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Axions and axion-like particles (ALPs) are well motivated theoretically:

Motivation
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‣ Peccei-Quinn solution to strong CP problem


‣ ALPs as pseudo Nambu-Goldstone bosons


‣ Importance of low-energy processes in 
constraining ALP couplings


‣ Light but weakly-coupled new particles are 
an interesting alternative to heavy new 
particles and might provide hints about 
physics at energies scales out of the reach 
for direct searches at the LHC

[Peccei, Quinn (1977); Weinberg (1978); Wilczek (1978)]



Assume the scale of global symmetry breaking   is above the weak 
scale, and consider the most general effective Lagrangian for a pseudoscalar 
boson  coupled to the SM via classically shift-invariant interactions, broken 
only by a soft mass term:

Λ = 4π f

a

2.1 Choice of the operator basis

The most general e↵ective Lagrangian for this particle including operators of up to dimension 5
reads [36]1
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Here G
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A
µ⌫ and Bµ⌫ are the field-strength tensors of SU(3)c, SU(2)L and U(1)Y , and
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B↵� etc. (with ✏0123 = 1) are the dual field-strength tensors. The sum in the first
line extends over the chiral fermion multiplets F of the SM. The quantities cF are hermitian
matrices in generation space. For the couplings of a to the U(1)Y and SU(2)L gauge fields,
the additional terms arising from a constant shift a ! a+ c of the ALP field can be removed
by field redefinitions. The coupling to QCD gauge fields is not invariant under a continuous
shift transformation because of instanton e↵ects, which however preserve a discrete version
of the shift symmetry, under which a ! a + n⇡f/cGG with integer n [3, 4]. Above we have
indicated the suppression of the dimension-5 operators with the ALP decay constant f , which
is related to the relevant new-physics scale by ⇤ = 4⇡f . This is the characteristic scale of global
symmetry breaking, assumed to be far above the weak scale. It is then a good approximation
to neglect contributions from higher-dimensional operators, which are suppressed by higher
powers of 1/f .2 Since our e↵ective theory only contains the SM particles and the ALP as
degrees of freedom, it would need to be modified in scenarios with a new-physics sector between
the weak scale and the scale of global symmetry breaking (v < MNP < 4⇡f). Even in this
case, the e↵ective Lagrangian (1) o↵ers a model-independent description of the physics below
the intermediate scale MNP.

The physical ALP mass is given by the sum of the explicit soft breaking term m
2
a,0 and the

contribution to the mass generated by non-perturbative QCD dynamics [6, 37, 38], such that
at lowest order in chiral perturbation theory

m
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where f⇡ ' 130MeV is the pion decay constant. The correction to the first term in this
relation will be discussed in Section 7. Whereas for the classical QCD axion (with m

2
a,0 = 0)

there is a strict relation between the mass and the coupling to gluons, the presence of the
additional contribution m

2
a,0 allows for heavier ALPs, which however are still naturally much

lighter than the scale f as long as the ALP is a pseudo Nambu–Goldstone boson and the shift
symmetry is e↵ective. It is possible to generate this additional contribution dynamically using

1The ALP couplings to fermions and gauge bosons in (1) are related to the analogous couplings introduced
in [22] by f = ⇤/(4⇡), cF = CF /(4⇡) and cV V = 4⇡ CV V with V = G, W, B.

2In the literature on QCD axions f is often eliminated in favor of the axion decay constant fa, defined such
that 1/fa ⌘ �2cGG/f . The parameter 1/fa then determines the strength of the axion–gluon coupling.

3

Effective Lagrangian in the UV 
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hermitian matrices

Couplings to Higgs bosons only arise in higher orders:

where cw ⌘ cos ✓w denotes the cosine of the weak mixing angle, and the last expression holds
in unitary gauge. Despite appearance, this operator does not give rise to a tree-level h ! Za

matrix element; the resulting tree-level graphs precisely cancel each other [42]. Indeed, a term
CZhOZh in the Lagrangian is redundant, because it can be reduced to the fermionic operators
in (1) using the equations of motion for the Higgs doublet and the SM fermions [42]. The field
redefinitions

� ! e
i⇠a

� , uR ! e
i⇠a

uR , dR ! e
�i⇠a

dR , eR ! e
�i⇠a

eR , (3)

with ⇠ = CZh/⇤, eliminate OZh and shift the flavor matrices CF of the SU(2)L singlet fermions
by1

Cu ! Cu � CZh 1 , Cd ! Cd + CZh 1 , Ce ! Ce + CZh 1 , (4)

while the matrices CQ and CL of the SU(2)L doublets remain unchanged. There are no addi-
tional contributions to the operators in (1) involving the gauge fields, because the combination
of axial-vector currents induced by the shifts in (4) is anomaly free.

