDVH�VSDFH��RQ�VKHOO�UHVRQDQFHV��FROOLQHDU�VLQJXODULWLHV��HWF�

6ROXWLRQ��,PSRUWDQFH�6DPSOLQJ

7KH�EDVLF�WHFKQLTXH

y

z

Construct a piecewise-constant
approximation to f(y), 

then sample from that distribution



Importance Sampling as a Map
• Importance sampling can also be described as a map from “input space” x to 

“target space” y

• Randomly choose                 (uniform distribution)

• Deterministic, piecewise-linear map  

• Equivalent to “pick a box + random point within the box”

• Unweighting: keep the point with probability 

,I�WKH�IXQFWLRQ�LV�KLJKO\�SHDNHG�DQG�YDULDEOH��WKH�XQZHLJKWLQJ�HIILFLHQF\�
ZLOO�DOVR�EH�ORZ�

$FFXUDWH�LQWHJUDWLRQ�JHQHUDWLRQ�EHFRPHV�FRPSXWDWLRQDOO\�H[SHQVLYH�

3K\VLFDO�FURVV�VHFWLRQV�DUH�RIWHQ�KLJKO\�YDULDEOH�SHDNHG�LQ�VRPH�UHJLRQV�RI�
SKDVH�VSDFH��RQ�VKHOO�UHVRQDQFHV��FROOLQHDU�VLQJXODULWLHV��HWF�

6ROXWLRQ��,PSRUWDQFH�6DPSOLQJ

7KH�EDVLF�WHFKQLTXH

y

z
y

x0 1

1

-1



MC with Neural Networks 
• Idea: Generalize importance sampling from piecewise-linear to nonlinear maps

• Simulation would be 100% efficient if we found a nonlinear map such that 

• Generalization to functions in N dimensions (same dimensionality for input and 
target spaces, =dimensionality of phase space)

• Universal Approximation Theorem: under mild assumptions, a neural network can 
approximate any continuous functional map                  (where         is an N-
dimensional hypercube)

• This makes a NN a natural choice to implement nonlinear importance sampling

[Cybenko, ’89; Hornik, ’91]

[J. Bendavid, ’17; M. Kilmek and MP, ’18]



MC with Neural Networks 

• T = N-particle phase space; can choose coordinates so that T = a unit hypercube 
for any N (map from 4-momenta to these coordinates is in our paper) 

•           = matrix element-squared (computed separately)

• Our goal is a “first principles” simulation, as opposed to bootstrapping with e.g. 
GAN approach 

• Hope that ultimately NN-based algorithm replaces VEGAS inside standard tools 

x y
input I target T

[M. Kilmek and MP, 1810.11509, SciPost Phys]



• Use classic fully-connected NN (fancier architectures left for future study)

• 3*128 or 6*64 hidden nodes

• An important subtlety is the choice of output function (=activation function for 
the last layer)

2XU�EDVLF�LPSOHPHQWDWLRQ

䚔 $�FRPPRQ�FKRLFH�RI�RXWSXW�IXQFWLRQ�LV�WKH�VLJPRLG�

$SSURDFKHV�
DV\PSWRWLF�YDOXHV�
VORZO\�ĺ�KDUG�WR�
SRSXODWH�WKH�HGJHV�RI�
SKDVH�VSDFH

2XWSXW�OD\HU�FRQVLGHUDWLRQV

:H�DOVR�LQYHVWLJDWHG�D�ËVRIW�FOLSSLQJÌ�IXQFWLRQ�ZLWK�
IDVWHU�DV\PSWRWLF�EHKDYLRU�

䚔 $OZD\V�WDNHV�YDOXHV�LQ�>���@
䚔 $SSURDFKHV�OLPLWLQJ�YDOXHV�UDSLGO\
䚔 $SSUR[LPDWHO\�OLQHDU�EHWZHHQ�>���@
䚔 S�FRQWUROV�KRZ�VKDUS�WKH�HGJHV�DUH
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:LWK�WKLV�FKRLFH��D�
WUDGLWLRQDO�(/8�DFWLYDWLRQ�
IXQFWLRQ�LV�VXIILFLHQW�

sigmoid: “soft clipping function”: 2XWSXW�OD\HU�FRQVLGHUDWLRQV
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MC with Neural Networks 



MC with Neural Networks 

• Error function: Kullbeck-Leibler divergence between           
and         :  

• Training: generate a batch of 100 points, compute         , 
adjust weights, iterate

x y
input I target T

to the phase space dimension. Various choices for the numbers of hidden layers and nodes
per layer, collectively referred to as hyperparameters, have been tested. A comparison
of the training performance under these choices is given in the appendix A. We find that
larger NNs train in fewer training epochs. A larger NN takes longer to evaluate per data
point. However, we hope this technique will be most useful in cases where the matrix
element is very costly to evaluate. In these cases, the NN evaluation time is subdominant,
and a larger NN that requires fewer matrix element evaluations to train is ideal.

