led
2150 ANN
S 1 MadGraph
5125
e
£ 1.00
2
<075
3
3 0.50
€
3025
g
_ 0.0 i
s 01
S 00
]
¢ -01 i

0.2 0.8 1.0

mmmmmmmm

Simulations with
Neural Networks

Part |: Maxim Perelstein, Cornell
Part 2: Christina Gao, Fermilab
KITP “Precision” Workshop, May 13 2021

CORNELL __#¥%
UNIVERSITY W@

LABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

ML/NN in Particle Physics

e Long history of NN uses in particle physics, e.g. track reconstruction and combining

observables in early top-physics discoveries (1990’s)

e Exponential explosion of interest in machine learning and neural networks since 2015,
driven by advances in computing and algorithms

e Many applications to classification problems (e.g. jet flavor tagging) and anomaly

detection

* We will discuss another application: improving efficiency of Monte Carlo simulations

Single Top (tb) and Background
- =

/N dN/dNNout
e o o
c = b W

Elersrrrr Ty | 0 Iheromr 0 T
V] 025 05 075 1 V] 025 05 075 1
NN output, tb and Wjj (j=g,u,d) NN output, tb and Wbb

°
-

IN élN/dNNou
)
b

- Lo ;;ti—‘e—n_j
0O 02 04 06 08 1
NN output, tb and tt

e

o 025 0.5 0.75 1
NN output, tb and WW

Multi-variate analyses, using high-level inputs
e.g. DO single-top search + discovery, 1999-2007

700 |
600
500 |
400
300 |

200 |

| INSPIRE Entries |

100 |

——

1 ML/NN

1 DM (+0.25)

1susy

2010

2012

2014

2016

2018

2020

ML in a Nutshell

Start with a “complete” set of maps F , parametrized by “weights” w
Set the goal: Define “loss functional” (LF) L[]-_]
“Training”: Find the best among all possible maps w.r.t. chosen LF

miny; L[F]

“Machine Learning” = numerical algorithms that solve this problem

Neural Networks

Bias nodes _

Input layer Hidden layer 1 Hidden layer 2 Output layer

NNs are a set of functions defined recursively: hgl) — f(ul(]l) h.j(-l_l))

Any map can be approximated by a sufficiently large NN (“universal
approximation theorems”) === completeness

Efficient training algorithms make large networks computationally
practical, user-friendly packages (TensorFlow, MXNet) make it fun

Many physics problems can benefit from this technology!

MC Simulation/Integration

® Monte Carlo Problem: Given a function f(y), such that f(y) > 0, generate a set
of “random” points {y_i} with density proportional to f(y).
® |n particle physics, typically y=phase space points, f(y)=differential cross section
or decay rate, {y_i}=Monte Carlo sample (“pseudo-experiment”)
® Most Naive MC algorithm: randomly select points in 2D box, discard the points
with z > f(y).
. . T . . . ”, 2 e f(y)
® Fraction of points that are actually used = “unweighting efficiency”: ¢(y) = 7
24 46 >

0B

A —

-0.4

-0.2

0.2

0.4

integration: / F(Y)dy = finax / c(y)dy

Y

B

Problem: Resonances,
Collinear/Infrared Singularities

= 1

In modern applications, f(y) is often
numerically expensive to evaluate
(e.g. NNLO - may require numerical
integrations)

Importance Sampling

Classic solution: construct a number of “bounding boxes” in yz plane, covering
the function’s domain, with heights adjusted to correspond to local values of f(y)

Classic implementation: VEGAS [Lepage, 1978] (inside MadGraph, etc.)

Divide the domain into N bins, roughly compute “weight” =f e(y)dy in each
bin bin

Iteratively adjust bin boundaries until each bin contains the same weight

Simulation: choose a bin at random (equal probabilities), then follow Naive
algorithm in that bin. Repeat.

