Explaiting anomalu detection for new physics identification at the LHC

Maurizio Pierini CER円

European
Research

This talk in a nutshell

O The LHC is a great discovery machine when you know what to search for

- Otherwise, you have to confront the 7imitations of the LHC bigdata prob7em
- Since the SM was estab7ished, we followed an estab7ished discovery path. We had an easier 7ife, but we have lost the capability of being surprised by data
- What we do is great, but we should (re)7earn to look at data in a different way: observational partic7e physics, 7ike astrophysics do
- Deep 7earning will be a crucial ingredient to this. And Run 3 is the right time.

The ultimate discavery machine?

LHC as a discovery machine

- The LHC was main7y built to discover the Higgs boson
© ATLAS \& CMS were designed to cover the meaningful mass range for a particle that was fully characterized

 resolution for the above particles will be better than 1% at 100 GeV . At the core of the CMS detector sits a large superconducting solenoid generating a uniform magnetic field of 4 T . The choice of a strong magnetic field leads to a compact design for the muon spectrometer without compromising the momentum resolution up to rapidities of 2.5 . The inner tracking system will measure all high p_{t} charged tracks with a momentum precision of $\Delta \mathrm{p} / \mathrm{p} \approx 0.1 \mathrm{p}_{\mathrm{t}}\left(\mathrm{p}_{\mathrm{t}}\right.$ in TeV$)$ in the range $|\eta|<2.5$. A high resolution crystal electromagnetic calorimeter, designed to detect the two photon decay of an intermediate mass Higgs, is located inside the coil. Hermetic hadronic calorimeters surround the intersection region up to $|\eta|=4.7$ allowing tagging of

erc

European Research Council

Fnd clearly it worked

Searches for something

o At the LHC, you need a signa7 hypothesis

CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only
o To design a trigger

- To optimize your cuts
o To compute the test statistics

2011/11/08 Head Id:

- To interpret the resu7ts

Abstract

o so far so good...

Searches for anything

- What do you do when you don't know what to search for?
o Any cut could be a signal kil7er

o You need to look at as many signatures as possib7e
o You can on7y 7ook for some deviation from an expected distribution

- How do you know that the "right events" are there to start with?

European Research Research
Council

Biq Data @LHC

40 TB/
Sec

- The amount of produced triggata is too much to be stored
© 1,000 times the data generated by goog7e searches+youtube+facebook back in 2013
- Reduced to 5x(goog7e searches+youtube+facebook) after first fi7tering
© Can on7y store 5\% of those

பnsupervised searches E ロbservational Рコrticle صhபுics

HEP searches in LHC era

- Research under the scientific method starts gathering information about nature

O Instead, our base7ine is the SM, which was formed once these informations were gathered

- We are victim of our success:
- Since 1970s, we start always from the same point
- We have lost the value of learning from data
- Not by chance, we totally endorsed b7ind analysis as the ONLY way to search
- Rather than specifying a signal hypothesis upfront, we could start looking at our data
- Based on what we see (e.g., clustering a7ike objects) we could formulate a signal hypothesis
- EXAMPLE: star c7assification was based on observed characteristics

Class	Effective temperature ${ }^{[1][2]}$	Vega-relative chromaticity ${ }^{[3][4][a]}$	Chromaticity (D65) ${ }^{[5][6][3][b]}$	Main-sequence mass ${ }^{[1][7]}$ (solar masses)	Main-sequence radius ${ }^{[1][7]}$ (solar radii)	Main-sequence luminosity ${ }^{[1][7]}$ (bolometric)	Hydrogen lines	Fraction of all main-sequence stars ${ }^{[8]}$
0	$\geq 30,000 \mathrm{~K}$	blue	blue	$\geq 16 M_{\odot}$	$\geq 6.6 R_{\odot}$	$\geq 30,000 L_{\odot}$	Weak	$\sim 0.00003 \%$
B	10,000-30,000 K	blue white	deep blue white	2.1-16 M_{\odot}	1.8-6.6 R_{\odot}	25-30,000 $L_{\text {¢ }}$	Medium	0.13\%
A	7,500-10,000 K	white	blue white	1.4-2.1 M_{\odot}	1.4-1.8 R_{\odot}	5-25 L.	Strong	0.6\%
F	6,000-7,500 K	yellow white	white	1.04-1.4 M ${ }_{\odot}$	1.15-1.4 R_{\odot}	1.5-5 $L_{\text {® }}$	Medium	3\%
G	5,200-6,000 K	yellow	yellowish white	0.8-1.04 M ${ }_{\text {¢ }}$	0.96-1.15 R_{\odot}	0.6-1.5 $L_{\text {© }}$	Weak	7.6\%
K	3,700-5,200 K	light orange	pale yellow orange	0.45-0.8 M ${ }_{\odot}$	0.7-0.96 R_{\odot}	0.08-0.6 $L_{\text {¢ }}$	Very weak	12.1\%
M	2,400-3,700 K	orange red	light orange red	0.08-0.45 M_{\odot}	$\leq 0.7 R_{\odot}$	$\leq 0.08 L_{\text {¢ }}$	Very weak	76.45\%

Learning from Anomalies

© Anomaly detection is one kind of data mining technique
O One defines a metric of "typicality" to rank data samples

- Based on this ranking, one can identify less typical events, tagging them as anomalies
© By studying anomalies, one can make hypotheses on new physics mechanisms

In the 1984 the UAI experiment reported an excess of events with 7arge missing transverse energy

