Exploiting snomaly
detectlion for Nnew physics
ldentification at the LHC

Maurizio Plerint P
CMS

N CE/RW
CERMN — \

S 7
1) \\\ |

= ;.:;-.c . Euro
. '.‘.':°-':°° T Research
| -',:::'.erc Council
) N 'o.o:o: ....‘: .o,



This talk 1IN a Nnutshell

® The LHC 1s a great discovery machine when you know what to search
for

® Otherwise, you have to confront the Ilimitations of the LHC big-
data problem

® Since the SM was established, we followed an established
discovery path. We had an easier life, but we have lost the
capability of being surprised by data

® What we do 1s great, but we should (re)learn to look at data 1n a
different way: observational particle physics, like astrophysics

do

® Deep learning will be a crucial 1ngredient to this. And Run 3 1s
the right time.







LHC 3s 2 discovery machine

® The LHC was mainly built to discover the Hi1iggs boson

® ATLAS & CMS were designed to cover the meaningful mass range
for a particle that was fully characterized
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resolution for the above particles will be better than 1% at 100 GeV. At the core of
the CMS detector sits a large superconducting solenoid generating a uniform magnetic
field of 4 T. The choice of a strong magnetic field leads to a compact design for the
muon spectrometer without compromising the momentum resolution up to rapidities
of 2.5. The inner tracking system will measure all high p; charged tracks with a
momentum precision of Ap/p = 0.1 pt (pt in TeV) in the range Im | < 2.5. A high
resolution crystal electromagnetic calorimeter, designed to detect the two photon .....
decay of an intermediate mass Higgs, is located inside the coil. Hermetic hadronic %" Resuarch
calorimeters surround the intersection region up to In| =4.7 allowing tagging of el’ C| counci
forward jets and measurement of missing transverse energy. R




Bl ANnd clearly it worked
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Ol Searches for something...

CMS AN AN-11-065

® At the LHC, you need a
signal hypothesis CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

® To design a trigger

2011/11/08

Head Id: 83705
Archive Id: 83789
Archive Date: 2011/11/07

@ TO Op t -im-ize _)/Ol«lr1 cu tS Archive Tag: trunk

® 1o compute the test

Trigger strategies for Higgs searches

statistics
The Higgs PAG
® 1o 1nterpret the
results
Abstract
® So far so goo d.. This document describes the tiggers used in the Higgs analyses. 22 —




Exclusi
® What do you do when Jet-inclusive event class \
event class @ n| «--» : Calculate
J e /Reglon1/
you don’t know what to e+2u+Njets \ /1e+2u+1jet+Njets K p-value
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https://arxiv.org/pdf/2010.02984.pdf
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® The amount of produced data is too much’

tO be Stored B Business email

" Facebook

Google search
B Youtube

® 1,000 times the data generated by B e ey | 2ata from WIRED 2013

B ULHC Li-filtered (*)
google searches+youtube+facebook back [m uHcproduced
in 2013

(*]) Only two big

® Reduced to 5x (gOOg le experiments (ATLAS
and CMNs), only RAWJ

searches+youtube+facebook) after data
first filtering

® Can only store 5% of those erc
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https://www.wired.com/2013/04/bigdata/
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HEP searches 1N

® Research under the scientific method Observation
starts gathering information about nature

® Instead, our baseline 1s the SM, which
was formed once these informations were

Form the y.

g d th ere d Hypoihesis

Tes.t tl'1e
® We are victim of our success: Predction
Do the
) Analysis
® Since 1970s, we start always from the 1
same point L

® We have lost the value of learning from
data

@ Not by chance, we totally endorsed
blind analysis as the ONLY way to
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Learning from Data

® Rather than specifying a signal hypothesis
upfront, we could start looking at our data

® Based on what we see (e.g., clustering alike
objects) we could formulate a signal
hypothesis

® EXAMPLE: star classification was based on
observed characteristics

Main-sequence

Main-sequence

Main-sequence

Fraction of all

Class temiz::tttix‘r’:“]m ch:l:ﬁ:-t::ilta;[i;;;[al f;;:;[:;;;;;g mass!'ll’] radius[‘][? Iuminosity[.”m Hy:iir:::en main-sequence

(solar masses) (solar radii) (bolometric) stars(®!

O | =30,000K blue blue >16 Mg >6.6 Ao > 30,000 Lo Weak ~0.00003%

B | 10,000-30,000 K blue white deep blue white 2.1-16 Mg 1.8-6.6 R 25-30,000 Lg Medium 0.13%

A | 7,500-10,000 K white blue white 1.4-2.1 Mg 1.4-1.8 Ry 5-25 Lo Strong 0.6%

F | 6,000-7,500 K yellow white white 1.04-1.4 Mg 1.15-1.4 Ry 1.5-5 Lo Medium | 3%

G |5,200-6,000 K yellow yellowish white 0.8-1.04 Mg 0.96-1.15 Rp 0.6-1.5 Lo Weak 7.6%

K |3,700-5,200 K light orange pale yellow orange 0.45-0.8 Mg 0.7-0.96 Rp 0.08-0.6 Lo Very weak | 12.1%

M | 2,400-3,700 K orange red light orange red 0.08-0.45 Mg <0.7 Rp <0.08 Lp Very weak | 76.45%

® Afterwords,

1t was realised that different
classes correspond to differept temperatures

4 po Objective
Observation

AsK Questions

=

Form the
Hypothesis

!