We choose the simplest option of uniform sampling over a unit hypercube as the
input. These inputs are to be mapped onto phase space, which we parametrize as a
second hypercube in a coordinate system that will be described below.

The NN is an event generator, that is, a map yw(x) between points in an input space
and points in phase space. Note that this map is specified by the parameters of the NN,
which are collectively labeled as w and indicate with a subscript. The distribution py(y) on
phase space induced by this map is given by its Jacobian with respect to the input space

py(y) = py(yw(x)) =
�����
@yw

@x

�����
�1

. (2.1)

The NN must be trained so that py(y) matches the true di↵erential cross section f (y) as
closely as possible. As suggested in [1], we can use the Kullbeck-Leibler (KL) divergence
DKL between py(y) and f (y)

DKL[py(y); f (y)] ⌘
Z

py(y) log
py(y)
f (y)

dy (2.2)

to define the loss function to be minimized during training. Since we are working with
a discrete set of sampled points {xi}, Monte Carlo integration can be performed to obtain
the loss function

L(w) =
X

{xi}
log

py(yw(xi))
f (yw(xi))

. (2.3)

Note that the loss function should be viewed as a function of the NN parameters w with
respect to which it will be minimized. For su�ciently large random sample sets {xi},
L(w) will be independent of the sample to a good approximation. The KL divergence
has a minimum at zero when the two distributions are identical. However, note that this
assumes that the two distributions have the same normalization. For a given di↵erential
cross section, the total cross section is usually not known a priori, and thus the loss function
will in general have a minimum at some non-zero value. The training procedure, however,
depends only on the derivatives of the loss function. Knowledge of the total cross section
is therefore not necessary.

Each node in a hidden layer of the NN takes a linear combination of the outputs of
the nodes in the previous layer, as determined by the current values of the parameters,
and applies a non-linear function known as the activation function. The nodes in the final
layer again take a linear combination of the values in the next-to-last layer, but then apply
another function, the output function, which is chosen to map onto the set of possible

– 4 –

[M. Kilmek and MP, 1810.11509, SciPost Phys]
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MCNN Event Generator

• Unweighting procedure: start with a raw sample produced by trained NN and 
discard events to obtain a “perfect” distribution, at the expense of reduced 
sample size

• Unweighting efficiency is a measure of “wasted” events; 100% if NN map is 
already perfect

• We use unweighting efficiency as a measure of success

[M. Kilmek and MP, 1810.11509, SciPost Phys]
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Sample Applications
• Simulate 3-body decay of a scalar X, with a resonance Y

• Choose phase-space coordinates 

• Simulated with 

• Achieved unweighting efficiency 30-70%, depending on resonance width

• MadGraph (off-the-shelf) efficiency: 6% 
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Sample Applications
• Simulate 3-body decay of a scalar X, with resonances in two channels 

• NN was able to learn both the feature aligned with coordinate axis, and the 
feature with complicated shape in these coordinates

• In contrast, VEGAS needs each feature to be aligned with a coordinate axis 
(coordinate choice handled separately by “multi-channeling”)
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Sample Applications
• A more realistic example: 

• Soft/collinear singularities          need to impose kinematic cuts 

• Simple rectangular cuts aligned with target-space coordinates can be simply 
handled by redefining the target space boundaries

• In practice we need to be able to handle more general cuts:

• Naively, we could just replace 

• However NN target function must be differentiable! So we opt for

Figure 5. A sample of 105 events generated by the trained NN described in section 3.3 without
unweighting. The matrix element contains two diagrams with di↵erent resonant structures. Both
are clearly visible in the NN output.

the trained NN before unweighting can be seen in Fig. 5, where both resonance features
are clearly visible. Due to our choice of masses, the partial width of the decay through the
aligned resonance is greater than through the misaligned resonance, which explains why
the misaligned resonance is less populated. The NN achieves an unweighting e�ciency
of 54%, compared to MadGraph5’s 6%.

3.4 e+e� ! qq̄g

The preceding examples contained matrix elements with sharply varying but finite fea-
tures. Many physically interesting matrix elements also contain singularities, such as the
soft and collinear singularities of QCD. As an example, we consider the process of quark
pair production from e+e� annihilation with an additional final state gluon, and ignoring
the contribution of the Z boson. The tree-level di↵erential cross section for this process is
proportional to

d�
dm2

qgdm2
q̄g
/

(s �m2
qg)2 + (s �m2

q̄g)2

m2
qgm2

q̄g
, (3.4)

where s is the center of mass energy squared, mqg is the invariant mass of the quark
and gluon pair, and mq̄g similarly for the antiquark. The cross section is singular for
mqg, mq̄g ! 0, and kinematic cuts must be imposed to deal with this singularity. More
generally, it is often desirable to impose kinematic cuts, even where singularities are not
present, to avoid generating events that are not useful for some reason, e.g., in regions of
phase space that lack detector coverage.