- Before than, events with this signatures were extensively discussed with theorists (see """ for a first hand account of this)
- The community was looking for explanations (which eventually was provided by a combination of calorimeter cracks and tau decays)

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY ACCOMPANIED BY A JET OR A PHOTON (S) IN p $\overline{\mathrm{p}}$ COLLISIONS AT $\sqrt{s}=540 \mathrm{GeV}$

UA1 Collaboration, CERN, Geneva, Switzerland
G. ARNISON ${ }^{m}$, O.C. ALLKOFER ${ }^{\text {g }}$, A. ASTBURY ${ }^{\text {m, }}$, B. AUBERT $^{\text {b }}{ }^{\text {, C. } \text { BACCI }^{l} \text {, } \text { G. BAUER }^{\text {p }} \text {, }}$ A. BÉZAGUET ${ }^{\text {d }}$, R.K. BOCK ${ }^{\text {d }}$, T.J.V. BOWCOCK ${ }^{\text {h }}$, M. CALVETTI ${ }^{\text {d }}$, P. CATZ ${ }^{\text {b }}$, P. CENNINI ${ }^{\text {d }}{ }^{\text {d }}$ S. CENTRO ${ }^{2}$, F. CERADINI ${ }^{\ell}$, S. CITTOLIN ${ }^{\text {d }}$, D. CLINE ${ }^{\text {p }}$, C. COCHET ${ }^{\text {n }}$, J. COLAS ${ }^{\text {b }}$, M. CORDEN ${ }^{\text {c }}$, D. DALLMAN ${ }^{\text {d,o }}$, D. DAU ${ }^{\mathrm{d}, \mathrm{g}}$, M. DeBEER $^{\mathrm{n}}$, M. DELLA NEGRA ${ }^{\mathrm{b}, \mathrm{d}}$, M. DEMOULIN $^{\mathrm{d}}$, D. DENEGRI ${ }^{\mathrm{n}}$ D. DiBITONTO ${ }^{\text {d }}$, A. DICIACCIO ${ }^{\ell}$, L. DOBRZYNSKI ${ }^{j}$, J. DOWELL c, K. EGGERT ${ }^{\text {a }}$, E. EISENHANDLER ${ }^{h}$, N. ELLIS ${ }^{\text {d }}$, P. ERHARD ${ }^{\text {a }}$, H. FAISSNER $^{\text {a }}$, M. FINCKE ${ }^{\text {g, }}$, P. FLYNN ${ }^{\text {m }}$, G. FONTAINE ${ }^{\mathrm{j}}$, R. FREY ${ }^{\mathrm{k}}$, R. FRÜHWIRTH ${ }^{\circ}$, J. GARVEY ${ }^{\text {c }}$, S. GEER ${ }^{\mathrm{e}}$, C. GHESQUIERE ${ }^{\mathrm{j}}$, P. GHEZ ${ }^{\text {b }}$, W.R. GIBSON ${ }^{\text {h }}$, Y. GIRAUD-HÉRAUD ${ }^{j}$, A. GIVERNAUD ${ }^{\text {n }}$, A. GONIDEC ${ }^{\text {b }}$, G. GRAYER ${ }^{\text {m }}$, T. HANSL-KOZANECKA ${ }^{a}$ W.J. HAYNES ${ }^{\mathrm{m}}$, L.O. HERTZBERGER ${ }^{\mathrm{i}}$, D. HOFFMANN ${ }^{\mathrm{a}}$, H. HOFFMANN ${ }^{\text {d }}$, D.J. HOLTHUIZEN ${ }^{\mathrm{i}}$, R.J. HOMER ${ }^{\text {c }}$, A. HONMA ${ }^{\text {h }}$, W.JANK ${ }^{\text {d }}$, G. JORAT ${ }^{\text {d }}$, P.I.P. KALMUS ${ }^{\text {h }}$, V. KARIMÄKI ${ }^{\text {f }}$, R. KEELER ${ }^{\text {h, }}{ }^{1}$, I. KENYON ${ }^{\text {c }}$, A. KERNAN ${ }^{\text {k }}$, R. KINNUNEN ${ }^{\text {f }}$, W. KOZANECKI ${ }^{\text {k }}$, D. KRYN ${ }^{\text {d,j }}$, P. KYBERD ${ }^{\text {h }}$, F. LACAVA ${ }^{\ell}$, J.-P. LAUGIER ${ }^{\text {n }}$, J.-P. LEES ${ }^{\text {b }}$, H. LEHMANN ${ }^{\text {a }}$, R. LEUCHS ${ }^{\text {g }}$, A. LÉVÊQUE ${ }^{\text {d }}$, D. LINGLIN ${ }^{\text {b }}$, E. LOCCI ${ }^{\mathrm{n}}$, M. LORET $^{\mathrm{n}}$, T. MARKIEWICZ ${ }^{\text {p }}$, G. MAURIN ${ }^{\text {d }}$, T. McMAHON ${ }^{\text {c }}$, J.-P. MENDIBURU ${ }^{\mathrm{j}}$, M.-N. MINARD $^{\text {b }}$, M. MOHAMMADI ${ }^{\mathrm{p}}$, M. MORICCA $^{\ell}$, K. MORGAN $^{\mathrm{k}}$, F. MULLER ${ }^{\text {d }}$, A.K. NANDI ${ }^{m}$, L. NAUMANN ${ }^{\text {d }}$, A. NORTON ${ }^{\text {d }}$, A. ORKIN-LECOURTOIS ${ }^{j}$, L. PAOLUZI ${ }^{\ell}$, F. PAUSS ${ }^{\text {d }}$, G. PIANO MORTARI ${ }^{\ell}$, E. PIETARINEN ${ }^{\mathrm{f}}$, M. PIMI ${ }^{\mathrm{f}}$, D. PITMAN ${ }^{\mathrm{k}}$, A. PLACCI ${ }^{\text {d }}$, J.-P. PORTE ${ }^{\text {d }}$, E. RADERMACHER ${ }^{\text {a }}$, J. RANSDELL ${ }^{\text {k }}$, H. REITHLER ${ }^{\text {a }}$, J.-P. REVOL ${ }^{\text {d }}$, J. RICH ${ }^{\text {n }}$, M. RIJSSENBEEK ${ }^{\text {d }}$, C. ROBERTS ${ }^{\mathrm{m}}$, J. ROHLF $^{\mathrm{e}}$, P. ROSSI ${ }^{\mathrm{d}}$, C. RUBBIA ${ }^{\mathrm{d}}$, B. SADOULET ${ }^{\text {d }}$, G. SAJOT ${ }^{\mathrm{j}}$, G. SALVINI ${ }^{\ell}$, J. SASS ${ }^{\text {n }}$, A. SAVOY-NAVARRO ${ }^{\text {n }}$, D. SCHINZEL ${ }^{\text {d }}$, W. SCOTT $^{\text {m }}$, T.P. SHAH ${ }^{\text {m }}$, I. SHEER ${ }^{\text {k }}$, D. SMITH ${ }^{\text {k }}$, J. STRAUSS ${ }^{\circ}$, J. STREETS ${ }^{\text {c }}$, K. SUMOROK ${ }^{\text {d }}$, F. SZONCSO ${ }^{\circ}$, C. TAO ${ }^{\text {j }}$, G. THOMPSON ${ }^{\text {h }}$, J. TIMMER ${ }^{\text {d }}$, E. TSCHESLOG ${ }^{\text {a }}$, J. TUOMINIEMI ${ }^{\text {f }}$, B. Van EIJK ${ }^{i}$, J.-P. VIALLE ${ }^{\text {b }}$, J. VRANA ${ }^{\text {j }}$, V. VUILLEMIN ${ }^{\text {d }}$, H.D. WAHL ${ }^{\mathrm{o}}$, P. WATKINS ${ }^{\mathrm{c}}$, J. WILSON ${ }^{\mathrm{c}}$, C.-E. WULZ ${ }^{\circ}$ and M. YVERT ${ }^{\text {b }}$
 NIKHEF, Amsterdam ${ }^{\mathrm{i}}-$ Paris (Coll. de France) ${ }^{\mathrm{j}}-$ Riverside ${ }^{\mathrm{k}}-$ Roma ${ }^{\ell}-$ Rutherford Appleton Lab. ${ }^{\mathrm{m}}-$ Saclay $(\text { (EEN })^{\mathrm{n}}$ Vienna ${ }^{\circ}{ }^{\circ}$ Wisconsin ${ }^{\mathrm{P}}$ Collaboration