Test the
Predictions

)

Do the
Analysis

L

Arrive at
Conclusion
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Communicate

The Results




@) Learning from Anomalies

® Anomaly detection 1s one kind of data mining technique
® One defines a metric of “typicality” to rank data samples

® Based on this ranking, one can identify less typical events, tagging
them as anomalies

® By studying anomalies, one can make hypotheses on new physics mechanisms
20 ‘s Object ID: 960415
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Back to 1984

® In the 1984 the UAIL
experiment reported an
excess of events with large
missing transverse energy

® Before than, events with
th1s signatures were
extensively discussed with
theorists (see “” for a
first hand account of this)

® The community was looking
for explanations (which

eventually was provided by a

combination of calorimeter
cracks and tau decays)

13

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY
ACCOMPANIED BY A JET OR A PHOTON (S) IN pp COLLISIONS AT /s = 540 GeV

UAI Collaboration, CERN, Geneva, Switzerland
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Back to 1984

® In the article, one sees the 0 w30 MQMH 60 70
seeds of modern large-scale data "
analysis techniques N e,
E “r Cos Ay > -08 |
® But the paper 1s more about N
single events, event displays, § :
etc. and not just significance,
limits, p-value and : ) C 8 A
inte rore tation 0 1000 20:)25" . (59\/33)00 4000 5000

RUN 8167 EVENT 90
THRESHOLDS PTw O E= 0100 0.000

® Data, and not their statistical == - 1 -
interpretation, was central

® Certainly, we moved away from
that for good reason (blind
analysis, etc.)

d® On the other hand, aren’t we - i | n
mi1ssing something? _— e | A e
14 R
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@)l L ooking at data used to b
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® Our community looked at data for NN . ) @)
decades. It was the standard before |HEANGENESEYS~SUW N, o
the new standard (large-scale blind [EESESRREE <2/EREE = T
statistical analyses) became a thing %
@ I am not saying we should go back SR I . @y . i
(Discoveries have to be based on g i N o™
reasonable statistical procedures) R e e ocaiog S I

@ I am saying that we should have a
pre-analysis step 1n which we look
at data to 1dentify reasonable
signatures.

® Model 1ndependent searches are a way
to do this. But there are other
ways, 1n which data are made more
central
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https://arxiv.org/pdf/2010.05531.pdf

9l Rutoencoders in a nutshell

encoder decoder
® Autoencoders are compression-
decompression algorithms that learn to
describe a given dataset 1n terms of
points 1n a lower-dimension latent space 5 5 : 5 5
® UNSUPERVISED algorithm, used for data
compression, generation, clustering
(replacing PCA), etc. X e . ;
® Used 1n particular for anomaly _— ?
detection: when applied on events of 10- ﬁ‘ifrﬁ; g :
different kind, compression- *%*"“ | 5'“22 7
decompression tuned on refer sample I A 3:?,,% o
might fail N },»5,," '”3...§ 5
VR el | |
® One can define anomalous any event whose -{ - .. \_.;\%3::@, 3
decompressed output 1s “far” from the mi‘ff&s" Lol Pl ,
Tnput, 1n some metric (e.g., the metric ‘%} ' 1
of the auto-encoder 10ss) | ewropean
o 5 o 5 1 B GOTC|cma
17 SRR




Proof of concept 0+X @HLT

O COnS 1 de r a stream o -F da ta com 7 ng 'ICI"OITI L 1 e The isolated-lepton transverse momentum pé.

e The three isolation quantities (CHPFISO, NEUPFIsO, GAMMAPFISO) for the isolated
lepton, computed with respect to charged particles, neutral hadrons and photons, respectively.

® Passed L1 because of 1 lepton (e,m) e The lepton charge.
W.i t h p T> 2 3 G e V e A boolean flag (ISELE) set to 1 when the trigger lepton 1s an electron, O otherwise.

e S7, 1.e. the scalar sum of the pr of all the jets, leptons, and photons in the event with
pr > 30 GeV and |n| < 2.6. Jets are clustered from the reconstructed PF candidates, using
the FASTJET [23] implementation of the anti-k7 jet algorithm [24], with jet-size parameter

® At HLT, very loose 1solation applied R=0.4.

e The number of jets entering the S sum (/N y).

‘

e The invariant mass of the set of jets entering the St sum (M ).

@ Samp 7 e main 7y CcConsis tS O -F W, Z, t t & e The number of these jets being identified as originating from a b quark (V).
e The missing transverse momentum, decomposed into its paralle ) and orthogona
or simplicity, we i1gnore the The miss d d into its parallel (p7.{f) and orthogonal
mlSS) components with respect to the isolated lepton direction. The missing transverse
res t) momentum is defined as the negative sum of the PF-candidate pr vectors:
—Miss —q
pr=—) DPr- (2)
Standard Model processes g zq: g
Process | Acceptance  Trigger Cross Events  Event , |
e fﬁCi@Ile section [Ilb] fraction /month e The transverse mass, M, of the isolated lepton ¢ and the E7**° system, defined as:
W 55.6% 68% 58 59.2%  110M My = \/2p% B3 (1 — cos Ag) | (3)
QLD 0.087 9.67% 1.6 - 107 33.87 63M with A¢ the azimuth separation between the lepton and 775 vector, and £’ the absolute
T ; T
Z 16% 7% 20 6.7%  12M valus of 7%,
tt 37% 49%A i 0.7 O°3% 0.6M e The number of selected muons (/V,,).

e The invariant mass of this set of muons (M ,).

e The total transverse momentum of these muons (p;. 7).

® We consider 21 features, typically

e The number of selected electrons (/V,).

h 7gh 7 7ght7ng the d7 7C7Ce rence be tween e The invariant mass of this set of electrons (M,).

t h ese S M p rocesses ( no s p ec -i -F -i C B S M e The total transverse momentum of these electrons (p7. 7o) ETRRNY Europes
. . . e The number of reconstructed charged hadrons. .:."- Researc

S1 g na 7 T mi nd) . The number of reconstructed neutral hadrons. " °°-e.-‘r c Councl

R




Proof of concept: ¢+X @HLT

® Consider a stream of data coming from L1

® Passed L1 because of 1 lepton (e,m)
with pT>23 GeV

® At HLT, very loose 1solation applied
® Sample mainly consists of W, Z, tt &

QCD (for simplicity, we 1gnore the
rest)