In this work we will be agnostic about the values of the Wilson coe�cients. We will
show that ALP searches at high-energy colliders are sensitive to couplings Ci/⇤ ranging from
(1TeV)�1 to (100TeV)�1. In weakly-coupled UV completions one expects that the operators
describing ALP couplings to SM bosons have loop-suppressed couplings (see e.g. [48] for a
recent discussion). This is in line with estimates based on naive dimensional analysis, which
we briefly discuss in Appendix A. Departures from these estimates can arise in models involving
e.g. large multiplicities of new particles in loops. It is common practice in the ALP literature
to absorb potential loop factors that may arise into the Wilson coe�cients Ci. As we will
discuss in Section 4, the puzzle of the anomalous magnetic moment of the muon can be
resolved within our framework if C��/⇤ = O(1/TeV). Probing this region at colliders is thus
a particularly well motivated target [41]. We emphasize, though, that by using the search
strategies developed here it will be possible to probe even loop-suppressed couplings as long
as the new-physics scale ⇤ is in the TeV range.

The ALP can receive a mass by means of either an explicit soft breaking of the shift
symmetry or through non-perturbative dynamics, like in the case of the QCD axion [3, 4]. In
the absence of an explicit breaking, QCD dynamics generates a mass term given by [49–51]

ma, dyn ⇡ 5.7µeV


1012 GeV

fa

�
⇡ 1.8MeV |CGG|


1TeV

⇤

�
. (5)

When an explicit symmetry-breaking mass term ma,0 is included in the e↵ective Lagrangian
(1), the resulting mass squared m

2

a = m
2

a,0+m
2

a, dyn becomes a free parameter. We will assume
that ma ⌧ v. At dimension-6 order and higher, several additional operators can arise. The
ALP couplings to the Higgs field are those most relevant to our analysis. They are
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The first two terms are the leading Higgs portal interactions, which give rise to the decay
h ! aa. Note that the second term, which explicitly violates the shift symmetry, is allowed

1In addition, the coe�cient Cah of the Higgs-portal operator in (6) is shifted by Cah ! Cah � (CZh)2.
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[Georgi, Kaplan, Randall (1986)]

[Dobrescu, Landsberg, Matchev (2000);

Bauer, MN, Thamm (2017)]



• The only possible dimension-5 coupling to the Higgs doublet


is a redundant operator, which can be removed by means of the field 
redefinitions                            and                                as long as:


 


• This adds                            to the ALP-fermion couplings, i.e.:  

non-abelian extensions of the SM, in which additional instanton contributions arise [9, 39–51],
or using the recently proposed mechanism of axion kinetic misalignment, in which the axion
shift symmetry is explicitly broken in the early universe [52]. It is thus possible to generate
an ALP mass significantly larger than the contribution from QCD instantons while preserving
the Peccei–Quinn solution of the strong CP problem.

The ALP couplings cF to the SM fermions can, in principle, have a non-trivial structure in
generation space, thereby giving rise to flavor-changing neutral current interactions mediated
by ALP exchange. The phenomenological constraints on such couplings are very strong,
especially for light ALPs, which can be produced in the decays of kaons or B mesons [53–59],
and which can give sizable contributions to flavor-changing transitions in the lepton sector
[60–62] and to electric dipole moments [63, 64]. In extensions of the SM in which the new-
physics scale ⇤ = 4⇡f is not very far above the TeV scale, the coupling matrices cF must have
a hierarchical structure in order to be consistent with these constraints. From the point of
view of model building, such a structure can be ensured by imposing the principle of minimal
flavor violation [65]. Under this hypothesis, the matrices cQ and cq in the quark sector can
be expanded as
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where ✏ counts the order in the spurion expansion. Analogous expressions apply in the lepton
sector. The phenomenological implications of these results will be discussed later.

2.2 A redundant operator

The form of the e↵ective Lagrangian (1) is not unique. At dimension-5 order one can also
write down an ALP coupling to the Higgs doublet �, given by
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The operator O� is redundant, however, because it can be reduced to the fermionic operators
in (1) using the field equations for the Higgs doublet and the SM fermions [36]. Indeed, the
field redefinitions � ! e
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�u � �Q = �1 , �d � �Q = 1 , �e � �L = 1 , 3�Q + �L = 0 , (5)

eliminate the term c� O� from the Lagrangian at the expense of shifting the flavor matrices
cF by

cF ! cF + �F c� . (6)

4

non-abelian extensions of the SM, in which additional instanton contributions arise [9, 39–51],
or using the recently proposed mechanism of axion kinetic misalignment, in which the axion
shift symmetry is explicitly broken in the early universe [52]. It is thus possible to generate
an ALP mass significantly larger than the contribution from QCD instantons while preserving
the Peccei–Quinn solution of the strong CP problem.