Received 30 March 1984

Back to 1984

- In the article, one sees the
$\Delta \mathrm{E}_{\mathrm{M}}(\mathrm{GeV})$ seeds of modern 7arge-scale data analysis techniques
- But the paper is more about single events, event displays, etc. and not just significance, 7imits, p-value and interpretation

- Data, and not their statistical interpretation, was central
- Certain7y, we moved away from that for good reason (b7ind ana7ysis, etc.)

○ On the other hand, aren't we missing something?

Event H

Looking at data used to be वK

- Our community looked at data for decades. It was the standard before the new standard (7arge-scale blind statistical analyses) became a thing
- I am not saying we should go back (Discoveries have to be based on reasonab7e statistical procedures)

O I am saying that we should have a pre-analysis step in which we look at data to identify reasonab7e signatures.

- Mode1 independent searches are a way to do this. But there are other ways, in which data are made more central

Autoencoders for anomaly detection

Autoencoders in a nutshell

- Autoencoders are compressiondecompression algorithms that learn to describe a given dataset in terms of points in a lower-dimension latent space
- UNSUPERVISED algorithm, used for data compression, generation, clustering (replacing PCA), etc.

- Used in particu7ar for anoma7y detection: when app7ied on events of different kind, compressiondecompression tuned on refer samp7e might fail
- One can define anomalous any event whose decompressed output is "far" from the input, in some metric (e.g., the metric of the auto-encoder 7oss)

Proof of concept: l+X @НしT

o Consider a stream of data coming from L1

- Passed L1 because of 1 7epton (e,m) with pT>23 GeV

O At HLT, very 7oose isolation app7ied
O Samp7e main7y consists of W, Z, tt \& QCD (for simplicity, we ignore the rest)

Standard Model processes						
Process	Acceptance	Trigger efficiency	Cross section [nb]	Events fraction	Event /month	
W	55.6%	68%	58	59.2%	110 M	
QCD	0.08%	9.6%	$1.6 \cdot 10^{5}$	33.8%	63 M	
Z	16%	77%	20	6.7%	12 M	
$t \bar{t}$	37%	49%	0.7	0.3%	0.6 M	

O We consider 21 features, typical7y highlighting the difference between these SM processes (no specific BSM signal in mind)