Standard Model processes

Process | Acceptance  Trigger Cross Events  Event

efficiency section [nb] | fraction /month

W 55.6% 68% o8 59.2% 110M
QCD 0.08% 9.6% 1.6 - 10° 33.8% 63M
A 16% 7% 20 6.7% 12M

tt 37% 49% 0.7 0.3% 0.6M

® We consider 21 features, typically
highlighting the difference between
these SM processes (no specific BSM

signhal 1n mind)
19
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Standard Model A&

® We train a VAE on a cocktail
of SM events (weighted by
xsec)

Encoder h1( -, 50)
Encoder h2 ( -, 50)
\

® ENCODER: 21 1nputs, 2 hidden
layers - 4Dim latent space

T~
Decoder h1( -, 50)
]

Decoder h2 ( -, 50)

® DECODER: from a random
sample 1n the 4D space - 2
hidden layers - 21 outputs

=0




Lo L0

Some B5S(T1 benchmark

® We consider four BSM benchmark "
models, to give some sense of VAEs

_ 10_2§

1070

. o | | 1 . l ‘ K R, Bl 1111 e
p O ten t -’ a 7 ° 200 4g$ [GeV] ° Jgt%OMass [GeV] ° >0 I\}Iggns PT1 [S(geV] ° 2I\(/)I(l)Jons Masio[OGeV]
. 107" 1072
® leptoquark with mass 80 GeV, LQ-bt 2
102
107%: | | == S f | ey
0 50 100 150 50 00 0 01 02 03

@ A scalar boson with mass 50 GeV, Eicirons Py [GeV] Flcirons Mass [GeV] Lep P, [GeV] GrPFiso

a-L*/L7* -4y 10_5_ | | _ 10_5 | | 0.06° 1 006"
i : i | 0.041 - 0.04-
1072l % 102 ]
.—‘ — ] e 0.02- - 0.02-
@ A scalar scalar boson with mass 60 i T L i =% 6 %
Ge V h—) T GammaPFlso NeuPFlso pr
’ : IS '
) 0.2c -+ 0.5
® A charged scalar boson with mass 60 °* _ ] :
Ge V y h *- T V : 50 1CI|)\§|)T[GIGV] "o é Muo4ns numbGer " Jsets number s b-taggéed jets numAIIE)er
BSM benchmark processes 0.4 o4 o4l "
Process | Acceptance  Trigger Total Cross-section 02 1 odl | o oot
efficiency | efficiency 100 events/month | 1 | | | -
0% z 4 6 S— 0 i ¥ 0o o5 1 15 % 500

ho — TT 9% 70% 6% 335 fb Electrons number Lep Charge [€] IsEle Charged Had number
ho s 1y 18% 69% 12% 163 fb S )

LQ — bt 19% 62% 12% 166 tb 004 | - qo — TT
a — 4€ 5% 98% 5% 436 fb 0.02- - r]"‘ _s v ; .;.:;-.c European
T B XXX Research
‘ ‘ ‘ '. :".:}.'..'..erc Council
%" 100 200 300 — LQ S ses:
=1 Neutral Had number et et




Deflining anomaly

® Anomaly defined as a p- -~ 1Kk evts/month
value threshold on a B m SM val. Mix
given test statistics i 1 h°-tT

: 1 A-44

. - E _[1 h*>tv

® Loss function an —
obvious choice =

Probability
(-
<

® Some part of a loss -

could be more 10~
sensitive than others

10~°
® We tested different |
: 11
options and found the 10-1 10° 10' 102 10° 10% 10°
total loss to behave MSE
better f

==



Ol Benchmark comparison

® VAE’s performances benchmarked
against supervised classifiers

® For each BSM model

® take same 1nputs as VAE

® train a fully-supervised
classifier to separate signal
from background

10—1.

=
<
N

® use supervised performances
as a reference to aim to with

BSM efficiency
-
<

the unsupervised approach 10-4
— CIf A—»4/ (area = 0.98)
— CIf LQ (area = 0.94)
® Done for our 4 BSM models S I g iy g o
) 5 -TV (area = 0.97) AR
using dense neural networks 7208 T I (R o 50 SM evts/day R

opean

: X esearc

107 1 ' | ' ' 2T C| coun
10® 10 100* 107° 107¢ 107! 10° r
SM efficiency

=3



Performances

109

® Evaluate general
discrimination power by ROC

curve and area under curve 107 onrAE
| AUC = 0.91 (0.84)
CAUCO) A
1072 AUC = 0.85 (0.79)
0 ho-TT
® clearly worse than < AUC = 0.75 (0.72)
- S =TV
supervi sed % 10-3 AUC = 0.92 (0.91)
=
0

Supervised Classifier (BDT)

— A-4| (area = 0.98)

. o | : — LQ (area = 0.94)
® F1Ix1ng SM acceptance rate at e I | deiarend 0.90)

50 even ts/day | | — h*-T1v (area = 0.97)
0 N B R 50 SM evts/day

® but not so far

-
9
TN

o 1078 e - — — —
® competitive results 10° 107 10 “SM eﬁcfency 1072 107t 10°
considering unsupervised o
nature of the algorithm iape)




Performances

® Small efficiency but still much larger than for SM processes

@ Allows to probe 10-100 pb cross sections for reasonable amount of
collected signal events

Process efficiency for ~30 evt/day xsec for 100 evt/month [pb] xsec for S/B~1/3 [pb]

LO—-Tb 6.5 104 3] 12
N—=TT 3.6104 56 =
ht—TV 1.2-10-3 1/ &5/
1 KH=
/ I 1 MB/evt
ATTA \yO MHZz

s where we loose most of the events e.TC Research
This is where one would run this =25 IR




Uil Re-discovering the top quark

® We use one kind of ADA on real (CMS data to re-discover the top quark
@5 b1 of 8 TeV CMS Open Data from 2012
® S1ngleMu dataset
® We trained an Adversarially Learned Anomaly Detection algorithm
® a GAN powered with an encoder
® or an auto-encoder powered with adversarial training
® We apply threshold on score to select 0.1% of the outliers