We would like the trained NN to generate as many events as possible that satisfy
the imposed cuts. However, in general it is not possible to train the NN to completely
exclude the cut region. If the value of the target distribution is set exactly to zero in the cut
region, the derivative computed during training for any point that falls in the cut region
will also be zero. In that case, the trainer will not know how to adjust the parameters of
the NN to bring that point inside the desired region. Likewise, a very sharp change in the
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Sample Applications
• A more realistic example: 

• In this example, we used n=8.

• Unweighting efficiency is 70% (vs. 4% for off-the-shelf MadGraph)

Figure 5. A sample of 105 events generated by the trained NN described in section 3.3 without
unweighting. The matrix element contains two diagrams with di↵erent resonant structures. Both
are clearly visible in the NN output.

the trained NN before unweighting can be seen in Fig. 5, where both resonance features
are clearly visible. Due to our choice of masses, the partial width of the decay through the
aligned resonance is greater than through the misaligned resonance, which explains why
the misaligned resonance is less populated. The NN achieves an unweighting e�ciency
of 54%, compared to MadGraph5’s 6%.

3.4 e+e� ! qq̄g

The preceding examples contained matrix elements with sharply varying but finite fea-
tures. Many physically interesting matrix elements also contain singularities, such as the
soft and collinear singularities of QCD. As an example, we consider the process of quark
pair production from e+e� annihilation with an additional final state gluon, and ignoring
the contribution of the Z boson. The tree-level di↵erential cross section for this process is
proportional to

d�
dm2

qgdm2
q̄g
/

(s �m2
qg)2 + (s �m2

q̄g)2

m2
qgm2

q̄g
, (3.4)

where s is the center of mass energy squared, mqg is the invariant mass of the quark
and gluon pair, and mq̄g similarly for the antiquark. The cross section is singular for
mqg, mq̄g ! 0, and kinematic cuts must be imposed to deal with this singularity. More
generally, it is often desirable to impose kinematic cuts, even where singularities are not
present, to avoid generating events that are not useful for some reason, e.g., in regions of
phase space that lack detector coverage.

We would like the trained NN to generate as many events as possible that satisfy
the imposed cuts. However, in general it is not possible to train the NN to completely
exclude the cut region. If the value of the target distribution is set exactly to zero in the cut
region, the derivative computed during training for any point that falls in the cut region
will also be zero. In that case, the trainer will not know how to adjust the parameters of
the NN to bring that point inside the desired region. Likewise, a very sharp change in the

– 9 –
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Leptonic Higgs Decay

• Most interesting parton-level processes involve large # of final-state particles      
# of phase-space coordinates          size of input/output spaces

• We want to explore how the NN approach can handle larger phase spaces

• Picked an example of great interest at the LHC, Higgs decay to 4 leptons

• Non-trivial resonance structure: typically 1 on-shell and 1 off-shell Z/W in each 
event

• Distributions carry information about Higgs spin/CP

[I. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]

[Frank, Rauch, Zeppenfeld, ‘14]



Leptonic Higgs Decay

• Construct a fully-connected ANN as before (5 input nodes, 6*64 hidden nodes, 5 
output nodes)

• Use tree-level           (including all angular correlations) as the target function

• Train with batches of 1,000 events each (larger batches needed as phase space 
grows)

• A new complication arises during training due to vanishing of target function on a 
phase space boundary, making the loss function log-singular there  

• Could be solved by a judicious choice of phase-space coordinates, but that’s 
precisely what we want to avoid!

• Opted for a brute-force solution: “gradient clipping”. It worked.

[I. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]

SciPost Physics Submission

Although the phase space weight only depends on two invariant masses, important
features in the matrix element such as resonances or collinear singularities may appear in
terms of the invariant mass of any set of final particles. We therefore need a simple way
to compute the invariant mass of any pair in terms of our phase space coordinates. These
relations are given in Appendix A.

In Appendix B we present an alternative method of sampling the three angular coor-
dinates that is symmetrical and in which all angles are defined in the same frame.

4 Results: Higgs Decay to Four Leptons

In this section, we present the results of an ANN-based simulation of the on-shell Higgs
decay into 4 leptons µ+, µ�, e+, e� with two intermediate Z bosons. We label the µ+ as
particle 1, µ� as particle 2, e+ as particle 3, and e� as particle 4. The di↵erential decay
width of this process, using our parametrization of the 4-body phase space, can be written
as

d� = m�1
h |M|2 d⇧4 , (6)

where mh is the Higgs mass, |M|2 is the spin-summed invariant matrix element-squared,
and d⇧4 is the phase space volume element given above. Assuming the leptons are
massless, the tree-level matrix element of this process is given by [29]

|M|2 = |M+�+�|2 + |M+��+|2 + |M�++�|2 + |M�+�+|2

M+�+� =
2e3g+f1 f2

g+f3 f4
µW

c2
WsW

hk1k3i⇤hk2k4i
(m2

12 � µ2
Z)(m2

34 � µ2
Z)