- The isolated-lepton transverse momentum p_{T}^{ℓ}.
- The three isolation quantities (ChPFIso, NeuPFIso, GammaPFIso) for the isolated lepton, computed with respect to charged particles, neutral hadrons and photons, respectively.
- The lepton charge.
- A boolean flag (ISELE) set to 1 when the trigger lepton is an electron, 0 otherwise.
- S_{T}, i.e. the scalar sum of the p_{T} of all the jets, leptons, and photons in the event with $p_{T}>30 \mathrm{GeV}$ and $|\eta|<2.6$. Jets are clustered from the reconstructed PF candidates, using the FASTJET [23] implementation of the anti- k_{T} jet algorithm [24], with jet-size parameter $\mathrm{R}=0.4$.
- The number of jets entering the S_{T} sum $\left(N_{J}\right)$.
- The invariant mass of the set of jets entering the S_{T} sum $\left(M_{J}\right)$.
- The number of these jets being identified as originating from a b quark $\left(N_{b}\right)$.
- The missing transverse momentum, decomposed into its parallel ($\left.p_{T, \|}^{\text {miss }}\right)$ and orthogonal ($p_{T, \perp}^{\text {miss }}$) components with respect to the isolated lepton direction. The missing transverse momentum is defined as the negative sum of the PF -candidate p_{T} vectors:

$$
\begin{equation*}
\vec{p}_{T}^{\mathrm{miss}}=-\sum_{q} \vec{p}_{T}^{q} . \tag{2}
\end{equation*}
$$

- The transverse mass, M_{T}, of the isolated lepton ℓ and the $E_{T}^{\text {miss }}$ system, defined as:

$$
\begin{equation*}
M_{T}=\sqrt{2 p_{T}^{\ell} E_{T}^{\text {miss }}(1-\cos \Delta \phi)}, \tag{3}
\end{equation*}
$$

with $\Delta \phi$ the azimuth separation between the lepton and $\vec{p}_{T}^{\text {miss }}$ vector, and $E_{T}^{\text {miss }}$ the absolute value of $\vec{p}_{T}^{\text {miss }}$.

- The number of selected muons $\left(N_{\mu}\right)$.
- The invariant mass of this set of muons $\left(M_{\mu}\right)$.
- The total transverse momentum of these muons $\left(p_{T, T O T}^{\mu}\right)$.
- The number of selected electrons $\left(N_{e}\right)$.
- The invariant mass of this set of electrons $\left(M_{e}\right)$.
- The total transverse momentum of these electrons $\left(p_{T, T O T}^{e}\right)$.
- The number of reconstructed charged hadrons.
- The number of reconstructed neutral hadrons.

Proof of concept: $\ell+\times$ @HLT

- Consider a stream of data coming from LI
- Passed L1 because of 1 7epton (e,m) with $p T>23 \mathrm{GeV}$

O At HLT, very 7oose isolation app7ied
© Samp7e main7y consists of $W, Z, t t \&$ QCD (for simplicity, we ignore the rest)

Standard Model processes						
Process	Acceptance	Trigger efficiency	Cross section [nb]	Events fraction	Event /month	
W	55.6%	68%	58	59.2%	110 M	
QCD	0.08%	9.6%	$1.6 \cdot 10^{5}$	33.8%	63 M	
Z	16%	77%	20	6.7%	12 M	
$t \bar{t}$	37%	49%	0.7	0.3%	0.6 M	

O We consider 21 features, typical7y highlighting the difference between these SM processes (no specific BSM signal in mind)

Neutral Had number

Standard Model $\boldsymbol{\text { ME }}$

© We train a VAE on a cocktail of $S M$ events (weighted by xsec)

O ENCODER: 21 inputs, 2 hidden 7ayers \rightarrow 4Dim 7atent space

- DECODER: from a random sample in the $4 D$ space $\rightarrow 2$ hidden layers $\rightarrow 21$ outputs

$$
z(-, 4)
$$

Decoder h1 (-, 50)

Decoder h2 (-, 50)

$$
x(-, 21)
$$

Some BSM benchmark

- We consider four BSM benchmark models, to give some sense of VAEs potential
- 7eptoquark with mass $80 \mathrm{GeV}, L Q \rightarrow b \tau$
© A scalar boson with mass 50 GeV , $a \rightarrow Z * Z * \rightarrow 4 \ell$

O A scalar scalar boson with mass 60 GeV, $h \rightarrow \tau \tau$
© A charged scalar boson with mass 60 GeV, $h^{ \pm \rightarrow \tau v}$

BSM benchmark processes				
Process	Acceptance	Trigger efficiency	Total efficiency	Cross-section 100 events/month
$h^{0} \rightarrow \tau \tau$	9%	70%	6%	335 fb
$h^{0} \rightarrow \tau \nu$	18%	69%	12%	163 fb
$L Q \rightarrow b \tau$	19%	62%	12%	166 fb
$a \rightarrow 4 \ell$	5%	98%	5%	436 fb

Defining anomalu

© Anomaly defined as a pvalue threshold on a given test statistics

- Loss function an obvious choice
o Some part of a 7oss could be more sensitive than others

O We tested different options and found the total loss to behave
 better

Benchmark comparison

- VAE's performances benchmarked against supervised classifiers
- For each BSM mode7
- take same inputs as VAE
© train a ful7y-supervised classifier to separate signal from background
o use supervised performances as a reference to aim to with the unsupervised approach
© Done for our 4 BSM mode7s using dense neural networks

Performbnces

© Evaluate general discrimination power by ROC curve and area under curve (AUC)
o clearly worse than supervised
o but not so far
© Fixing SM acceptance rate at 50 events/day