0@

GAN —> y« € [0,1] o —(E]— @ —[ D Autoencoder
A
H— >®_>Yxx € [0,1]
e <+
Bi-GAN —>Yyxz € [0,1] ALAD
-0~ -0
(+)J (O
are e
https://arxiv.org/abs/2005.01598 26 ~ ’@é Yz € [0,1]



https://arxiv.org/abs/2005.01598

@) Re-discovering the top quark

® We applied this i1dea to real data
@5 b1 of 8 TeV CMS Open Data from 2012
® S1ngleMu dataset
® We trained an Adversarially Learned Anomaly Detection algorithm
® a GAN powered with an encoder
® or an auto-encoder powered with adversarial training
® We apply threshold on score to se7ect 0.1% of the outliers

—— Features — — Logits
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® We then look at differential
accept/reject ratios (data vs
MC) to get an i1dea of where the
anomalies (1f any) are
clustering

that anomalies come with many
jets, some of which are b-jets

® We require >57 and >1 b-jet and
expect ~ 0 standard events

® We see a lot of them: an almost

can further i1nspect (and that
the MC 1s telling us are
actually tt events)

https://arxiv.org/abs/2005.01598

ASTF

® In this case, we have 1ndication

ASTF

pure sample of anomalies that we
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Re-discoverinqg the to Uark

® We then look at differential
accept/reject ratios (data vs
MC) to get an i1dea of where the
anomalies (1f any) are
clustering

B (t mmm Z/y" +)ets -/l  mmm W+ Jets -y ® data

Number of events
=
o
=

® In this case, we have 1ndication

Number of events
|_I
o
|_|

that anomalies come with many 10° - 10° -
. - . 0) 500 1000 1500 2000 0) 1000 2000 3000
J etS y some Of Wh 1 Ch are b_.] Ets Jets-pr scalar sum Hr [GeV] Jets Mass M, [GeV]
® We require >57 and >1 b-jet and £ g
expect ~ 0 standard events : z
> 10! o 101
® We see a lot of them: an almost E £
. = =
pure sample of anomalies that we = ju. 100 -
can further i1nspect (and that 0 2 4 6 8 101214 16 012 3 4 5 6
. . jets umber of b-tagged jets Ny,
the MC is telling us are R s
actually tt events) i | Europen

GG
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https://arxiv.org/pdf/2010.05531.pdf

@l UJhat to do with these data?

® We could learn a lot running clustering algorithms
(KNN, etc) on these data

@ In the latent space of the AE
® In the natural space of the Tnput
® With any other similar technique

@ In my mind, a descriptive paper on such an
analysis would be a valuable publication,
particularly before a long shutdown.

® Provided control on the background distribution
(not for granted), we could run a statistical
analysis on them and quote a significance (e.g.,
with https://arxiv.org/abs/1806.02350)

® Publishing the dataset as a catalog could
1ncentive new ideas 1n view of HL-LHC

—-40 -20 0 20 40

® While we sort out the technical details (e.g.,
with TSG and L1), we would l1ke to request the EXO iR L
PAG to support the idea erc Research

Council
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® Deep Learning could help relaxing the - N(R) -
underlying hypotheses of a new- CL[fl=) |(1-y) W (e/@) — 1) —y f(2)
physics search (z,y) - R -
o _ INPUT § OUTPUT
® stay within the hypothesis test Data sample D Dist. log ratio
framework oo o
® replace the fully specified (model vmmwmw - N ato/refosence
dependent) signal hypothesis with a » « o« v o R
neural network trained on data Reference sample R @) ~ log [néw;g‘{;]

Test statistic ¢
computed on the
data sample D

N t(D) = —2 Min L[f]

® exploit neural networks to express .
different model shapes at once B

{w}
® Training setup to learn the
l1kel1hood ratio of a traditional [~ N(w) )
search Min L = —Max < log H — {(D)
{w} {w} e~ N(R) 2
:UED _
de® Formally, still a fully-supervised |
learning process D’Agnolo et al., arXiv:1806.02350 =HeTC .
32 D’Agnolo et al., arXiv:1912.12155 7
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® In 1D, this method can detect new 5?_Peak in the Tail, 4 Neurons, No cut E
physics presence 1n D (but not 1n R) Al 4
F Median NN Y -,:';_
T NIRRT B
® performance reduced wrt fully- N o TN
specified hypothesis test 1t ' R I
. . . Of -
@ sti1ll, sensitivity retained 1} odinn Idoal
. _ _ o 1 2 3 4 5 6
® ho explicit assumption on signal shape 7
e : 00— E 0 s
4 Neurons t(D)=51 1 -4 Neurons t(D)=43 : 4 Neurons t(D)=25 :
LR - ] '_‘\>< . i S o .
10°E x‘x ::Ije E 102 || T ?:e E 10%F N\ $2e E
- N : - ) E ” Xh‘ﬁwﬂs ]
= i b= i = i VAN
S 10'L = S 10'L S 10'L . .
- I a2 F T 1L
1- 1- 1- I
00502 04 Y — 0050z 04 06
X X X lremelal
D’Agnolo et al., arXiv:1806.02350 H@PQ| e
33 D’Agnolo et al., arXiv:1912.12155
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“Model-independent” hypothesis test

® The N-Dim generalization requires regularisation mechanism
® weight clipping enforced to prevent over-fitting

® With converge, test statistics recovers 2 distribution for
standard events, with Ndof fixed by number of network parameters

__Compatibility of P(tR) with y* _ o0 Weght Clipping =7
SO . Weight Clipping: 2010 7 | __ 2 .
| | | | | | | X10 ;
N 0
o o\ ; |
el N\ o — | q
P e S : \}\
| S S S SO 20 R \f\<}:,__
0 100000 200000 300000 400000 3500000 10 15 20 25 30
Training Epochs t LIS | European