The ALP couplings cF to the SM fermions can, in principle, have a non-trivial structure in
generation space, thereby giving rise to flavor-changing neutral current interactions mediated
by ALP exchange. The phenomenological constraints on such couplings are very strong,
especially for light ALPs, which can be produced in the decays of kaons or B mesons [53–59],
and which can give sizable contributions to flavor-changing transitions in the lepton sector
[60–62] and to electric dipole moments [63, 64]. In extensions of the SM in which the new-
physics scale ⇤ = 4⇡f is not very far above the TeV scale, the coupling matrices cF must have
a hierarchical structure in order to be consistent with these constraints. From the point of
view of model building, such a structure can be ensured by imposing the principle of minimal
flavor violation [65]. Under this hypothesis, the matrices cQ and cq in the quark sector can
be expanded as

cQ = c
Q
0 + ✏

⇣
c
Q
1 YuY

†
u + c

Q
2 YdY

†
d

⌘
+O(✏2) ,

cu = c
u
0 + ✏ c

u
1 Y

†
u Yu + ✏

2
h
c
u
2

�
Y †

u Yu

�2
+ c

u
3 Y

†
u YdY

†
d Yu

i
+O(✏3) ,

cd = c
d
0 + ✏ c

d
1 Y

†
d Yd + ✏

2
h
c
d
2

�
Y †

d Yd

�2
+ c

d
3 Y

†
d YuY

†
u Yd

i
+O(✏3) ,

(3)

where ✏ counts the order in the spurion expansion. Analogous expressions apply in the lepton
sector. The phenomenological implications of these results will be discussed later.

2.2 A redundant operator

The form of the e↵ective Lagrangian (1) is not unique. At dimension-5 order one can also
write down an ALP coupling to the Higgs doublet �, given by

L
D5
e↵ � c� O� = c�

@
µ
a

f

�
�
†
iDµ�+ h.c.

�
. (4)

The operator O� is redundant, however, because it can be reduced to the fermionic operators
in (1) using the field equations for the Higgs doublet and the SM fermions [36]. Indeed, the
field redefinitions � ! e

ic� a/f
� and F ! e

�i�F c� a/f
F for all chiral fermion multiplets F of

the SM, subject to the conditions

�u � �Q = �1 , �d � �Q = 1 , �e � �L = 1 , 3�Q + �L = 0 , (5)

eliminate the term c� O� from the Lagrangian at the expense of shifting the flavor matrices
cF by

cF ! cF + �F c� . (6)

4

non-abelian extensions of the SM, in which additional instanton contributions arise [9, 39–51],
or using the recently proposed mechanism of axion kinetic misalignment, in which the axion
shift symmetry is explicitly broken in the early universe [52]. It is thus possible to generate
an ALP mass significantly larger than the contribution from QCD instantons while preserving
the Peccei–Quinn solution of the strong CP problem.

The ALP couplings cF to the SM fermions can, in principle, have a non-trivial structure in
generation space, thereby giving rise to flavor-changing neutral current interactions mediated
by ALP exchange. The phenomenological constraints on such couplings are very strong,
especially for light ALPs, which can be produced in the decays of kaons or B mesons [53–59],
and which can give sizable contributions to flavor-changing transitions in the lepton sector
[60–62] and to electric dipole moments [63, 64]. In extensions of the SM in which the new-
physics scale ⇤ = 4⇡f is not very far above the TeV scale, the coupling matrices cF must have
a hierarchical structure in order to be consistent with these constraints. From the point of
view of model building, such a structure can be ensured by imposing the principle of minimal
flavor violation [65]. Under this hypothesis, the matrices cQ and cq in the quark sector can
be expanded as

cQ = c
Q
0 + ✏

⇣
c
Q
1 YuY

†
u + c

Q
2 YdY

†
d

⌘
+O(✏2) ,

cu = c
u
0 + ✏ c

u
1 Y

†
u Yu + ✏

2
h
c
u
2

�
Y †

u Yu

�2
+ c

u
3 Y

†
u YdY

†
d Yu

i
+O(✏3) ,

cd = c
d
0 + ✏ c

d
1 Y

†
d Yd + ✏

2
h
c
d
2

�
Y †

d Yd

�2
+ c

d
3 Y

†
d YuY

†
u Yd

i
+O(✏3) ,

(3)

where ✏ counts the order in the spurion expansion. Analogous expressions apply in the lepton
sector. The phenomenological implications of these results will be discussed later.

2.2 A redundant operator

The form of the e↵ective Lagrangian (1) is not unique. At dimension-5 order one can also
write down an ALP coupling to the Higgs doublet �, given by

L
D5
e↵ � c� O� = c�

@
µ
a

f

�
�
†
iDµ�+ h.c.

�
. (4)

The operator O� is redundant, however, because it can be reduced to the fermionic operators
in (1) using the field equations for the Higgs doublet and the SM fermions [36]. Indeed, the
field redefinitions � ! e

ic� a/f
� and F ! e

�i�F c� a/f
F for all chiral fermion multiplets F of

the SM, subject to the conditions

�u � �Q = �1 , �d � �Q = 1 , �e � �L = 1 , 3�Q + �L = 0 , (5)

eliminate the term c� O� from the Lagrangian at the expense of shifting the flavor matrices
cF by

cF ! cF + �F c� . (6)

4

non-abelian extensions of the SM, in which additional instanton contributions arise [9, 39–51],
or using the recently proposed mechanism of axion kinetic misalignment, in which the axion
shift symmetry is explicitly broken in the early universe [52]. It is thus possible to generate
an ALP mass significantly larger than the contribution from QCD instantons while preserving
the Peccei–Quinn solution of the strong CP problem.