- competitive results considering unsupervised nature of the algorithm

Performbnces

© Small efficiency but still much larger than for SM processes

- Allows to probe 10-100 pb cross sections for reasonable amount of collected signal events

Process
Efficiency for ~30 evt/day xsec for 100 evt/month [pb]

$2.8 \cdot 10^{-3}$	7.1	27
$6.5 \cdot 10^{-4}$	31	$12 \square$
$3.6 \cdot 10^{-4}$	56	$2 己 \square$
$1.2 \cdot 10^{-3}$	17	67

European Research Council

1 KHz 1 mes/evt

This is where one would run this

Re-discovering the top quark

O We use one kind of ADA on real CMS data to re-discover the top quark

- $5 \mathrm{fb}^{-1}$ of 8 TeV CMS Open Data from 2012
- Sing7eMu dataset
- We trained an Adversarially Learned Anomaly Detection algorithm
o a GAN powered with an encoder
o or an auto-encoder powered with adversarial training
O We apply threshold on score to select 0.1% of the out7iers

Re-discovering the top quark

O We applied this idea to real data

- $5 \mathrm{fb}^{-1}$ of 8 TeV CMS Open Data from 2012
- Sing7eMu dataset
- We trained an Adversarially Learned Anoma7y Detection algorithm
o a GAN powered with an encoder
o or an auto-encoder powered with adversarial training
- We apply threshold on score to select 0.1% of the out7iers

erc
https://arxiv.org/abs/2005.01598

Re-discovering the top quark

- We then look at differential accept/reject ratios (data vs MC) to get an idea of where the anomalies (if any) are clustering
- In this case, we have indication that anomalies come with many jets, some of which are b-jets

© We require $>5 j$ and >1 b-jet and expect ~ 0 standard events
- We see a lot of them: an almost pure sample of anomalies that we can further inspect (and that the MC is telling us are

 actually tt events)
erc Council
https://arxiv.org/abs/2005.01598
28

Re-discovering the top quark

- We then look at differential accept/reject ratios (data vs MC) to get an idea of where the anomalies (if any) are clustering
- In this case, we have indication that anomalies come with many jets, some of which are b-jets

 the MC is telling us are actually tt events)

Uhat to do with anomalies?

Uhat to do with these data?

O We could 7earn a lot running clustering algorithms (KNN, etc) on these data

- In the 7atent space of the $A E$

O In the natural space of the input
O With any other similar technique
© In my mind, a descriptive paper on such an ana7ysis would be a valuab7e pub7ication, particularly before a long shutdown.

- Provided control on the background distribution (not for granted), we could run a statistical analysis on them and quote a significance (e.g., with https://arxiv.org/abs/1806.02350)
© Pub7ishing the dataset as a catalog could incentive new ideas in view of HL-LHC

O White we sort out the technical details (e.g., with TSG and L1), we would 7ike to request the EXO PAG to support the idea
"Model-independent" hypothesis test
© Deep Learning could help re7axing the underlying hypotheses of a newphysics search

$$
L[f]=\sum_{(x, y)}\left[(1-y) \frac{N(\mathrm{R})}{\mathcal{N}_{\mathcal{R}}}\left(e^{f(x)}-1\right)-y f(x)\right]
$$

O stay within the hypothesis test framework

O rep7ace the ful7y specified (mode7 dependent) signal hypothesis with a neural network trained on data
o exp7oit neural networks to express different mode7 shapes at once

- Training setup to 7earn the 7ikelihood ratio of a traditional search

$$
\operatorname{Min}_{\{\mathbf{w}\}} L=-\operatorname{Max}_{\{\mathbf{w}\}}\left\{\log \left[\frac{e^{-N(\mathbf{w})}}{e^{-N(\mathrm{R})}} \prod_{x \in \mathcal{D}} \frac{n(x \mid \mathbf{w})}{n(x \mid \mathrm{R})}\right]\right\}=-\frac{t(\mathcal{D})}{2}
$$

- Forma77y, stil7 a ful7y-supervised 7earning process
"Model-independent" hypothesis test

O In 1D, this method can detect new physics presence in D (but not in R)
o performance reduced wrt ful7yspecified hypothesis test

O stil7, sensitivity retained

33

D'Agnolo et al., arXiv:1806.02350

D'Agnolo et al., arXiv:1912.12155

"Madel-independent" hypathesis test

- The N-Dim generalization requires regularisation mechanism
© weight clipping enforced to prevent over-fitting
O with converge, test statistics recovers χ^{2} distribution for standard events, with Ndof fixed by number of network parameters

"Madel-independent" hypathesis test
$m_{\| \mid}>60 \mathrm{GeV}, \mathrm{N}(\mathrm{R})=\mathbf{2 0} 000$

$m_{\|}>95 \mathrm{GeV}, \mathrm{N}(\mathrm{R})=\mathbf{2} 200$

$m_{\| \mid}>95 \mathrm{GeV}, m_{Z^{\prime}}=300 \mathrm{GeV}, \mathrm{N}(\mathrm{R})=2200$

D'Agnolo et al., arXiv:1806.02350
D'Agnolo et al., arXiv:1912.12155

European
Research Research Council

Characterizing the excess

O A post-training analysis allows to characterize the nature of an excess that might have been found
o $t(D)$ vs relevant quantities (not necessarily inputs to training) highlights clustering of signal events

- Invariant mass peak for resonance signa7
- Tail excess for EFT signa1
- The network is 7earning the nature of the under7ying new physics and could guide its characterisation

Signal Reconstruction ($c_{w}=1.0 \mathrm{TeV}^{-2}$)

Conclusions

- The LHC is a great discovery machine when you know what to search for

O Otherwise, you have to confront the 7imitations of the LHC bigdata prob7em

- Since the SM was estab7ished, we followed an estab7ished discovery path. We had an easier 7ife, but we have lost the capability of being surprised by data
- What we do is great, but we should (re)7earn to look at data in a different way: observational partic7e physics, like astrophysics do
- Deep 7earning will be a crucial ingredient to this. And Run 3 is the right time.