A

Construct a piecewise-constant
approximation to f(y),
then sample from that distribution

Importance Sampling as a Map

® |Importance sampling can also be described as a map from “input space” x to
“target space” y

® Randomly choose z € [0, 1] (uniform distribution)
® Deterministic, piecewise-linear map = — y(z)

® Equivalent to “pick a box + random point within the box”

dy

® Unweighting: keep the point with probability P(y) = f(y) 7
b

o
Xy

MC with Neural Networks

|dea: Generalize importance sampling from piecewise-linear to nonlinear maps

Simulation would be 100% efficient if we found a nonlinear map such that

—1

W)

dx

Generalization to functions in N dimensions (same dimensionality for input and
target spaces, =dimensionality of phase space)

Y
f);’l_‘]- ’

J = det 17 = f(y)

Universal Approximation Theorem: under mild assumptions, a neural network can
approximate any continuous functional map Zy — Z, (where Z, is an N-

dimensional hypercube) [Cybenko, '89; Hornik,’91]

This makes a NN a natural choice to implement nonlinear importance sampling

[J. Bendavid,’ 1 7; M. Kilmek and MPB,’18]

MC with Neural Networks

input /

[M. Kilmek and MP, 1810.1 1509, SciPost Phys]

p.(X) = constant

X

/

target T

/ Yw (X) T g
\

Aw x —V L(w) Py (Y (X)) = [Vaeyw (%)

\
L(w) = DL (py(yw(x)); f(yw(x)))

T = N-particle phase space; can choose coordinates so that T = a unit hypercube
for any N (map from 4-momenta to these coordinates is in our paper)

f(y) = matrix element-squared (computed separately)

Our goal is a “first principles” simulation, as opposed to bootstrapping with e.g.

GAN approach

Hope that ultimately NN-based algorithm replaces VEGAS inside standard tools

MC with Neural Networks

® Use classic fully-connected NN (fancier architectures left for future study)

® 3*%|28 or 6%64 hidden nodes

® An important subtlety is the choice of output function (=activation function for
the last layer)

sigmoid:

~——— Approaches
asymptotic values
slowly — hard to
populate the edges of
phase space

“soft clipping function”:

1 1+ eP?
SC(.T) = Z—) lOg (1 + ep(m_l))

MC with Neural Networks

[M. Kilmek and MP, 1810.11509, SciPost Phys]

input /

p.(X) = constant

X

/

target T

_— Y () T

Aw x —V L(w)

T~

|

Py(yw(x)) = [Vxyw(x)|

y

\

L(w) = Dxr(py(yw(x)); f(yw(x)))

® Error function: Kullbeck-Leibler divergence between |.J| ™

and f(y)

Dxvlpy(y); f(y)] = f py(y)log ijfy(—(yy)) dy

® Training: generate a batch of 100 points, compute Dy ,
adjust weights, iterate

3 Layers, 128 nodes

ELU/SC
Sinh/Sigmoid
Tanh/Sigmoid

a
505
>
iS]
0.2r
01t T A T WALV VN

0 500

1000 1500
Training Epochs

MCNN Event Generator

[M. Kilmek and MP, 1810.11509, SciPost Phys]

Uniform Target Uniform random
random sample Ldlgtl numbers r; € [0, 1]
on n-cube distribution i =

x;€Z,i={1,...,N} fy)
Rescaled weights . o
ANN wlys) = w5 maxu) [L) > 73

Yes l lNO
Raw MC sample i Raw weights

yi=y(x)eT wr(yi) = fyi)/py(yi) MC sample Discard

® Unweighting procedure: start with a raw sample produced by trained NN and
discard events to obtain a “perfect” distribution, at the expense of reduced

sample size

® Unweighting efficiency is a measure of “wasted” events; 100% if NN map is
already perfect

® We use unweighting efficiency as a measure of success

Sample Applications

® Simulate 3-body decay of a scalar X, with a resonance Y

1500 -

1000 -

Events / 2 MeV

500

0.72 0.73 0.74 0.75 0.76 0.77 0.78
mo3 (GeV)