The ALP couplings cF to the SM fermions can, in principle, have a non-trivial structure in
generation space, thereby giving rise to flavor-changing neutral current interactions mediated
by ALP exchange. The phenomenological constraints on such couplings are very strong,
especially for light ALPs, which can be produced in the decays of kaons or B mesons [53–59],
and which can give sizable contributions to flavor-changing transitions in the lepton sector
[60–62] and to electric dipole moments [63, 64]. In extensions of the SM in which the new-
physics scale ⇤ = 4⇡f is not very far above the TeV scale, the coupling matrices cF must have
a hierarchical structure in order to be consistent with these constraints. From the point of
view of model building, such a structure can be ensured by imposing the principle of minimal
flavor violation [65]. Under this hypothesis, the matrices cQ and cq in the quark sector can
be expanded as

cQ = c
Q
0 + ✏

⇣
c
Q
1 YuY

†
u + c

Q
2 YdY

†
d

⌘
+O(✏2) ,

cu = c
u
0 + ✏ c

u
1 Y

†
u Yu + ✏

2
h
c
u
2

�
Y †

u Yu

�2
+ c

u
3 Y

†
u YdY

†
d Yu

i
+O(✏3) ,

cd = c
d
0 + ✏ c

d
1 Y

†
d Yd + ✏

2
h
c
d
2

�
Y †

d Yd

�2
+ c

d
3 Y

†
d YuY

†
u Yd

i
+O(✏3) ,

(3)

where ✏ counts the order in the spurion expansion. Analogous expressions apply in the lepton
sector. The phenomenological implications of these results will be discussed later.

2.2 A redundant operator

The form of the e↵ective Lagrangian (1) is not unique. At dimension-5 order one can also
write down an ALP coupling to the Higgs doublet �, given by

L
D5
e↵ � c� O� = c�

@
µ
a

f

�
�
†
iDµ�+ h.c.

�
. (4)

The operator O� is redundant, however, because it can be reduced to the fermionic operators
in (1) using the field equations for the Higgs doublet and the SM fermions [36]. Indeed, the
field redefinitions � ! e

ic� a/f
� and F ! e

�i�F c� a/f
F for all chiral fermion multiplets F of

the SM, subject to the conditions

�u � �Q = �1 , �d � �Q = 1 , �e � �L = 1 , 3�Q + �L = 0 , (5)

eliminate the term c� O� from the Lagrangian at the expense of shifting the flavor matrices
cF by

cF ! cF + �F c� . (6)

4

non-abelian extensions of the SM, in which additional instanton contributions arise [9, 39–51],
or using the recently proposed mechanism of axion kinetic misalignment, in which the axion
shift symmetry is explicitly broken in the early universe [52]. It is thus possible to generate
an ALP mass significantly larger than the contribution from QCD instantons while preserving
the Peccei–Quinn solution of the strong CP problem.

The ALP couplings cF to the SM fermions can, in principle, have a non-trivial structure in
generation space, thereby giving rise to flavor-changing neutral current interactions mediated
by ALP exchange. The phenomenological constraints on such couplings are very strong,
especially for light ALPs, which can be produced in the decays of kaons or B mesons [53–59],
and which can give sizable contributions to flavor-changing transitions in the lepton sector
[60–62] and to electric dipole moments [63, 64]. In extensions of the SM in which the new-
physics scale ⇤ = 4⇡f is not very far above the TeV scale, the coupling matrices cF must have
a hierarchical structure in order to be consistent with these constraints. From the point of
view of model building, such a structure can be ensured by imposing the principle of minimal
flavor violation [65]. Under this hypothesis, the matrices cQ and cq in the quark sector can
be expanded as

cQ = c
Q
0 + ✏

⇣
c
Q
1 YuY

†
u + c

Q
2 YdY

†
d

⌘
+O(✏2) ,

cu = c
u
0 + ✏ c

u
1 Y

†
u Yu + ✏

2
h
c
u
2

�
Y †

u Yu

�2
+ c

u
3 Y

†
u YdY

†
d Yu

i
+O(✏3) ,

cd = c
d
0 + ✏ c

d
1 Y

†
d Yd + ✏

2
h
c
d
2

�
Y †

d Yd

�2
+ c

d
3 Y

†
d YuY

†
u Yd

i
+O(✏3) ,

(3)

where ✏ counts the order in the spurion expansion. Analogous expressions apply in the lepton
sector. The phenomenological implications of these results will be discussed later.

2.2 A redundant operator

The form of the e↵ective Lagrangian (1) is not unique. At dimension-5 order one can also
write down an ALP coupling to the Higgs doublet �, given by

L
D5
e↵ � c� O� = c�

@
µ
a

f

�
�
†
iDµ�+ h.c.