Bコckup

European

Variational Autoencoders

- We investigated variational autoencoders
- Un7ike traditional AEs, VAEs try to associate a mu7ti-Dim pdf to a given image
o can be used to generate new examp7es
o comes with a probabilistic description of the input
- tends to work better than traditional AEs

The Loss Function

- Loss function described as the sum of two terms (scaled by a tuned λ parameter that makes the two contribution $\quad \operatorname{LoSS}_{\text {Tot }}=\operatorname{Loss}_{\mathrm{reco}}+\beta D_{\mathrm{KL}}$ numerically similar)
- Reconstruction loss (e.g. $D_{\mathrm{KL}}=\frac{1}{k} \sum_{i} D_{\mathrm{KL}}\left(N\left(\mu_{z}^{i}, \sigma_{z}^{i}\right) \| N\left(\mu_{P}, \sigma_{P}\right)\right)$
MSE(output-input))
- KL loss: distance between Gaussian pdfs (assumption on prior here)
© Why Gaussian? KL loss can be written analytically

$$
=\frac{1}{2 k} \sum_{i, j}\left(\sigma_{P}^{j} \sigma_{z}^{i, j}\right)^{2}+\left(\frac{\mu_{P}^{j}-\mu_{z}^{i, j}}{\sigma_{P}^{j}}\right)^{2}+\ln \frac{\sigma_{P}^{j}}{\sigma_{z}^{i, j}}-1
$$

Clustering with VAE

© In the clustering example, the different populationşo are forced on sums of Gaussian distributions

- This gives more regular shape for the clusters

European

VAEs for anomaly detection

- Evaluate genera1 discrimination power by ROC curve and area under curve (AUC)
o clearly worse than supervised
o but not so far
© Fixing SM acceptance rate at 50 events/day
- competitive results considering unsupervised nature of the algorithm

PART 2:
 NEW IDEAS FOR IMPLEMENTATION OF ANOMALY DETECTION ALGORITHMS AT THE LHC

From dijet resonance searches
to deployment online in the experiments trigger

Maurizio Pierini (CERN), Jennifer Ngadiuba (FNAL/Caltech)

New Physics from Precision at High Energies 29 April 2021, KITP

The physics case: dijet resonances

- Many other possible BSM scenarios not covered by these searches
- Or there could be a BSM signal we never thought of
\rightarrow how to generalize?
- Extensively studied at colliders
- classic dijet w/ no jet tagging
- \bar{t} w/ dedicated top tagging
- diboson w/ dedicated SM boson jet tagging
- most recently: triboson!
- ...

Search for resonances decaying to triple W-boson final states in proton-proton collisions at $\sqrt{\mathrm{s}}=13 \mathrm{TeV}$

CMS-PAS-B2G-20-001

Building a QCD-jet veto

- Dijet searches overwhelmed by QCD multijet background
- How to be sensitive to an unknown and low-coupling BSM signal \rightarrow veto QCD jets
- Novel signal-agnostic approaches uses anomaly detection algorithms

Autoencoders for jets

e.g, jet images

e.g, jet images

$$
\mathcal{L}_{\text {reco }}=\|x-\hat{x}\|^{2}=M S E(\text { input }, \text { output })
$$

- Recent idea to use autoencoders for jet tagging, in order to define a QCD-jet veto [*]
- Based on jet images but other physics-inspired representations can be used
- Applied in a BSM search (e.g., dijet resonance) could highlight new physics signal

Apply it to the dijet search

- Train a jet autoencoder on each jet individually in observed dijet data
- choose sample enriched in QCD multijet background: high $\left|\Delta \eta_{\text {iil }}\right|$ region
- Define an anomaly score:
- loss function as obvious choice
- evaluate on test dataset where a possible signal could live: low $\left|\Delta \eta_{\mathrm{ij}}\right|$ region
- Go from anomalous jets to anomalous dijet events combining the two individual jet losses

Apply it to the dijet search

- Doing so, one wants to avoid deformations in the background distribution that could fake a signal and/or disrupt the background estimation
- bump hunt in $X=m_{i j}$ for dijet resonance search case

Apply it to the dijet search

- Use a quantile regression to obtain a X -dependent cut on the loss

$$
\mathcal{L}_{\text {reco }}\left(X_{i}\right)>\mathcal{L}_{\text {cut }}\left(X_{i}\right)
$$

ACCEPTED EVENTS (eg, 10\%)

- chosen quantile value driven by the target background rejection rate
- compute on a F fraction of the signal region data or use cross-training procedure

Apply it to the dijet search

- Use a quantile regression to obtain a X -dependent cut on the loss

$$
\mathcal{L}_{\text {reco }}\left(X_{i}\right)>\mathcal{L}_{\text {cut }}\left(X_{i}\right)
$$

- chosen quantile value driven by the target background rejection rate
- compute on a F fraction of the signal region data or use cross-training procedure
- Bin the sample in orthogonal quantile ranges
- Each bin with different signal vs background rates