® Choose phase-space coordinates 77193, (23
® Simulated with 'y /my = 107%,107%,107*
® Achieved unweighting efficiency 30-70%, depending on resonance width

® MadGraph (off-the-shelf) efficiency: 6%

Sample Applications

® Simulate 3-body decay of a scalar X, with resonances in two channels

(b) 1 (€) 1
~< =<
X X
Y 3 2 2
® NN was able to learn both the feature aligned with coordinate axis, and the

feature with complicated shape in these coordinates

® |n contrast,VEGAS needs each feature to be aligned with a coordinate axis
(coordinate choice handled separately by “multi-channeling”)

0.5

0.0

cos 6

(cos0+1)/2

-0.5/

_1.07‘ P R \ AL - A DU S AT -
0.35 0.40 0.45 0.50 0.55 0.60

m2 (GeV) 9,

NN output VEGAS grid/output

Sample Applications

+

® A more realistic example: e¢"¢~ — qqg

2 \2 2 \2
do . (s—mqg) +(s—mqg)

2 2 2 4
78 MagMye

2
qugdm

e Soft/collinear singularities == need to impose kinematic cuts

® Simple rectangular cuts aligned with target-space coordinates can be simply
handled by redefining the target space boundaries

® |n practice we need to be able to handle more general cuts:
Y >Yo: where Y =Y(y,...,yn)
® Naively, we could just replace f(y) — 0(Y(y) — Y.u:) f(¥)

® However NN target function must be differentiable! So we opt for

f(y) = 6(Y(y) = Yeur) f(y) with k(z) = {zx/m . z Z zcut
cut cut

Sample Applications

® A more realistic example: ¢"e™ — ¢gg

2 \2 2 \2
do . (s—mqg) +(s—mqg)

2 2 2 2 4

qugqug Mootz
I
|
|
l
|
100 :
£ [I
o) L |
5 50 !
c l
g) I
L l
l
10} l
’ l

57 | L L \! L L L | R |

0.005 0.010 0.050 0.100

Mqg (GeV?)

® |n this example, we used n=8.

® Unweighting efficiency is 70% (vs. 4% for off-the-shelf MadGraph)

Leptonic Higgs Decay

[l. Chen, M. Kilmek and MP,2009.07819, SciPost Phys]

Most interesting parton-level processes involve large # of final-state particles =
of phase-space coordinates = size of input/output spaces

We want to explore how the NN approach can handle larger phase spaces
Picked an example of great interest at the LHC, Higgs decay to 4 leptons

Non-trivial resonance structure: typically | on-shell and | off-shell Z/W in each
event

Distributions carry information about Higgs spin/CP

0.025F T T T T Hggs T

Spin-2
WW background -
0.02 j

1/o do/dmy, [GeV™")

0 210 4.0 GlO BIO 1(.)0 120
m, [GeV]
[Frank, Rauch, Zeppenfeld, ‘14]

Leptonic Higgs Decay

[l. Chen, M. Kilmek and MP,2009.07819, SciPost Phys]

Construct a fully-connected ANN as before (5 input nodes, 6%64 hidden nodes, 5
output nodes)

A2 . . .
Use tree-level | M|” (including all angular correlations) as the target function

Train with batches of 1,000 events each (larger batches needed as phase space
grows)

A new complication arises during training due to vanishing of target function on a
phase space boundary, making the loss function log-singular there

Could be solved by a judicious choice of phase-space coordinates, but that’s
precisely what we want to avoid!

Opted for a brute-force solution:“gradient clipping”. It worked.