M+��+ =
2e3g+f1 f2

g�f3 f4
µW

c2
WsW

hk1k4i⇤hk2k3i
(m2

12 � µ2
Z)(m2

34 � µ2
Z)

M�++� =
2e3g�f1 f2

g+f3 f4
µW

c2
WsW

hk2k3i⇤hk1k4i
(m2

12 � µ2
Z)(m2

34 � µ2
Z)

M�+�+ =
2e3g�f1 f2

g�f3 f4
µW

c2
WsW

hk2k4i⇤hk1k3i
(m2

12 � µ2
Z)(m2

34 � µ2
Z)

(7)

where cW and sW are the cosine and sine of the weak mixing angle, and hkikji is the spinor
bracket with |hkikji| = mij. The complex masses of the Z and W bosons µZ and µW are
given by

µ2
V =M2

V � iMV�V, V = Z,W , (8)

where MV are the physical masses and �V are the decay widths. The coupling constants
g±f f are given by

g+f f = �
sW

cW
Q f , g�f f = �

sW

cW
Q f +

I3
W, f

cWsW
, (9)

where Q f is the electric charge of the fermion f and I3
W, f is the third component of its

weak isospin.
The ANN is constructed and trained as described in Sec. 2. A set of 107 events is

generated by the trained ANN, and the unweighting procedure is performed on this set.
The unweighting e�ciency is 26%, an improvement of about a factor of three compared to
8% e�ciency for the same process acheived by MadGraph. Distributions shown in Figs. 5
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Leptonic Higgs Decay
• Unweighting efficiency of 26% achieved (compared to 8% for MadGraph)

• Generated distributions in perfect agreement with MadGraph

[I. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]



Leptonic Higgs Decay

• Resonant structure correctly reproduced in various coordinate slices

[I. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]



• The map defined by NN should be bijective (one-to-one) for the MC generation 
procedure to work correctly

• Non-surjective map would lead to empty regions in phase space, regardless of sample 
size

• Non-injective map would lead to incorrect evaluation of phase space density, 
invalidating both our training algorithm and unweighting procedure

 

• Fully-commented ANN is not necessarily bijective by construction

SciPost Physics Submission

techniques, we confirmed that the trained ANN in the example considered in this paper
is indeed bijective to a good approximation.

While both of the normalizing flow studies [14, 15] find marked improvement in
e�ciency over VEGAS for processes with three particles in the final state, the reported
performance drops to a level comparable with VEGAS upon adding a fourth particle.
These studies represent some of the earliest attempts in this direction, and further study
is certainly warranted and likely to result in continued improvement. However, in this
work we will consider a process with four final state particles, and show that substantial
improvement over VEGAS is obtained straightforwardly. Although further study would
be needed to rigorously characterize the performance of these various techniques, we will
briefly make note of one basic feature of the normalizing flow approach which they have
in common with VEGAS. In both cases, the map from the input space onto phase space is
composed of a finite number of discrete intervals with a fixed order interpolation used
in each interval. In VEGAS this is all there is. In the normalizing flow approach, there
are several layers of such maps, with each acting on a di↵erent subset of coordinates,
and with the parameters of each map controlled by an ANN trained to minimize the
error. This approach is clearly much more flexible than VEGAS. Nevertheless, the ability
to represent the target distribution must ultimately be limited by the finite number of
intervals that are used, and this may be exacerbated as one goes to larger numbers of
phase space dimensions. In contrast, our method is fully continuous (see, for example,
the discussion in [1]), and in that sense may not su↵er from the same kind of limitations
as the normalizing flows.

The rest of the paper is organized as follows. In Sec. 2, we review the basic structure
of ANN-based MC algorithm introduced in Ref. [1], and discuss improvements in the
training procedure necessary to handle issues that arise for a 4-body phase space. Sec. 3
describes a systematic way of parametrizing a 4-body phase space as a 5-dimensional
hypercube, the natural choice for ANN output space. Sec. 4 contains the results of ANN-
based simulation of the on-shell Higgs decay into four charged leptons. In Sec. 5, we
discuss issues related to the bijectivity of the map represented by the ANN. Finally, we
conclude in Sec. 6.