�
. (4)

The operator O� is redundant, however, because it can be reduced to the fermionic operators
in (1) using the field equations for the Higgs doublet and the SM fermions [36]. Indeed, the
field redefinitions � ! e

ic� a/f
� and F ! e

�i�F c� a/f
F for all chiral fermion multiplets F of

the SM, subject to the conditions

�u � �Q = �1 , �d � �Q = 1 , �e � �L = 1 , 3�Q + �L = 0 , (5)

eliminate the term c� O� from the Lagrangian at the expense of shifting the flavor matrices
cF by

cF ! cF + �F c� . (6)

4

The first three relations in (5) ensure that the SM Yukawa interactions are invariant under the
field redefinitions. The fourth relation guarantees that the combination of fermion currents
induced by the field redefinitions is anomaly free, and hence no additional contributions to
the coe�cients of the operators in (1) involving the gauge fields are generated.

The conditions (5) define a one-parameter class of field redefinitions, which one can use to
eliminate the operatorO� from the e↵ective Lagrangian. One particular solution is given by the
choice �u = �1, �d = �e = 1 and �Q = �L = 0, which was adopted in [66, 67] and eliminates
O� in favor of a linear combination of operators involving right-handed quark currents. A
di↵erent solution consists of the choice �F = �2YF , where YF denotes the hypercharge of the
fermion multiplet F [36, 58]. In general, the derivative couplings of the ALP are only defined
modulo generators of exact global symmetries of the SM, which include baryon and lepton
number. We will see later that physical quantities are independent of the particular choice of
�F values as long as the conditions (5) are satisfied.

It follows from this discussion that the redundant operator O� can be re-expressed in the
form

O� = O� +
X

F

�F OF , with OF =
@
µ
a

f
 ̄

i
F �µ 

i
F , (7)

where a sum over the generation index i is implied, and the new operator O� vanishes by the
equations of motion. It is a well-known fact that such operators do not need to be included
in the renormalization of the basis operators in an e↵ective field theory [68, 69]. Hence, it is
consistent to leave out the operator O� from the e↵ective Lagrangian (1). As we will see in
Section 3, the original operator O� is needed as a counterterm to absorb some UV divergences
of loop diagrams involving the fermionic operators OF . The correct treatment then consists
of projecting O� back onto our basis using the replacement rule [70–72]

O� !

X

F

�F OF . (8)

2.3 Equivalent forms of the e↵ective Lagrangian

Another important freedom in writing down the e↵ective Lagrangian concerns the structure
of the ALP couplings to fermions. One can integrate by parts in the third term in (1) and use
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Figure 1: Contributions to the a ! gg decay amplitude involving the ALP–gluon coupling (left)
and the ALP couplings to quarks (right). The ALP is drawn as a dotted line. The black circles
indicate vertices deriving from the dimension-5 operators in the e↵ective Lagrangian (1).

and
c̃GG = cGG + TF Tr (cu + cd �NL cQ) ,
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Here the traces are over generation indices. TF = 1
2 fixes the normalization of the SU(N) group

generators, Nc = 3 is the number of colors, and NL = 2 denotes the number of weak isospin
components. YQ = 1

6 , Yu = 2
3 , Yd = �

1
3 , YL = �

1
2 and Ye = �1 denote the hypercharge

quantum numbers of the SM quarks and leptons. The e↵ective Lagrangians (1) and (9) are
equivalent as long as these relations are taken into account. Note, however, that in (9) there
is no apparent reason for the complex matrices Ỹf to have any particular structure. It is the
shift symmetry encoded in the e↵ective ALP Lagrangian (1) that gives rise to the hierarchical
structure of these matrices, which results from the appearance of the SM Yukawa matrices
in (10). This feature distinguishes an ALP from a generic pseudoscalar boson a. We thus
prefer to take the Lagrangian (1) as the starting point of our calculations. Nevertheless, we
will see that the combinations c̃V V of ALP–boson and ALP–fermion couplings shown in (11)
play an important role in phenomenological applications of the e↵ective Lagrangian and in
the evolution of the ALP couplings from the new-physics scale ⇤ down to lower energies.

It is instructive to illustrate the equivalence of the e↵ective Lagrangians (1) and (9) with
a concrete example. Consider the decay of an ALP with mass ma � ⇤QCD into two gluons,
which manifest themselves as two jets in the final state. The relevant contributions to the
decay amplitude are shown in Figure 1. Calculating the decay rate at one-loop order in
perturbation theory, taking into account radiative corrections calculated in [73], one obtains
[22]
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Figure 4: Examples of one-loop matching contributions to the ALP–boson couplings. These
diagrams do not give rise to matching contributions when the form of the e↵ective Lagrangian in (1)
is employed.

Matching corrections of order m2
a/m

2
t or m2

a/m
2
W , which arise from the Taylor expansions of

the functions B1(⌧) and B2(⌧) in (48) in the region where ⌧ � 1, would contribute to the
Wilson coe�cients of dimension-7 operators in the low-energy e↵ective theory below the weak
scale, which we neglect for simplicity.

As a side remark, let us mention briefly that the situation would be di↵erent if we were to
perform the calculations based on the alternative form of the e↵ective Lagrangian shown in
(9). In this case there are non-vanishing matching contributions from top-quark loop diagrams,
which lead to
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2
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3
. (56)

Recall that, according to (11) and (40), the coe�cients c̃GG and c̃�� above the weak scale are
related to the corresponding unprimed coe�cients by
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where the sum in the first (second) equation runs over all quark (fermion) species in the SM.
When crossing the weak scale, one needs to add the matching contributions given above, and
this has the e↵ect of removing the contributions from the top quark in these relations. We
thus obtain
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(58)

The same procedure repeats itself as µ is evolved to lower energies and one crosses the threshold
of other heavy fermions.