1024

44 — loss i
-- gradient

L 104
! 10!
i

loss

1004
e 3
:‘.\ll F10

gradient norm

10~14

10-24

: : : : : : 100 10* 102 10° 10* 10°
100 80 60 40 20 0 epoch
epochs before crash

Leptonic Higgs Decay
[l. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]

® Unweighting efficiency of 26% achieved (compared to 8% for MadGraph)

® Generated distributions in perfect agreement with MadGraph

le4 le4
= 1.50 ANN = ANN
E [MadGraph 'S 61 [MadGraph
3. 1.251 >
g g
§ 1.00 1 }:; 4]
Z0.75 c
£ £
7 0.50 7 2]
c e
3 0.25 3
o 1)
0.00 0
T 0.1 © 0.11
=3 p=}
S 0.0 3 0.0
wn %]
@ -0.1 2 -0.11
0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 1.0
Mma3a (Mp) mszg (Mp)
led4 led
1.2 ANN ANN
2 1 MadGraph = 1 MadGraph
5 1.0 S 61
2 >
£038 &
=1 E=
5 0.6 e4
~ ©
’ 8
£ 0.41 0
=] c
8 32]
0.21 3
0.0
T 0.1 _ 0
2 004 g 014
@ —0.11 2 0.09
.) 9 —0.11
—-1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

oo -1.00 —0.75 —0.50 —0.25 0.00 025 050 0.75 1.00
cos¢

Leptonic Higgs Decay

[l. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]

® Resonant structure correctly reproduced in various coordinate slices

1.0 le+04 1.00
le+04 5e+03
le+04 0.751 4e+03
0.81
8e+03 050, 30403
| — 6e+03 '
2e+03
~ 0.6 4e+03 0.251
g T
= % 0.00 1e+03
E» 2e+03 S
0.4 -0.25
~0.50
0.21
-0.751
-1.00 ' . , 0e+00
%% 0.2 0.4 06 08 10 oeroo 0.0 0.2 0.4 0.6 0.8 1.0
mi (mp) M4 (M)
1.0 6e+03 1.0 2e+04
5e+03 Te+04
le+04
0.81 4e+03 0.8 1le+04
3e+03 ‘ 8e+03
6e+03
~06 2e+03 o6
g g 4e+03
T 1e+03 3
£ 04l €oa 2e+03
gy
0.21 0.2
0.0 . - . - 0e+00
0G0 0.2 0.4 0.6 0.8 10 oet00 0.0 02 0.4 0.6 08 10
' ' ' ' ' ' ma34 (Mp)

mia (Mp)

Bijectivity of the NN Map

[l. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]

® The map defined by NN should be bijective (one-to-one) for the MC generation
procedure to work correctly

® Non-surjective map would lead to empty regions in phase space, regardless of sample
size

® Non-injective map would lead to incorrect evaluation of phase space density,
invalidating both our training algorithm and unweighting procedure

a -1
_ Yi
py(y) = py(yw(x)) = or.
X
J
1.0‘ ’
0.20+
0.81 ® e °
0.181 °
~ 0.6 N
3 3016 . *
£04 3 °
0.141 ®
0.2 °
0.121 ° %
0.0
0.2 0.4 0.6 0.8 1.0 0.80 0.81 0.82 0.83 0.84 0.85 0.86

input 1 output 1

® Fully-commented ANN is not necessarily bijective by construction

Bijectivity of the NN Map

[l. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]

® Fortunately, the training procedure favors bijective maps
® Any continuous non-injective map would contain sub manifolds with small Jacobean

y Yw(x)

N

<1

o

> X

Py(Y)

® This results in large local values of the loss function: Dxi [p,(y); f(y)] = fpy(y) log —— iy)

® Training would adjust the map to eliminate such “foldings”

® This “unfolding” feature works very efficiently in practice, but does place a constraint
on the form of the loss function (as we discovered the hard way)

count

Bijectivity of the NN Map

[l. Chen, M. Kilmek and MP, 2009.07819, SciPost Phys]

® [nstead of “built in” surjectivity, we rely on training to create a surjective map, and
check surjectivity post-factum

® To check: Divide target space into small cubes, examine the input-space coordinates of
points that map into each cube. Do they form a single cluster?