2 Neural Network Setup and Training

Our Monte Carlo algorithm is based on an artificial neural network, which can be thought
of as a highly non-linear, adjustable map from an input space I to the target space T; see
Fig. 1. In our application, the target space is identified with phase space. Both input and
target spaces are unit hypercubes with dimensionality equal to the number of relevant
phase space dimensions. The dimensionality of input and target spaces matches the
number of nodes in the input and output layers of the ANN. The main idea is to train the
ANN so that it maps a uniform sample of the input space points {x} into a set of phase
space points {yw(x)} distributed according to the known target pdf f (y). The target pdf is
the di↵erential cross section or decay width of the process at hand, i.e. a product of the
invariant matrix element-squared |M|2, and phase space volume factor in the coordinate
system used to parametrize T. The phase space density induced by the ANN is given by

py(y) ⌘ py(yw(x)) =

������
@yi

@xj

������

�1

. (1)

3
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(a) (b)

Figure 7: An example of a non-injective region in the “comparison sample” map generated
by an ANN trained with a loss function that favors foldings, see Eq. (13). Points in two
distinct regions in the input space (a) map onto the same region in the output space (b).

the ANN simulation reproduces the expected resonance structure. This includes both a
resonance in the kinematic variable aligned with one of the target-space coordinates (m34),
and one in the variable not aligned with any of the target-space coordinates (m12). The
ability of the ANN to reproduce such non-aligned resonances is an important advantage
of this approach, which may become increasingly important for simulating processes with
more complex structure of resonances and singularities, for example at higher orders in
perturbation theory.

5 Bijectivity of the ANN Map

The map I 7! T defined by a fully-connected ANN is not automatically guaranteed to be
bijective4. Lack of bijectivity can cause significant issues in the context of MC simulation:

• If the map is not surjective, there will be regions in phase space where no events are
generated, regardless of the sample size.

• If the map is not injective, i.e. the map T 7! I inverse to yw(x) is multi-valued, a
small region in T may be populated by points within two or more clusters in I, as
illustrated for example in Fig. 7. In this case, the phase space density computed
according to Eq. (1) at each yi is incorrect, potentially invalidating both our training
algorithm and unweighting procedure.

Fortunately, training with the KL distribution loss function tends to naturally prefer
bijective (or at least approximately bijective) maps:

• Surjectivity: Note that the integral of the induced pdf over the target space is fixed:
Z

T
dy py(y) =

Z

T
dy

������
@xj

@yi

������ = VI = 1. (10)

If the target pdf is normalized to integrate to one as well, a non-surjective map
would necessarily result in mismatched normalization between induced and target

4A bijective fully-connected network can be constructed, see e.g. [30], but bijectivity requires the same
number of nodes in all layers, which does not appear to be well-suited to the problem at hand.
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[I. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]



• Fortunately, the training procedure favors bijective maps

• Any continuous non-injective map would contain sub manifolds with small Jacobean  

                                           

• This results in large local values of the loss function:

• Training would adjust the map to eliminate such “foldings”

• This “unfolding” feature works very efficiently in practice, but does place a constraint 
on the form of the loss function (as we discovered the hard way)

SciPost Physics Submission

y yw(x)

x

�����
@y
@x

�����⌧ 1

Figure 8: A one-dimensional illustration of why a non-injective region (“folding”) in the
map necessarily gives rise to a small Jacobian.

pdfs in the region of phase space covered by the map. The minimum of the loss
function, LKL = 0, is reached when the two pdfs have the same normalization, i.e.
for a surjective map. If the target pdf is not normalized, it can always be rewritten as
f (y) = C fN(y), where fN is a normalized pdf and C is a constant. Using (1) and (10),
it is easy to show that the minimum of the loss function in this case is given by
LKL = � log C, and is reached when py = fN and the map is surjective.

• Injectivity: Since the map defined by the ANN is always continuous, lack of in-
jectivity necessarily results in some phase space regions with very small Jacobians
and thus very large induced probability density (see Fig. 8 for an illustration in
1 dimension). Since the target pdf is generic in these regions, such features are
generally strongly penalized by the loss function. Training would therefore tend to
“smooth out” the foldings, resulting in an injective map.

We rely on the above features to produce a bijective map through training, and test
the trained ANN for bijectivity a posteriori. The rest of this section describes the tools used
for this test, and the results showing that the ANN trained to simulate h ! 4` decays is
bijective to a good approximation.

5.1 Surjectivity

While unweighting e�ciency is a common measure of simulation quality, it cannot be
used to test surjectivity. The unweighting e�ciency is evaluated using only points present
in the sample. If those points follow the shape of the target distribution perfectly in the
portion of the phase space that is covered, unweighting e�ciency would be equal to one,
even if there are regions of phase space with non-zero target pdf that remain completely
uncovered. To assess surjectivity of the map, we instead use the value of the pdf integral
implied by the generated sample:

IMC =
1
N

X

yi

wr(yi) , (11)

where the sum is over the N points in the sample, and wr(yi) = f (yi)/py(yi) are the raw
weights. The “true” value of the integral Itrue can be found for example by using uniform
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Bijectivity of the NN Map
[I. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]

to the phase space dimension. Various choices for the numbers of hidden layers and nodes
per layer, collectively referred to as hyperparameters, have been tested. A comparison
of the training performance under these choices is given in the appendix A. We find that
larger NNs train in fewer training epochs. A larger NN takes longer to evaluate per data
point. However, we hope this technique will be most useful in cases where the matrix
element is very costly to evaluate. In these cases, the NN evaluation time is subdominant,
and a larger NN that requires fewer matrix element evaluations to train is ideal.