5.2 Matching contributions to the ALP–fermion couplings

One-loop matching corrections to the ALP–fermion couplings arise from graphs containing
heavy electroweak gauge bosons. Some representative diagrams are shown in Figure 5. Loop
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Advantages of the original basis:

‣ shift symmetry is explicit


‣ heavy particles decouple from ALPs in loops, e.g.


‣ Yukawa suppression of fermion couplings is explicit


‣ fewer parameters in ALP-fermion couplings: 5 x 9 = 45 compared with 3 x 18 = 54 
for generic matrices     ,     and


Yet there are some redundancies, because the derivative ALP couplings are 
only defined modulo generators of exact global symmetries of SM (baryon 
and three lepton flavor numbers), which allows us to set e.g.             and        
d           or                  (removes 4 parameters)

The first three relations in (5) ensure that the SM Yukawa interactions are invariant under the
field redefinitions. The fourth relation guarantees that the combination of fermion currents
induced by the field redefinitions is anomaly free, and hence no additional contributions to
the coe�cients of the operators in (1) involving the gauge fields are generated.

The conditions (5) define a one-parameter class of field redefinitions, which one can use to
eliminate the operatorO� from the e↵ective Lagrangian. One particular solution is given by the
choice �u = �1, �d = �e = 1 and �Q = �L = 0, which was adopted in [66, 67] and eliminates
O� in favor of a linear combination of operators involving right-handed quark currents. A
di↵erent solution consists of the choice �F = �2YF , where YF denotes the hypercharge of the
fermion multiplet F [36, 58]. In general, the derivative couplings of the ALP are only defined
modulo generators of exact global symmetries of the SM, which include baryon and lepton
number. We will see later that physical quantities are independent of the particular choice of
�F values as long as the conditions (5) are satisfied.
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where a sum over the generation index i is implied, and the new operator O� vanishes by the
equations of motion. It is a well-known fact that such operators do not need to be included
in the renormalization of the basis operators in an e↵ective field theory [68, 69]. Hence, it is
consistent to leave out the operator O� from the e↵ective Lagrangian (1). As we will see in
Section 3, the original operator O� is needed as a counterterm to absorb some UV divergences
of loop diagrams involving the fermionic operators OF . The correct treatment then consists
of projecting O� back onto our basis using the replacement rule [70–72]
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Ỹd = i
�
Yd cd � cQYd

�
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Factoring out the gauge couplings from cVV ensures that (at least to 2 loops):


For the ALP-fermion couplings, we have computed:

section captures the leading contributions in each coupling irrespective of the relative magni-
tude of the ALP–boson and ALP–fermion couplings in the high-energy theory. We emphasize,
however, that in cases where the coe�cients cV V and cF are of similar magnitude, one-loop
diagrams involving the coe�cients cV V have the same scaling as two-loop diagrams involving
the coe�cients cF , see Figure 2. For consistency, we thus include all two-loop contributions
in the gauge couplings in the RG equations for the ALP–fermion couplings.

3 Renormalization-group evolution to the weak scale

The e↵ective Lagrangian (1) is assumed to arise from integrating out some new heavy par-
ticles at a scale ⇤ = 4⇡f far above the weak scale. Assuming the ALP mass is small – of
order 100GeV or less – we can evolve the Wilson coe�cients and operators in the e↵ective
Lagrangian down to the scale of electroweak symmetry breaking by solving their RG equa-
tions. We now derive the explicit form of these equations, working consistently at two-loop
order in gauge couplings and one-loop order in Yukawa interactions. These are the lowest or-
ders at which these interactions contribute to the evolution equations for the ALP couplings.
In models in which the boson couplings are enhanced over the fermion ones, the two-loop
gauge contributions can give rise to the dominant evolution e↵ects. Two-loop corrections in
the Yukawa couplings, or mixed two-loop gauge–Yukawa contributions, are neglected in our
approach. They would give rise to small multiplicative corrections of the fermion couplings,
but they do not introduce new ALP coupling parameters on the right-hand side of the evo-
lution equations. Thus, there is no scenario in which these neglected two-loop contributions
could give rise to dominant e↵ects. Some technical details of our derivations are relegated to
Appendix A. The RG equations for the ALP couplings appearing in the alternative form of
the e↵ective Lagrangian in (9) can be derived from the equations below in a straightforward
way. They are discussed in Appendix B.