Apply it to the dijet search

- Use a quantile regression to obtain a X-dependent cut on the loss

$$
\mathcal{L}_{\text {reco }}\left(X_{i}\right)>\mathcal{L}_{\text {cut }}\left(X_{i}\right)
$$

- chosen quantile value driven by the target background rejection rate
- compute on a F fraction of the signal region data or use cross-training procedure
- Bin the sample in orthogonal quantile ranges
- Each bin with different signal vs background rates
- By construction and in absence of signal, background shape is the same in all quantile bins

Boosting sensitivity of dijet searches

- Method performance evaluated for a traditional signal
- heavy resonance decaying to WW
- narrow (1% width) and broad (35% width)
- Implement traditional bump hunt in dijet invariant mass spectrum
- Inject signal of increasing cross-section in QR training and observed dataset and compare p-values for:
- fit to the inclusive dijet spectrum
- simultaneous fit to all loss quantiles bins

Boosting sensitivity of dijet searches

- Method performance evaluated for a traditional signal
- heavy resonance decaying to WW
- narrow (1% width) and broad (35% width)
- Implement traditional bump hunt in dijet invariant mass spectrum
- Inject signal of increasing cross-section in QR training and observed dataset and compare p-values for:
- fit to the inclusive dijet spectrum
- simultaneous fit to all AE loss quantiles bins

Boosting sensitivity of dijet searches

- Method performance evaluated for a traditional signal
- heavy resonance decaying to WW
- narrow (1% width) and broad (35% width)
- Implement traditional bump hunt in dijet invariant mass spectrum
- Inject signal of increasing cross-section in QR training and observed dataset and compare p -values for:
- fit to the inclusive dijet spectrum
- simultaneous fit to all AE loss quantiles bins

The same idea can be applied to any final states with $\mathrm{N}>=1$ jets and for any discriminating variable X !

More boost: the 3D bump hunt

From 1 D bump hunt

fit to $m_{j j}$ spectrum after cuts on jet mass and substructure

- Applied to Run 2 CMS data for heavy $\mathrm{X} \rightarrow$ diboson $\rightarrow \mathrm{JJ}$ search [EPJC 80 (2020) 237]
- Take advantage of signal peaking in both jet mass and dijet invariant mass and search for $\mathrm{X} \rightarrow$ diboson in $\left(\mathrm{Mvv}_{\mathrm{w}}-\mathrm{M}_{\text {iet } 1}-\mathrm{M}_{\text {jet } 2}\right)$ space

More boost: the 3D bump hunt

- Full modelling of correlation among $m_{i i}$ and jet mass in QCD multijet background show improved sensitivity
- more information inserted in the final fit

More boost: the 3D bump hunt

- Original CMS analysis used jet substructure targeting SM boson jet
- But ideal framework for anomalous dijet event tagging where mother and daughter particles are not known ($\mathrm{X} \rightarrow \mathrm{YY}^{\prime}$, all three unknown)
- Could benefit from more controlled background model and jet mass calibrations
- resonant backgrounds as $\mathrm{V}+$ jets or ft to be enhanced after cut on the anomaly score?
- A 3D quantile regression probably needed if this approach is applied

More boost: apply it to the trigger!

-With 40 M collisions/seconds and 1000 stored, we might just being writing the wrong events

- trigger algorithms quite model dependent
- the anomaly that we look for offline could have easily be discarded

More boost: apply it to the trigger!

- With 40 M collisions/seconds and 1000 stored, we might just being writing the wrong events
- trigger algorithms quite model dependent
- the anomaly that we look for offline could have easily be discarded

More boost: apply it to the trigger!

- DL algorithms can become relatively large \rightarrow memory and number of operations required for the inference can easily explode
- Strict constraints at $\mathbf{L 1}$ trigger:
- latency of $\mathrm{O}(\mu \mathrm{s}) \rightarrow$ use FPGA hardware
- scarse resources (mostly occupied to calibrate sensors, build physics objects, etc..)

Correct the problem as early as possible in the data reduction flow!

More boost: apply it to the trigger!

- DL algorithms can become relatively large \rightarrow memory and number of operations required for the inference can easily explode
- Strict constraints at $\mathbf{L 1}$ trigger:
- latency of $\mathrm{O}(\mu \mathrm{s}) \rightarrow$ use FPGA hardware
- scarse resources (mostly occupied to calibrate sensors, build physics objects, etc..)

Correct the problem as early as possible in the data reduction flow!

Bring DL to FPGA for L1 trigger with

high level synthesis for machine learning

- Automated tool to deploy DNN in FPGA with ultra low latency
- Easy to tune the inference performance for your specific application: precision, resource vs latency/throughput tradeoff
- Can be used as API
- Includes several debugging utilities
- Most common DL layers and activation functions supported

Make the model fit on one chip

- Some tricks are needed here:
- Pruning: remove the connections that play little role for final decision

70% compression $\sim 70 \%$ fewer DSPs
- Reuse: allocate resources for each operation (run all network in one clock) vs spread calculation across

reuse $=4$
use 1 multiplier 4 times several clock cycles

reuse $=2$
use 2 multipliers 2 times each
reuse $=1$
use 4 multipliers 1 time each

Ultra-low latency inference

\rightarrow high-level features: jet mass, substructure, multiplicity, etc...