D’Agnolo et al., arXiv:1806.02350 eTC Resaarc
=4 D’Agnolo et al., arXiv:1912.12155 5
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“Model-independent” hypothesis test

my > 60 GeV, N(R) = 20 000 my > 95 GeV, N(R) = 2 200
10} ] 10..
mz = 200 GeV, N(S) = 40, 60, 80 | mz =200 GeV, N(S) = 40, 60, 80
sl mz =600 GeV, N(S) =6, 10, 15 _ sl mz =600 GeV, N(S) =6, 10, 15
EFT, c, =1.0,1.2, 1.5 TeV~2 | EFT,c, =1.0,1.2, 1.5 TeV™2
- @
72 6 " 6}
£ I\ s | ¢
N N | ® ©
4 4}
© ® |
2l ® ¢
| ® ® ®
ol
3 4 5 6 7 8 9

Zig

P(a)

4 - é - é - fO - f2 — . 4 - 6 - é - fO - iz .
Zid Zid L : European

D’Agnolo et al., arXiv:1806.02350 @FC| comn'

35 D’Agnolo et al., arXiv:1912.12155 i



http://arxiv.org/abs/arXiv:1806.02350
https://arxiv.org/abs/1912.12155

@ Characterizing the excess

Signal Reconstruction (m> = 300 GeV)

® A post-training analysis allows to B R |
y 15 Data toy 43 ]
characterize the nature of an excess 2 | NN reconstrution”
that might have been found z 1
o 2 |
® t(D) vs relevant quantities (not Z 4
necessarily 1nputs to training) |
highlights clustering of signal events 0
- Signal R tructi w=1.0 TeV?
® Invariant mass peak for resonance e
S-igna7 __ | Datatoy 32
&2 8} NN reconstruction
e |
. . = 6l
® Tail excess for EFT signal ~ |
. . = |
® The network 1s learning the nature of g
the underlying new physics and could 0
guide 1ts characterisation

D’Agnolo et al., arXiv:1806.02350 :HEFC| b’
36 D’Agnolo et al., arXiv:1912.12155 22
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Conclusions

® The LHC 1s a great discovery machine when you know what to search
for

® Otherwise, you have to confront the limitations of the LHC big-
data problem

® Since the SM was established, we followed an established
discovery path. We had an easier life, but we have lost the
capability of being surprised by data

® What we do 1s great, but we should (re)learn to look at data 1n a
different way: observational particle physics, like astrophysics

do

® Deep learning will be a crucial 1ngredient to this. And Run 3 1s
the right time.
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&) Varlational AQutoencoders

® We 1nvestigated variational
autoencoders

encode = decode =

@ Unl1ke traditional AEs,
VAEs try to associate a
multi-Dim pdf to a given
1mage

® can be used to generate
new examples

® comes with a
probabi1listic description
of the 1nput

® tends to work better than S | e
traditional AEs Herc| wn
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The Loss Function

® Loss function described as
the sum of two terms (scaled
by a tuned A parameter that
makes the two contribution I, _

. =Y 0SSTHt = LLOSS + 6D
numerical ly similar) Lot Heeo 6 L
® Reconstruction loss (e.g. Dx.=+ ZDKL (N(kz,02) || N(pp,op))

MSE (output-1nput))

1 J_i,j : Hp
® KL loss: distance between ~ 2%k — (UPJZ ) +( j
Gaussian pdfs (assumption
on prior here)

® Why Gaussian? KL loss can
be written analytically

40



Clustering with VAE

® In the clustering example,
the different populationg,
are forced on sums of
Gaussian distributions  2o-

. . 10 -
® Thi1is gives more regular

shape for the clusters o-

—-10 -

9
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@l VAEs for anomaly detection

® Evaluate general 107
discrimination power by ROC
curve and area under curve 10-1
(AUC)
.. 1072
® clearly worse than C
supervised £ 10-3
0 AUC = 0.91 (0.84)
= LO
n S
® but not so far @ 1q-al ) AUC = 0.85 (0.79)
K 5// o ho—TT
. T AR AUC = 0.75 (0.72)
® F1x1ng SM acceptance rate at s i %% - b Ty
50 events/day = AUC = 0.92 (0.91)
------- 1000 SM evts/month
L 10-6 g+ - - — —
® competitive results 10° 10 107 107> 107 107%  10°
. . . SM efficiency
considering unsupervised o
nature of the algorithm

- S Research
| 'Z-::'.erc Council
Caserle oo,
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PART 2:
NEW IDEAS FOR IMPLEMENTATION OF ANOMALY
DETECTION ALGORITHMS AT THE LHC

From dijet resonance searches
to deployment online in the experiments trigger

Maurizio Pierini (CERN), New Physics from Precision at High Energies
Jennifer Ngadiuba (FNAL/Caltech) 29 April 2021, KITP



The physics case: dijet resonances

Search for resonances decaying to triple W-boson final states
in proton-proton collisions at Vs = 13 TeV

e Extensively studied at colliders CMS-PAS-82G-20-001

classic dijet w/ no jet tagging

#t w/ dedicated top tagging
diboson w/ dedicated SM boson
jet tagging

most recently: triboson!

* Many other possible BSM scenarios
not covered by these searches

* Or there could be a BSM
signal we never thought of

- how to generalize?



http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-20-001/index.html

Building a QCD-jet veto

* Dijet searches overwhelmed by QCD multijet background
* How to be sensitive to an unknown and low-coupling BSM signal — veto QCD jets
* Novel signal-agnostic approaches uses anomaly detection algorithms

BACKGROUND QCD JET VS ANY OF THESE

/\ \\\’\\’\m "
\\ Ho /

L’
éé Z,\)’ r/JJ ANAANAAA
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Autoencoders for jets

e.g, |et images

T~

neural network
encoder

/

/

neural network
decoder

\Q

e.g, et images

Lreco = ||z — 2||* = MSE(input, output)

* Recent idea to use autoencoders for jet tagging,

in order to define a QCD-jet veto [*]

*Based on jet images but other physics-inspired 06

representations can be used

* Applied in a BSM search (e.g., dijet resonance) o

could highlight new physics

signal

0.0

QCD
t

§ (400 GeV)

1077

[*] Heimel et al.: SciPost Phys. 6, 030 (2019) , Farina et al.: Phys. Rev. D 101, 075021 (2020)