150004 ¢ [comparison sample 50- :—
/ main sample I
] 5 |-
10000 // £ 30 |
7500 1 / / S |
/ 201 |
5000 / / :
2500 / / 7 107 ﬁ ﬂ
0 / / . ! | 0 T T T T
100 101 102 0.0 0.2 0.4 0.6 0.8 1.0
R-values bimodal coefficient

® Conclusion: deviations from surjectivity, if any, are small in our simulation

® Likewise, the trained map is injective to an excellent approximation

Conclusions

Neural Network seems a natural candidate to realize “nonlinear importance
sampling” in Monte Carlo simulations

With a bit of tweaking (e.g. proprietary “soft clipping” output function), we got
simple fully-connected NNs to work in realistic parton-level simulations with up
to 4 final-state particles

Can handle resonances, in a nicely coordinate-choice-independent way
Can handle soft/collinear enhancements, generic kinematic cuts
High unweighting efficiency achieved in all examples

This may be a crucial advantage in situations when matrix element is
computationally expensive to evaluate, e.g. NAkLO simulations

Bijective (one-to-one) mapping is not built in, but is naturally imposed by training

The approach seems quite promising, and applications to more challenging
examples should be explored

Office of

#Fermilab ‘@)EﬁEﬁEFY Science

_

S AR

PRI =t & Ot = i

Monte Carlo Simulations with Neural Networks Il:
Normalizing Flows

C. Gao, J. Isaacson, and C. Krause (2020), 2001.05486
C. Gao, S. Hoche, J. Isaacson, C. Krause, and H. Schulz (2020), 2001.10028
PRECISION21 - KITP May 13th 2021

NN based MC Integrator/Event Generator Bendavid [1707.00028]

Klimek/Perelstein [1810.11509]

— X’ f(;) loss:

— g'(x)

DKL

Buldwes

apply gradient descent

« X' = C(X), where X ~ g, (X) &

sampling

oC~!
ox’

density evaluation

X ~g'(x) = g (CT(x))

- can model Cor C~! as NN

* requires inverting NN (i.e. computing determinant of Jacobian of a matrix) ~ @(D3)
£& Fermilab

2 05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

1=y Rezende/Mohamed [1505.05770]
Normalizing Flows Dinh ot a. 1410,8516,1605.08803]
* Xg = Cg o Cr_;-+-C, o Ci(X), where C, is bijective, invertible, differentiable

kK 1ocy!
If X~ gy (X), then Xg ~ gx (X¢) = g <C1_1"'CIE1(XK))H a;
k=1 k

- C or C~! can be designed such that the Jacobian-determinant computation ~ O(D)

2% Fermilab

3 05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

Normalizing Flows

1912.02762 [stat.ML]

* X = CK o CK—] "'C2 ° C1 (X), wher: Autoregressive flows

f x ~ gy (X), then Xg ~ gg (XK) =

Transformer type:

— Affine

— Combination-based
— Integration-based

Conditioner type:
— Recurrent
— Masked

{ Coupling layer]

Linear flows

- Cor C~! can be designed such that

Permutations

Decomposition-based:
- PLU
- QR

Orthogonal:
— Exponential map
— Cayley map
— Householder

Residual flows

Contractive residual

Based on matrix determinant lemma.:

— Planar
— Sylvester
— Radial

Table 1: Overview of methods for constructing flows based on finite compositions.