We choose the simplest option of uniform sampling over a unit hypercube as the
input. These inputs are to be mapped onto phase space, which we parametrize as a
second hypercube in a coordinate system that will be described below.

The NN is an event generator, that is, a map yw(x) between points in an input space
and points in phase space. Note that this map is specified by the parameters of the NN,
which are collectively labeled as w and indicate with a subscript. The distribution py(y) on
phase space induced by this map is given by its Jacobian with respect to the input space

py(y) = py(yw(x)) =
�����
@yw

@x

�����
�1

. (2.1)

The NN must be trained so that py(y) matches the true di↵erential cross section f (y) as
closely as possible. As suggested in [1], we can use the Kullbeck-Leibler (KL) divergence
DKL between py(y) and f (y)

DKL[py(y); f (y)] ⌘
Z

py(y) log
py(y)
f (y)

dy (2.2)

to define the loss function to be minimized during training. Since we are working with
a discrete set of sampled points {xi}, Monte Carlo integration can be performed to obtain
the loss function

L(w) =
X

{xi}
log

py(yw(xi))
f (yw(xi))

. (2.3)

Note that the loss function should be viewed as a function of the NN parameters w with
respect to which it will be minimized. For su�ciently large random sample sets {xi},
L(w) will be independent of the sample to a good approximation. The KL divergence
has a minimum at zero when the two distributions are identical. However, note that this
assumes that the two distributions have the same normalization. For a given di↵erential
cross section, the total cross section is usually not known a priori, and thus the loss function
will in general have a minimum at some non-zero value. The training procedure, however,
depends only on the derivatives of the loss function. Knowledge of the total cross section
is therefore not necessary.

Each node in a hidden layer of the NN takes a linear combination of the outputs of
the nodes in the previous layer, as determined by the current values of the parameters,
and applies a non-linear function known as the activation function. The nodes in the final
layer again take a linear combination of the values in the next-to-last layer, but then apply
another function, the output function, which is chosen to map onto the set of possible
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• Instead of “built in” surjectivity, we rely on training to create a surjective map, and 
check surjectivity post-factum

• To check: Divide target space into small cubes, examine the input-space coordinates of 
points that map into each cube.  Do they form a single cluster?

• Conclusion: deviations from surjectivity, if any, are small in our simulation

• Likewise, the trained map is injective to an excellent approximation

Bijectivity of the NN Map
[I. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]
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(a) (b)

Figure 9: Input space points that map into the hypercube with the largest R-value in the
main sample, R = 54. (a) Oblong shape of the distribution is responsible for the large
R value. (b) Pairwise distances among the input-space points show no evidence for a
bimodal distribution.

Figure 10: Distribution of R-values in the main sample (hatched) and the comparison
sample (orange).

from sparesely populated phase space regions, hypercubes with fewer than 20 points
were discarded. The distribution of the R-values in the main and comparison samples
is shown in Fig. 10. The comparison sample contains hypercubes with very large values
of R, indicating lack of injectivity. Examination of input-space distributions in boxes
with high R-values confirms that foldings are indeed present; for example, this is clearly
visible in Fig. 7 for a cube with the largest R value in the comparison sample, R = 670.
In contrast, the main sample contains few hypercubes with large R. The maximum R-
value in this sample is 54, and results from an oblong input-space distribution rather than
folding, see Fig. 9. The values of b for the 120 boxes with largest R-values in the main
sample, shown in Fig. 11, cluster narrowly around the flat-distribution value, so there is
no indication of foldings from this measure. As an additional test, we manually examined
the pairwise input-space distances in boxes with largest b, and did not find any evidence
of folding. Based on this data, we conclude that while the map used to generate the
comparison sample is clearly not injective, the main sample shows no sign of deviations
from injectivity.

While this conclusion is reassuring, foldings may of course still occur in the main

14
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Figure 11: Distribution of the bimodal coe�cient for hypercubes with the largest R-values
(20 and above) in the main sample. No significant deviations from the flat-distribution
value b = 5/9 (shown by a dashed line) are observed, indicating absence of foldings.

sample at length scales shorter than 0.1. In general, foldings at smaller scales have
progressively smaller e↵ect on the quality of the simulation, while also being more com-
putationally expensive to diagnose. We plan to address this issue more fully in future
work.