10°° 10> 1074
Reconstruction Error


https://scipost.org/10.21468/SciPostPhys.6.3.030
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.075021

Apply it to the dijet search

* Train a jet autoencoder on each jet individually in observed dijet data

- choose sample enriched in QCD multijet background: SIGNAL SIDEBAND
high [An; | region s REGION REGION 4 -

* Define an anomaly score:

TEST
- loss function as obvious choice  DATASET

TRAIN
ANOMALY

- evaluate on test dataset where a possible
signal could live: low | An;| region

* Go from anomalous jets to
anomalous dijet events
combining the two individual jet losses

trained

_ ¢ - ¢ model



Apply it to the dijet search

* Doing so, one wants to avoid deformations in the background distribution that could
fake a signal and/or disrupt the background estimation

- bump hunt in X=mjj for dijet resonance search case

# of Events
# of Events

‘_+‘

\+“=+~-+.-
>

Some Discriminating Quantity X Some Discriminating Quantity X



Apply it to the dijet search

* Use a quantile regression to obtain a X-dependent cut on the loss

Ereco(

- chosen quantile value driven by the target
background rejection rate

Xz) > Ecut(X@')

- compute on a F fraction of the signal

region data or use cross-training procedure

3
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Apply it to the dijet search

* Use a quantile regression to obtain a X-dependent cut on the loss

Lreco(Xi) > Lcut(Xi)

- chosen quantile value driven by the target
background rejection rate

- compute on a F fraction of the signal
region data or use cross-training procedure

*Bin the sample in orthogonal quantile ranges

* Each bin with different signal
vs background rates

min(L1,L2)

4. 0F

3.5

3.0

M; [GeV]

104
108
1 [ 102
quantile cuts
— Q10.0% -
— Q30.0% _
— Q50.0% 410’
— Q70.0% | | 1
— Q90.0% ]
Q 99.0%
| | | | | | 0
3000 4000 10



Apply it to the dijet search

* Use a quantile regression to obtain a X-dependent cut on the loss

»CreCO(Xi) > ECUt(Xi)

_ . . .
chosen quantile value driven by the target 2 E oato dijet events
background rejection rate [10° =
= QCD MC: Narrow G -WW:
- compute on a F fraction of the signal - ~a=01 —— =01
° . ° 4:_
region data or use cross-training procedure 107
*Bin the sample in orthogonal quantile ranges 0L
* Each bin with different signal =
vs background rates e
: : : 15
* By construction and in absence of signal, o
: I —————
background shape is the same o
in all quantile bins -

| 1 | | | 1 | I | 1 | 1 | | | | | | | | | | | | 1 | 1
2000 3000 4000 5000 6000
M, (GeV)



Boosting sensitivity of dijet searches

* Method performance evaluated for a traditional signal

- heavy resonance decaying to WW
- narrow (1% width) and broad (35% width)

* Implement traditional bump hunt in
dijet invariant mass spectrum

* Inject signal of increasing cross-section in
QR training and observed dataset and
compare p-values for:

- fit to the inclusive dijet spectrum

- simultaneous fit to all loss
quantiles bins

NARROW G—WW
o 10% ——T T :
S5 NS T TTTTYe——— - o
S 107" e - E
: 2
1072 e 3
0af 30
1074F =
40
1075} —
1076 =
50
1077} E
1078} -
ool Narrow G_’WV%Q
‘ ® 1.5TeV ]
10_10;_ \ ©® 25TeV —
Y bump) Hunt 3.5TeV ]
10°°F — AD bumip hunt ® 45TeV
jo-t2l— | | | R U R S VU
0 20 40 60 80 100

cross-section [fb]
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Boosting sensitivity of dijet searches

* Method performance evaluated for a traditional signal

- heavy resonance decaying to WW
- narrow (1% width) and broad (35% width)

* Implement traditional bump hunt in
dijet invariant mass spectrum

* Inject signal of increasing cross-section in
QR training and observed dataset and
compare p-values for:

- fit to the inclusive dijet spectrum

- simultaneous fit to all AE loss
quantiles bins

0 20

BROAD G—WW

[ - bump hunt

- —— AD bump hunt

\ . Broad G—)WV\éd
. ® 1.5TeV
\ ® 25TeV -

3.5TeV ]

b45TeV :
YA L

40

60 80 1 00

cross-section [fb]
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Boosting sensitivity of dijet searches

* Method performance evaluated for a traditional signal

- heavy resonance decaying to WW

- narrow (1% width) and broad (35% width)

* Implement traditional bump hunt in
dijet invariant mass spectrum

* Inject signal of increasing cross-section in
QR training and observed dataset and
compare p-values for:

- fit to the inclusive dijet spectrum

- simultaneous fit to all AE loss
quantiles bins

BROAD G—WW

FUA AL A VL S S

10781 Y

sl \ . Broad G.—)WV\éCI
. ® 1.5TeV

10_10__ \\ ® 25TeV —;
Y bump hunt O 3.5TeV 1
107 __ AD bump hunt ® 45TeV |
10_12‘ o NN N T
0 20 40 60 80 100

cross-section [fb]

The same idea can be applied to any final states with N>=1 jets and for any discriminating variable X!

11



More boost: the 3D bump hunt

[From 1D bump huntj

relax assumptions

fit to mj; spectrum after cuts on

jet mass and substructure

> L To 3D bump hunt J

no cuts on the mass of the two jets

+ moothly falling

_|_ ] SM background

Events

diboson invariant mass

Dijet invariant mass (GeV)

* Applied to Run 2 CMS data for heavy X—=diboson—JJ search [EPJC 80 (2020) 237]

* Take advantage of signal peaking in both jet mass and dijet invariant mass and

search for X=diboson in (Myy - Miet1 - Mier2) space

12


https://link.springer.com/article/10.1140/epjc/s10052-020-7773-5

More boost: the 3D bump hunt

* Full modelling of correlation among m;j; and jet mass in QCD multijet background
show improved sensitivity

- more information inserted in the final fit

107"

— WW) (pb)

21072

o X B(G

1073

(13 TeV

T T T
CMS

1} \
N

95% CL expected upper limits

35.9 fb”', Phys. Rev. D97, 072006
— 35.9 fb™, this analysis
. --- 77.3 fb”, this analysis

Events / 2 GeV

N—"

7730 (13 TeV
L I L L L
¢+ Data

— Signal+background fit
___z1lounc.