Quantization-aware training

- Post-training quantization can affect accuracy
- for a given bit allocation, the loss minimum at floating-point precision might not be the minimum anymore
- One could specify quantization while look for the minimum
- maximize accuracy for minimal FPGA resources
- Workflow: quantization-aware training with Google QKeras and firmware design with hls 4 ml for best NN inference on FPGA performance

More boost: apply it to the trigger!

Correct the problem as early as possible in the data reduction flow!

Fast autoencoders @ L1

- We start from the single-lepton data stream discussed previously
- Move to momentum-based data representation
- avoid need of computing high-level features at L1 which can be time or resource consuming

Standard Model processes					
Process	Acceptance	L1 trigger efficiency	Cross section [nb]	Event fraction	Events /month
W	55.6%	68%	58	59.2%	110 M
QCD	0.08%	9.6%	$1.6 \cdot 10^{5}$	33.8%	63 M
Z	16%	77%	20	6.7%	12 M
$t \bar{t}$	37%	49%	0.7	0.3%	0.6 M
BSM benchmark processes					
Process	Acceptance	L1 trigger	Total	Cross-section	
efficiency					
	efficiency	100 BSM events/month			
$A \rightarrow 4 \ell$	5%	98%	5%	0.44 pb	
$L Q \rightarrow b \tau$	19%	62%	12%	0.17 pb	
$h^{0} \rightarrow \tau \tau$	9%	70%	6%	0.34 pb	
$h^{ \pm} \rightarrow \tau \nu$	18%	69%	12%	0.16 pb	

- We compare different architectures: CNN vs DNN
- $\mathrm{m}_{\mathrm{A}}=50 \mathrm{GeV}$ and autoencoders (AE) versus variational AE (VAE)

- $\mathrm{mLQ}_{\mathrm{LQ}}=80 \mathrm{GeV}$
- $m_{h 0}=60 \mathrm{GeV}$
- $m_{h \pm}=60 \mathrm{GeV}$

Number of objects chosen to emulate limited L1 bandwidth

Variational autoencoders

- Encode inputs as pdfs over latent space rather than single point \rightarrow return $\vec{\mu}$ and $\overrightarrow{\boldsymbol{\sigma}}$ of N -dim Gaussian
- Impose prior on latent space and add divergence to total loss

$$
\mathcal{L}_{t o t}=(1-\beta) \cdot L_{\text {reco }}+\beta \cdot D_{K L}(\vec{\mu}, \vec{\sigma})
$$

> MSE I/O anomaly detection

Original input

Reconstructed input

Variational autoencoders

$$
\begin{array}{cc}
\mathcal{L}_{t o t}=(1-\beta) \cdot L_{\text {reco }}+\beta \cdot D_{K L}(\vec{\mu}, \vec{\sigma}) \\
\downarrow \begin{array}{c}
\text { MSE I/O } \\
\text { anomaly detection }
\end{array} & \text { Kullback-Leibler regularization term }
\end{array}
$$

Baseline I/O AD sub-optimal @ L1:

- Random sampling not practical in L1 environment
- Trigger decision required to be deterministic

Reconstructed input

Fast autoencoders @ L1

ALTERNATIVE APPROACH:

- Train encoder+decoder with $\mathcal{L}_{\text {tot }}=(1-\beta) \cdot L_{\text {reco }}+\beta \cdot D_{K L}(\vec{\mu}, \vec{\sigma})$
- Define an AD figure of merit in the latent space $D_{K L}(\vec{\mu}, \vec{\sigma})$ or $R_{z}=\sum_{i}\left(\mu_{i} / \sigma_{i}\right)^{2}$
- Advantages for L1 trigger application:
- no sampling at inference
- save resources and latency by not running decoder at inference

Pull of Gaussian from expectation ($\mu=0, \sigma=1$) in the latent space

Fast autoencoders @ L1

Dense NN
 Signal: A $\rightarrow 4 \mid$

- MSE $_{\text {vaE }} \cong$ MSE $_{\text {AE }} \cong D_{\text {KL }} \rightarrow$ can run only encoder @ L1 without loss in performance
- Pruning preserves performance
- Can also be quantized during training with QKeras to reduce resources
- Similar conclusions for the CNN architecture - final choice mainly depends on resources and latency

Fast autoencoders @ L1

$\sim x 10$ improvement wrt original study!

Dense NN Signal: A $\rightarrow 4 \mid$

FPR $=10^{-5} \rightarrow$ threshold for comparing figures of merit

Fast autoencoders @ L1

- MSE ${ }_{\text {VAE }} \cong$ MSE $_{\text {AE }} \cong D_{\text {KL }} \rightarrow$ can run only encoder @ L1 without loss in performance
- Pruning preserves performance
- Can also be quantized during training with QKeras to reduce resources
- Similar conclusions for the CNN architecture
- final choice mainly depends on resources and latency

Q (8 bits)	Latency (ns)	DSPs (\%)	LUTs (\%)	FFs (\%)	
DNN AE	48	20	8	0.4	\longrightarrow Could already be implemented for Run 3
DNN VAE (encoder)	40	9	3	~ 0	
CNN VAE (encoder)	275	21	18	3	\rightarrow Target HL-LHC

Anomaly detection for Run 3

Anomaly detection for Run 3

- The obvious question is what to do with these "anomalous" data?
- The answer is an additional and new field of study
- run clustering algorithms (eg, KNN) on these data in the latent space or natural space of the inputs
- look at differential distributions then develop analysis/trigger tailored to a specific final state/signal
- publish the data as a catalog to incentivate new ideas in view of HL-LHC

- full statistical analysis also possible