4 05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

2% Fermilab

Coupling Layer Dinh et al. [1410.8516,1605.08803]

XA

YA = X4
y Forward — Clxn:
X { permutation |—> Y = (xB7 m(xA))
XA = YA
Inverse

xg = C™'(ygs m(x))
 Cis an easy, invertible Coupling Transform function or a transformer

-1

— — -1
_1 0 ! 1 0 0C(xg; m(xy,))
g, = |oviox| g, |=| =|lacom ac =
. o, oy Oxg

- e.g. Affine CT: Clxg;s,0) =xz Qe+t s,t € R |9C/oxg| = e 2"

2% Fermilab

5 05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

Coupling Layer Muller et al. [1808.03856]

XA yA=xA

Forward —
yg = Clxgsm(x'y))
Y { permutation |—>

-1
OC(xg; m(xy)) ‘
&y =& |————

ox B

* domain and co-domain are restricted to unit hypercube
T
. separability: C(xg; m(x,)) = (Cl(x31§ m), Cy(xp,; m), -+, C|B|(xB|B|; m))

- if y ~ g, is uniform, then C; acts as the cumulative distribution function (CDF) of Xp;:
gy dCl = 8x dei
+ each CDF/transformer can be modeled by a piecewise monotonically increasing polynomial

2% Fermilab

6 05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

Example of Transformer

* Piecewise linear: Given fixed bin width w, NN
predicts pdf bin heights ~ Ql.

b—1
Ciap: Q) = aQy +) Oy

k=1
‘ —(b-1
b LE | ae xp, — (w
w w
ICGH Q) | _ Bl e B Qi
0xp l_ Oxp, ow

* Piecewise quadratic: NN predicts both bin heights

and bin widths for the pdf

7 05/13/2021

Forward

Muller et al. [1808.03856]

9C (g m(x,) ‘ -

ox B

Ya =X
g = Clxg; m(X'y)) 8 = &
bin b
, [
/
| e | pdf

\
\

(
:
i
i
:
i
-
i
f
i
:
i

cdf

xBl

Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

1
0.6

* 2t Fermilab

Example of Transformer

Durkan et al. [1906.04032]

-1

. : . . YA = Xa dC(xg; m(x,))
 Rational quadratic spline: NN predicts Forward yo= Clopm(Ty)) T8 T g
widths, heights, and derivatives of each B BmmA B
knot of the spline.
—— RQ Spline
B1 —— |nverse
e Khnots
B 8
= 0 =
> >
=
YAy
cdf pdf
. 0 , : ;
-B 0 B -B 0 B
i T
£& Fermilab
05/13/2021

Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

How Many Coupling Layers are needed?

* Xg = Cgo Cy_;+-C, o Ci(X), where C;, = NN based CL that transforms roughly half of x

 capture all the correlations between every dimension of X
* transform (or train) each dimension equal number of times
« D layers for D < 5, 2[log, D] for D > 5

*e.g. D=12

Dimension lo|1]2|3|4|5]6]|7]8]|9]|10]11]
Transformation 1 o(1}0|1{0|1|0|1]0|1]0]1
Transformation 2 olo0O|1}|1j0|0]1 11001 1
Transformation 3 ojo(o0}joj{1|j1(1j1j0|j0(107]0O0
Transformation 4 ojo(o0o(ojojo|ro0of(fofj1rj1|1/|1

2% Fermilab

9 05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

i-flow: Integration and Sampling with Normalizing Flows

10

2001.05486 [physics.comp-ph] https://gitlab.com/i-flow/i-flow

) —> X. f > — >

3 l I

2 S

g —— & >
apply gradient descent

FIG. 2: Illustration of one step in the training of i-flow. Users need to provide a normalizing flow network, a
function f to integrate, and a loss function. I stands for the Monte-Carlo estimate of the integral using the sample
of points Z;, and g(&;) is the probability of a given point occurring in the i-flow sampling.

f((x)) = V(flg); , where g resembles the shape of f (ideally g — f/1)
g(x

,I=Jdeg(x)

(f18)%) 6 — (f18)%
N-1

. Now can sample uniformly in dPG = g (x) dPx, with uncertainty: Al =V

2% Fermilab

05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

I-flow + Sherpa: Phase Space Integration . os:7s fep-phi, 2001. 10028 jrep-pi

X.