WH+ets, tt

- Z+jets

[Z (2 TeV) = WW (x5)

HPLP category

I RN B I N
100 120 140 160

| I I
180 200
m._., [GeV]

jetl

1D fit: 2016 run only

3D fit: 2016 run only

2000

00
Mg

3000 40

bulk

5000
GeV]

3D fit: 2016+2017 runs
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More boost: the 3D bump hunt

* Original CMS analysis used jet substructure targeting SM boson jet

* But ideal framework for anomalous dijet event tagging where mother and daughter
particles are not known (X = YY’, all three unknown)

* Could benefit from more controlled background model and jet mass calibrations

- resonant backgrounds as V+jets or it to be enhanced after cut on the anomaly score?

* A 3D quantile regression probably needed
if this approach is applied

77.3 0" (13 TeV
LA L L L L L L B L B

¢+ Data

— Signal+background fit

= 1ounc.

--- W+ets, tt

-~ Z+jets

7' (2 TeV) — WW (x5)

HPLP category

S

Events / 2 GeV

TR BRI ST SR | I S

140 160 180 200
My [GeV]
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More boost: apply it to the trigger!

* With 40M collisions/seconds and 1000 stored, we might just being writing the
wrong events

- trigger algorithms quite model dependent

- the anomaly that we look for offline could have easily be discarded

99.75% events 99% events
rejected! rejected!

1 kHz

Offllne

15



More boost: apply it to the trigger!

* With 40M collisions/seconds and 1000 stored, we might just being writing the
wrong events

- trigger algorithms quite model dependent

- the anomaly that we look for offline could have easily be discarded

99% events
rejected!

1 kHz
1 MB/evt
—

Offline

Correct the problem as early as possible in the data reduction flow! .



More boost: apply it to the trigger!

* DL algorithms can become relatively large = memory and number of operations
required for the inference can easily explode

* Strict constraints at L1 trigger:
- latency of O(ps) = use FPGA hardware

- scarse resources (mostly occupied to calibrate sensors, build physics objects, etc..)

99% events
rejected!

1 kHz
1 MB/evt
—

Offline

Correct the problem as early as possible in the data reduction flow! y



More boost: apply it to the trigger!

* DL algorithms can become relatively large = memory and number of operations
required for the inference can easily explode

 Strict constraints at L1 trigger:
99 How to fit a ML algo here?
- latency of O(ps) = use FPGA hardware

- scarse resources (mostly occupied to calibrate sensors, build physics objects, etc..)

99% events
rejected!

1 kHz
1 MB/evt

=5

Offline

Correct the problem as early as possible in the data reduction flow! y



Bring DL to FPGA for L1 trigger with
high level synthesis for machine learning

 Automated tool to deploy DNN in FPGA with ultra low latency
* Easy to tune the inference performance for your specific application:
precision, resource vs latency/throughput tradeoff

* Can be used as API
* Includes several debugging utilities

PYTORCH
Keras
TensorFlow
* Most common DL layers and Plorch | P——
activation functions supported -~ © his 4 ml|
compressed
model — HLS. —_
conversion Custom f.irmwore
Usual ML Vivado™ HLS de5|gn

/

tune configuration
precision
reuse/pipeline
+ B

Tensor

software workflow

( hitps://fastmachinelearning.org/hls4ml/ )

€ ONNX

17



Make the model fit on one chip

1 oa Mis4mi

e Some tricks are needed here: 10] == fut ma

before pruning after pruning

pruning
synapses

-—>

- Pruning: remove the
connections that play little role
for final decision

pruning
neurons

. e 0101.1011101010
- Quantisation: represents numbers

with few bits reduce resources

ap fixed<l14, 4>

= mult

mult
Q —P{ mult
- Reuse: allocate resources for each

operation (run all network in one Q mult

clock) vs spread calculation across mult
several clock cycles —p{ mutt
more parallelization = more resources mult

Fully parallelized
(max DSP use)
compression

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

70% compression ~ 70% fewer DSPs

18



Latency

Ultra-low latency inference

hisdml preliminary

t—UJg—
h/W/Z~qq Q—qqq

3-layer pruned, Kintex Ultrascale

16 inputs

8

64 nodes
activation: ReLU

8

32 nodes
activation: ReLLU

8

32 nodes
activation: ReLLU

8

5 outputs
activation: SoftMax

60
—#— Reuse Factor =1
Reuse Factor = 2
50 4 —®— Reuse Factor =3
—#— Reuse Factor =4
—#— Reuse Factor =5 — ] 75 ns
40 4 —®— Reuse Factor =6
30 A
20 A
4
/ /I—I—I—I—I—I—I/._./._H_./._.
10- ~/5 nsl
0 1 1 1 1 1
<8,6> <16,6> <24,6> <32,6> <40,6>

Fixed-point precision

Background Efficiency

— high-level features:
jet mass, substructure,
multiplicity, etc...

his4ml
10°
—— g tagger, AUC = 93.8%
—— ( tagger, AUC = 90.4%
—— W tagger, AUC = 94.6%
—— 2z tagger, AUC = 93.9%
—— t tagger, AUC = 95.8%
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Quantization-aware
training

* Post-training quantization can affect accuracy

- for a given bit allocation, the loss minimum at
floating-point precision might not be
the minimum anymore

* One could specify quantization while look
for the minimum

- maximize accuracy for minimal FPGA resources

* Workflow: quantization-aware training with
Google QKeras and firmware design with
hls4ml for best NN inference on FPGA
performance

C. N. Coelho et al., arXiv:2006.10159 - Submitted to Nature Machine Intelligence
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https://github.com/google/qkeras
https://github.com/fastmachinelearning/hls4ml
https://arxiv.org/abs/2006.10159

More boost: apply it to the trigger!

h I S 4 m I How to fit a ML algo here?