3.1 Derivation of the RG evolution equations

Pulling out one factor of ↵i in the definitions of the ALP couplings to gauge fields in (1)
ensures that the Wilson coe�cients cV V are scale independent (at least up to two-loop order
in gauge couplings), i.e.

d

d lnµ
cV V (µ) = 0 ; V = G,W,B . (17)

For the QCD coe�cient cGG this follows from the explicit calculations performed in [77], and
an analogous statement holds for cWW and cBB. This is di↵erent from the case of a scalar
(CP-even) field coupled to two gauge fields, in which the corresponding couplings exhibit a
non-trivial RG evolution starting at two-loop order [78, 79]. We have checked explicitly that
the one-loop diagrams involving the scalar Higgs doublet do not give rise to a scale dependence
of the coe�cients cWW and cBB either. The contributions from these graphs are absorbed by
the renormalization of the gauge couplings.

The Wilson coe�cients cF of the ALP interactions with fermions in (1) are scale-dependent
quantities and satisfy rather complicated RG equations. At one-loop order there are contri-
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representation of SU(N), and we have abbreviated

X = Tr
h
3cQ

�
YuY

†
u � YdY

†
d

�
� 3cuY

†
u Yu + 3cdY

†
d Yd � cLYeY

†
e + ceY

†
e Ye

i
. (19)

All quantities on the right-hand side of (18) must be evaluated at the scale µ. Note that
the ALP–boson and ALP–fermion couplings entering at O(↵2

i ) appear precisely in the linear
combinations already encountered in (11), i.e.

c̃GG = cGG +
1

2
Tr (cu + cd � 2cQ) ,

c̃WW = cWW �
1

2
Tr (3cQ + cL) ,

c̃BB = cBB + Tr

✓
4

3
cu +

1

3
cd �

1

6
cQ + ce �

1

2
cL

◆
.

(20)

To the best of our knowledge, the contributions proportional to the quantity X, which descend
from the redundant operator O�, as well as the two-loop contributions to the RG evolution
equations for the ALP couplings have been derived here for the first time. The appearance of
the coe�cients �F in the above relations, which are constrained by the conditions (5) but are
otherwise arbitrary, appears puzzling at first sight. However, all contributions proportional
to the unit matrix in the RG equations give rise to flavor-diagonal contributions after trans-
formation to the mass basis. We will see in Sections 4 and 5 that in predictions for physical
quantity any ambiguity in the choice of the �F parameters cancels out.

The relations in (17)–(20) form a set of coupled di↵erential equations, from which the
scale dependence of the various ALP couplings can be derived. We can simplify the structure
of the evolution equations by making use of the freedom to redefine the fermion fields in
the SM Lagrangian. The SM Yukawa matrices can be diagonalized by means of bi-unitary
transformations, such that

U †
u Yu Wu = Y diag

u = diag(yu, yc, yt) ,

U †
d Yd Wd = Y diag

d = diag(yd, ys, yb) ,

U †
e Ye We = Y diag

e = diag(ye, yµ, y⌧ ) .

(21)
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To the best of our knowledge, the contributions proportional to the quantity X, which descend
from the redundant operator O�, as well as the two-loop contributions to the RG evolution
equations for the ALP couplings have been derived here for the first time. The appearance of
the coe�cients �F in the above relations, which are constrained by the conditions (5) but are
otherwise arbitrary, appears puzzling at first sight. However, all contributions proportional
to the unit matrix in the RG equations give rise to flavor-diagonal contributions after trans-
formation to the mass basis. We will see in Sections 4 and 5 that in predictions for physical
quantity any ambiguity in the choice of the �F parameters cancels out.
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scale dependence of the various ALP couplings can be derived. We can simplify the structure
of the evolution equations by making use of the freedom to redefine the fermion fields in
the SM Lagrangian. The SM Yukawa matrices can be diagonalized by means of bi-unitary
transformations, such that

U †
u Yu Wu = Y diag

u = diag(yu, yc, yt) ,
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Figure 2: Examples of one-loop and two-loop diagrams contributing at the same order in pertur-
bation theory if cV V and cF have similar magnitude.

The sum runs over the six quark species of the SM. The parameters cqq(ma) describe the
flavor-diagonal ALP couplings to the quark mass eigenstates and will be defined later in
(50). They are connected with the ALP–fermion couplings cq and cQ after these have been
transformed into the mass basis of the SM quarks. The above result is obtained based on the
e↵ective Lagrangian (1). If instead the calculations are starting from the alternative form of
the e↵ective Lagrangian shown in (9), one finds

C
e↵
gg = c̃GG +

1

2

X

q

cqq(ma)


B1

✓
4m2

q

m2
a

◆
� 1

�
. (15)

The “�1” inside the bracket accounts for the di↵erence in the fermion loop function, which
is a consequence of the di↵erence in the Feynman rules for the ALP–fermion vertices derived
from the two Lagrangians. At the same time, the coe�cient c̃GG di↵ers from cGG by the
terms shown in the first equation in (11). Because of the trace, the di↵erence between the two
parameters is invariant under the unitary transformation to the mass basis, and one finds

c̃GG = cGG +
1

2
Tr (cu + cd � 2cQ) = cGG +

1

2

X

q

cqq . (16)

We thus find that the above two relations for Ce↵
gg are indeed equivalent.

It is possible to work with a hybrid form of the e↵ective ALP Lagrangian, in which the
ALP–fermion interactions consist of both derivative terms, such as in (1), and non-derivative
terms, such as in (4). This is useful, in particular, for low-energy applications in the context
of the chiral e↵ective Lagrangian. We will come back to this point in Section 7.