— 8(x;)

Buidwes

apply gradient descent

* Sherpa computes matrix element squared with color sampling

* recursive multi-channel algorithm maps the integration domain in i-flow (a unit hypercube) to physical
variables: ng;,, = (3n, — 4) + (nr — 1) + Rypgar0ns

7NN

kinematics multi-channel proton pdf

« integrating over final color configurations adds 2nc — 1 more variables https://sherpa-team gitlab io

2% Fermilab

11 05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

Example: ete™ — ¢gg

| Target distribution |

|with learning color|

ggg < g color spectator
%%:)]Je cos ¥ of decaying fermion with beam

!M][Ml IR ¢ of decaying fermion with beam

i- rﬁ-(‘<— cos) of decay

< ¢ of decay

=z ./l

Kég@gggil m ! i propagator of decaying fermion
'?f%@;llﬁﬂlﬁl@%lLﬁ
il b ERNIE

WJMIIMI%W—
L Bl

%@ﬁ%ﬁﬁ@ﬂ%mmﬁgé

Borrowed from Claudius Krause

<+ g color

| Learned distribution |

+ g color

‘ + g color spectator |with learning color|

L

i

‘<— cos? of decaying fermion with beam

Ml‘ R P of decaying fermion with beam

M?i . ‘ — cosz? of decay

|+ @ of decay
%E ﬁ < propagator of decaying fermion

< multichannel

" Ogherpa = 4887.0 = 17.7pb

12 05/13/2021

2% Fermilab

Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

Example: pp — V + jets

13

unweighting efficiency LO QCD NLO QCD (RS)
(w)/Wmax n =0 n =1 n =2 n =3 n =4 n =0 n =1
W+ +njets Sherpa |28-107" 3.8-1072 7.5-107% 1.5-107% 83-107*|9.5-1072 45-107*
NN+4NF [6.1-107' 1.2-107' 1.0-107% 1.8-107% 89-10"*|[1.6-10"' 4.1-107?
{ Gain 2.2 3.3 1.4 1.2 1.1 1.6 0.91
W~ +njets Sherpa |29-107" 4.0-1072 7.7-107% 20-107% 9.7-107* |1.0-107" 45.107*
NN+NF [7.0-107* 1.5-107' 1.1-1072 22-107% 7.9-107*|15-107" 4.2.1073
Gain 2.4 3.3 1.4 1.1 0.82 1.5 0.91
Z +mnjets Sherpa |3.1-107' 36-1072 1.5-107% 4.7-107° 1.2-107' 5.3-107°
NN+NF | 38-107" 1.0-107' 1.4-107% 24-107° 1.8-107% 5.7-107°
Gain 1.2 2.9 0.91 0.51 1.5 1.1

TABLE II: Unweighting efficiencies at the LHC at /s = 14 TeV using the NNPDF 3.0 NNLO PDF set and a correspondingly
defined strong coupling. Jets are identified using the kr clustering algorithm with R = 0.4, pr; > 20 GeV and |n;| < 6. In the
case of Z/~* production, we also apply the invariant mass cut 66 < m;; < 116GeV.

05/13/2021

Christina Gao | Monte Carlo Simulations with Neural Networks II: Normalizing Flows

2% Fermilab

Conclusion

Discrete variables like multi-channel or color may not be modeled well by a spline, which
could be the reason why it does not work so well for n > 2 jets.

°

i-flow takes significantly longer to achieve optimal performance compared to VEGAS.

After all, it is a MC technique, to get the corners/tails right requires some luck or a very large
number of samples to train, which then runs into memory problem.

* New developments in Normalizing Flows could potentially improve the prospect of NN based
MC integrator/event generator.

* Thank youl!

2% Fermilab

14 05/13/2021 Christina Gao | Monte Carlo Simulations with Neural Networks Il: Normalizing Flows