99% events
rejected!

% events

1 kHz
1 MB/evt

=5

Offline

Correct the problem as early as possible in the data reduction flow! ”



Fast autoencoders @ L1

Standard Model processes

® We Si'al"i' from the Single-lepfon dqta Process | Acceptance L1 trigger Cross Event Events
. . efficiency  section [nb| | fraction /month
stream discussed previously T s T 5029  110M
QCD 0.08% 9.6% 1.6-10° 33.8% 63M
Z 16% 7% 20 6.7% 12M
* Move to momentum-based data " 3700 19% o7 03%  0.6M
re p resen } qa i-i on BSM be'znchmark processes .
Process | Acceptance L1 trigger Total Cross-section
efficiency | efficiency 100 BSM events/month
- avoid need of computing high-level A—db | 5% 98% 5% 0.4 pb
i ) LQ — br 19% 62% 12% 0.17 pb
features at L1 which can be time WO Srr | 9% 70% 6% 0.34 pb
. +
Oor resource consuming o | 18% 69% 127% 0.16 pb
* We compare different architectures: CNN vs DNN e ma =50 GeV
and autoencoders (AE) versus variational AE (VAE) e mio = 80 GeV
e mho = 60 GeV
S
é-\\\\\o °* Mh+ = 60 GeV
/\
Pr n P
MET N/A
4 oly Number of objects chosen to
A n emulate limited L1 bandwidth
10 jets
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Variational autoencoders

* Encode inputs as pdfs over latent space rather than single point
— return fi and ¢ of N-dim Gaussian

* Impose prior on latent space and add divergence to total loss

»Ctot — (1 _5) .LTECO_I_/B.DKL(IL[\7 0})
}

MSE 1/O Kullback-Leibler regularization term
anomaly detection

\ /

Sampling
Decoder

o

Latent space

Original input Reconstructed input
23



Variational autoencoders

»Ctot — (1 — 6) ' erco =+ 5 ' DKLl(:L[\v 0})

MSE 1/0O Kullback-Leibler regularization term
anomaly detection

Baseline I/O AD sub-optimal @ L1:
* Random sampling not practical in L1 environment
* Trigger decision required to be deterministic

\ /

Sampling
Decoder

o

Latent space

Original input Reconstructed input )
2



Fast autoencoders @ L1

ALTERNATIVE APPROACH:

* Train encoder+decoder with| Lot = (1 — 3) - Lyeco + B DKL(ﬁ, ?)

* Define an AD figure of merit in the latent space DKL(ﬁ, ?) or R, = Z(Nz‘/gi)Q

1

* Advantages for L1 trigger application:

Pull of Gaussian from expectation

. . (p=0, 0=1) in the latent space
- no sampling at inference

- save resources and latency by not running decoder at inference

Sampling

Lateny space

Original input Reconstructed input ,
5




Fast autoencoders @ L1

Dense NN

Signal: A — 4

True Positive Rate

100.

10—1.

-
=}
b

-
o
B

10—4 4

=l

AN

lighter colours: no pruning

—— Dt (auc = 91.1%)
—— R, (auc = 88.4%)

MSE VAE (auc = 91.4%)

—— MSE AE (auc = 93.3%)

10-6 1075 10 10-3 10-2 10-1
False Positive Rate

10°

* MSEvae = MSEAe = Dkt — can run only
encoder @ L1 without loss in performance

* Pruning preserves performance

* Can also be quantized during training with
QKeras to reduce resources

e Similar conclusions for the CNN architecture
e final choice mainly depends on resources

and latency
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Fast autoencoders @ L1

Dense NN

Signal: A — 4

~x10 improvement wrt original study!

True Positive Rate

100.

10—1.

,_.
o
\

._.
o
b

10—4 4

/

N

i lighter colours: no pruning

109

10_1g

-
o
N

A-4/
AUC = 0.91 (0.84)

LY

BSM efficiency
-
<

()

MSE VAE (auc = 91.4%)
Dy, (auc = 91.1%)

R, (auc = 88.4%)

MSE AE (auc = 93.3%)

10-6 1075 10 10-3
False Positive Rate

10-2 10-1 100

10-4. ’ AUC = 0.85 (0.79)

/’ EI,’l{ | ho—’TT

o ',{l/: AUC = 0.75 (0.72)
10-5 L4 | h*-Tv

r | | AUC = 0.92 (0.91)

: S A I PR 1000 SM evts/month
10-6. ' //.!\ | | [ |

10°® { 10~°) 107% 103 107¢ 107!
SM efficiency

10°

FPR = 10-5 — threshold for comparing figures of merit
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Fast autoencoders @ L1

* MSEvae = MSEAE = Dk — can run only encoder @ L1 without loss in performance
* Pruning preserves performance
* Can also be quantized during training with QKeras to reduce resources
e Similar conclusions for the CNN architecture

- final choice mainly depends on resources and latency

Q (8 bits) Latency (ns) DSPs (%) LUTs (%) FFs (%)

DNN AE 48 20 8 0.4 - ,C°U|d already be
/ implemented for Run 3

encoden | 40 : 3 -0

g':g'o\égs 275 21 18 3 — Target HL-LHC

nb, results for target device for Phase 2 CMS trigger system -



Anomaly detection for Run 3

1 kHz
1 MB/evt

)

Offline
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Anomaly detection for Run 3

* The obvious question is what to do with these “anomalous” data?

*The answer is an additional and new field of study
- run clustering algorithms (eg, KNN) on these data

in the latent space or natural space of the inputs )
- look at differential distributions then

develop analysis/trigger tailored to a specific X
final state/signal

e normal data

® noise
® anomalous data

- publish the data as a catalog to
incentivate new ideas in view of HL-LHC X

- full statistical analysis also possible

30
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