6 Conclusion and Outlook

In this work, the ANN-based Monte Carlo generator proposed in [1] has been applied
to simulate the Higgs decay to four charged leptons, a process of great interest for the
LHC experiments. A convenient parametrization of the four-body phase space, mapping
it into a unit hypercube which is a natural output space for ANN, was developed for this
application. A numerical instability was encountered during the training process. This
instability arises due to the structure of the four-body phase space. The training algorithm
was supplemented with “gradient clipping”, which allows to avoid the instability and
achieve stable convergence of the training process. The trained ANN was then used to
generate a large sample of h! 4` events. The ANN simulation was shown to achieve high
unweighting e�ciency of 24% (compared to 8% for “o↵-the-shelf” MadGraph simulation),
and the integrated decay width in this channel is accurate to within 0.7%. The ANN
simulation reproduced Z-boson resonances in both lepton pairs, including the one whose
invariant mass was not aligned with any of the chosen phase space coordinates. The
ability of the ANN to reproduce such non-aligned features o↵ers a potentially powerful
advantage over existing grid-based algorithms.

The map defined by a fully-connected ANN used in our algorithm is not automatically
bijective, which may cause issues with simulation validity. Nevertheless, we have argued
that the training algorithm prefers bijective maps. We developed numerical tools to check
bijectivity a posteriori, such as the R-values and bimodal coe�cients to identify phase space
regions where lack of injectivity (“foldings”) may occur. Using these tools, we did not find
any sign of significant non-bijectivity in the trained ANN used on our h! 4` simulation.

The results presented here add to the evidence for the promise of ANN-based MC
generation as a viable alternative to traditional algorithms such as VEGAS. In principle,
the current algorithm can be applied to simulate any parton-level process, with arbitrary
number of particles in the final state. To explore this further, it would be interesting
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Conclusions
• Neural Network seems a natural candidate to realize “nonlinear importance 

sampling” in Monte Carlo simulations

• With a bit of tweaking (e.g. proprietary “soft clipping” output function), we got 
simple fully-connected NNs to work in realistic parton-level simulations with up 
to 4 final-state particles

• Can handle resonances, in a nicely coordinate-choice-independent way

• Can handle soft/collinear enhancements, generic kinematic cuts

• High unweighting efficiency achieved in all examples

• This may be a crucial advantage in situations when matrix element is 
computationally expensive to evaluate, e.g. N^kLO simulations

• Bijective (one-to-one) mapping is not built in, but is naturally imposed by training

• The approach seems quite promising, and applications to more challenging 
examples should be explored
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NN based MC Integrator/Event Generator
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f(x′ )
Ĩ

apply gradient descent


sam
pling


f loss: 

DKLg ′ (x′ )

Bendavid [1707.00028] 

Klimek/Perelstein [1810.11509] 

• , where 


• 


• can model  as NN


• requires inverting NN (i.e. computing determinant of Jacobian of a matrix) 

x′ = C(x) x ∼ g 0 (x)

x′ ∼ g ′ (x′ ) = g 0 (C− 1(x′ )) ∂C− 1

∂x′ 

C or C− 1

∼ %(D3)
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density evaluation
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Normalizing Flows
• , where  is bijective, invertible, differentiable


•
If  , then 


•  can be designed such that the Jacobian-determinant computation

xK = CK ∘ CK− 1⋯C2 ∘ C1(x) Ck

x ∼ g 0 (x) xK ∼ g K (xK) = g 0 (C− 1
1 ⋯C− 1

K (xK))
K

∏
k= 1

∂C− 1
k

∂xk

C or C− 1 ∼ %(D)

3
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Dinh et al. [1410.8516,1605.08803] 
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Normalizing Flows
• , where  is bijective, invertible, differentiable


•
If  , then 


•  can be designed such that the Jacobian-determinant computation

xK = CK ∘ CK− 1⋯C2 ∘ C1(x) Ck

x ∼ g 0 (x) xK ∼ g K (xK) = g 0 (C− 1
1 ⋯C− 1

K (xK))
K

∏
k= 1

∂C− 1
k

∂xk

C or C− 1 ∼ %(D)
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• , where  is bijective, invertible, differentiable


•
If  , then 


•  can be designed such that the Jacobian-determinant computation

xK = CK ∘ CK− 1⋯C2 ∘ C1(x) Ck

x ∼ g 0 (x) xK ∼ g K (xK) = g 0 (C− 1
1 ⋯C− 1

K (xK))
K

∏
k= 1

∂C− 1
k

∂xk

C or C− 1 ∼ %(D)

1912.02762 [stat.ML]
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Coupling Layer

5

Dinh et al. [1410.8516,1605.08803] 

Forward
yA = xA
yB = C(xB; m(xA))

Inverse
xA = yA

xB = C− 1(yB; m(xA))

•  is an easy, invertible Coupling Transform function or a transformer


•
 , 


• e.g. Affine CT:  

C

g y = ∂y/∂x
− 1

g x
∂y
∂x

− 1

=
⃗1 0

∂C
∂m

∂m
∂xA

∂C
∂xB

− 1

= ∂C(xB; m(xA))
∂xB

− 1

C(xB; s, t) = xB ⊙ es + t s, t ∈ ℝ|B| |∂C/∂xB | = e ∑ si
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Coupling Layer

6

• domain and co-domain are restricted to unit hypercube


• separability: 


• if  is uniform, then  acts as the cumulative distribution function (CDF) of :



• each CDF/transformer can be modeled by a piecewise monotonically increasing polynomial

C(xB; m(xA)) = (C1(xB1; m), C2(xB2; m), ⋯, C|B|(xB|B|; m))
T

y ∼ g y Ci xBi
g y dCi = g x dxBi

Muller et al. [1808.03856]

Forward
yA = xA

yB = C(xB; m( ⃗x A)) g y = g x
∂C(xB; m(xA))

∂xB

− 1
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Example of Transformer
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Muller et al. [1808.03856]

Forward
yA = xA

yB = C(xB; m( ⃗x A)) g y = g x
∂C(xB; m(xA))

∂xB

− 1

Ci(xBi; Q) = αQib +
b− 1

∑
k= 1

Qik

α =
xBi − (b − 1)w

w

∂C(xB; Q)
∂xB

= ∏
i

∂Ci(xBi; Q)
∂xBi

= ∏
i

Qib

w

b = ⌊
xBi

w
⌋

• Piecewise linear: Given fixed bin width , NN 
predicts pdf bin heights     

w
∼ Qi

• Piecewise quadratic: NN predicts both bin heights 
and bin widths for the pdf

cdf

pdf

bin b

xB1

xB1

yB1
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Durkan et al. [1906.04032] 

• Rational quadratic spline: NN predicts 
widths, heights, and derivatives of each 
knot of the spline.

cdf pdf

Forward
yA = xA

yB = C(xB; m( ⃗x A)) g y = g x
∂C(xB; m(xA))

∂xB

− 1

Example of Transformer
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How Many Coupling Layers are needed?

9

• , where  = NN based CL that transforms roughly half of 


• capture all the correlations between every dimension of 


• transform (or train) each dimension equal number of times


•  layers for ,  for 


• e.g. D=12

xK = CK ∘ CK− 1⋯C2 ∘ C1(x) Ck x

x

D D ≤ 5 2⌈log2 D⌉ D > 5
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i-flow: Integration and Sampling with Normalizing Flows 

10

2001.05486 [physics.comp-ph]     https://gitlab.com/i-flow/i-flow 

•   , where  resembles the shape of   ( ideally  )


• Now can sample uniformly in , with uncertainty:  

I = ∫ d Dx g (x) f (x)
g (x) = V⟨ f/g ⟩G g f g → f/I

d DG = g (x) d Dx ΔI = V
⟨( f/g )2⟩G − ⟨ f/g ⟩2

G

N − 1
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i-flow + Sherpa: Phase Space Integration

11

2001.05478 [hep-ph], 2001.10028 [hep-ph]

https://sherpa-team.gitlab.io  

• Sherpa computes matrix element squared with color sampling


• recursive multi-channel algorithm maps the integration domain in i-flow (a unit hypercube) to physical 
variables: 


• integrating over final color configurations adds  more variables


ndim = (3nf − 4) + (nf − 1) + nih adrons

2nc − 1

i-flow

xi
f(xi)

Ĩ

apply gradient descent 

sam
pling 

Sherpa
loss 

g (xi)

proton pdfmulti-channelkinematics
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Example: e+ e− → qq̄g
III: An easy example: e+e� ! 3j .

 g color

 q color

 g color spectator

 cos# of decaying fermion with beam

 ' of decaying fermion with beam

 cos# of decay

 ' of decay

 propagator of decaying fermion

 multichannel

Target distribution

with learning color

Claudius Krause (Fermilab) Event Generation with Normalizing Flows: i-flow December 10, 2019 25 / 33

•
σNN = 4887.1 ± 4.6pb
σSh erpa = 4887.0 ± 17.7pb

III: An easy example: e+e� ! 3j .

 g color

 q color

 g color spectator

 cos# of decaying fermion with beam

 ' of decaying fermion with beam

 cos# of decay

 ' of decay

 propagator of decaying fermion

 multichannel

Learned distribution

with learning color

Claudius Krause (Fermilab) Event Generation with Normalizing Flows: i-flow December 10, 2019 26 / 33

Borrowed from Claudius Krause
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Example: pp → V + jets



05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

 

14

Conclusion

• Discrete variables like multi-channel or color may not be modeled well by a spline, which 
could be the reason why it does not work so well for  jets.


• i-flow takes significantly longer to achieve optimal performance compared to VEGAS.


• After all, it is a MC technique, to get the corners/tails right requires some luck or a very large 
number of samples to train, which then runs into memory problem.


• New developments in Normalizing Flows could potentially improve the prospect of NN based 
MC integrator/event generator.


• Thank you!

n≥ 2