Our definitions of the ALP couplings in (1) are such that the parameters cV V and cF are
expected to be of O(1) when one applies the counting rules of naive dimensional analysis
[74–76]. These rules imply, in particular, that the ALP–boson couplings cV V should be ac-
companied by a loop factor ⇠ ↵i/(4⇡), as shown in (1). However, one can conceive models
in which these couplings are induced by loops involving a parametrically large number Nf

of new heavy fermions, such that cV V / Nf � 1 can (at least partially) compensate for
the loop suppression. In our analysis below, we account for this possibility by including the
one-loop corrections proportional to the ALP–boson couplings in the RG equations for the
ALP–fermion couplings, even though they provide two-loop contributions ⇠ (↵i/⇡)2 to these
equations. A second rationale for this approach lies in the fact that in many concrete ALP
models only certain ALP couplings are non-zero at the UV scale. Our treatment in the next
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representation of SU(N), and we have abbreviated

X = Tr
h
3cQ

�
YuY

†
u � YdY

†
d

�
� 3cuY

†
u Yu + 3cdY

†
d Yd � cLYeY

†
e + ceY

†
e Ye

i
. (19)

All quantities on the right-hand side of (18) must be evaluated at the scale µ. Note that
the ALP–boson and ALP–fermion couplings entering at O(↵2

i ) appear precisely in the linear
combinations already encountered in (11), i.e.

c̃GG = cGG +
1

2
Tr (cu + cd � 2cQ) ,
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Tr (3cQ + cL) ,

c̃BB = cBB + Tr
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(20)

To the best of our knowledge, the contributions proportional to the quantity X, which descend
from the redundant operator O�, as well as the two-loop contributions to the RG evolution
equations for the ALP couplings have been derived here for the first time. The appearance of
the coe�cients �F in the above relations, which are constrained by the conditions (5) but are
otherwise arbitrary, appears puzzling at first sight. However, all contributions proportional
to the unit matrix in the RG equations give rise to flavor-diagonal contributions after trans-
formation to the mass basis. We will see in Sections 4 and 5 that in predictions for physical
quantity any ambiguity in the choice of the �F parameters cancels out.

The relations in (17)–(20) form a set of coupled di↵erential equations, from which the
scale dependence of the various ALP couplings can be derived. We can simplify the structure
of the evolution equations by making use of the freedom to redefine the fermion fields in
the SM Lagrangian. The SM Yukawa matrices can be diagonalized by means of bi-unitary
transformations, such that

U †
u Yu Wu = Y diag

u = diag(yu, yc, yt) ,

U †
d Yd Wd = Y diag

d = diag(yd, ys, yb) ,

U †
e Ye We = Y diag

e = diag(ye, yµ, y⌧ ) .

(21)
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To the best of our knowledge, the contributions proportional to the quantity X, which descend
from the redundant operator O�, as well as the two-loop contributions to the RG evolution
equations for the ALP couplings have been derived here for the first time. The appearance of
the coe�cients �F in the above relations, which are constrained by the conditions (5) but are
otherwise arbitrary, appears puzzling at first sight. However, all contributions proportional
to the unit matrix in the RG equations give rise to flavor-diagonal contributions after trans-
formation to the mass basis. We will see in Sections 4 and 5 that in predictions for physical
quantity any ambiguity in the choice of the �F parameters cancels out.

The relations in (17)–(20) form a set of coupled di↵erential equations, from which the
scale dependence of the various ALP couplings can be derived. We can simplify the structure
of the evolution equations by making use of the freedom to redefine the fermion fields in
the SM Lagrangian. The SM Yukawa matrices can be diagonalized by means of bi-unitary
transformations, such that

U †
u Yu Wu = Y diag

u = diag(yu, yc, yt) ,

U †
d Yd Wd = Y diag

d = diag(yd, ys, yb) ,

U †
e Ye We = Y diag
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butions from Yukawa interactions, which result from the first three graphs shown in Figure 3.
While the external-leg corrections (first two graphs) give rise to multiplicative renormaliza-
tion e↵ects, which in general are not diagonal in generation space, the vertex diagram (third
graph) leads to a mixing of the SU(2)L singlet and doublet coe�cients cQ and cu,d, as well
as cL and ce. Our results for these contributions to the RG equations agree with the corre-
sponding expressions derived in [55, 58, 80]. The first diagram in the second row of Figure 3
shows a class of UV-divergent one-loop diagrams which require the operator O� in (4) as a
counterterm. As we have discussed in Section 2 this operator is redundant. It is therefore
required to map it back onto our operator basis using the replacement rule (8). This gives rise
to universal contributions in the RG equations proportional to the parameters �F in (5). In
previous studies the operator O� was included as a basis operator, and its coe�cient C� not
only entered the evolution equations for the ALP–fermion couplings, but in fact was assumed
to obey an independent RG equation itself [55, 58]. Such a treatment gives rise to ambiguous
results (see e.g. the discussion in Section 3 of [72]), because it is impossible to distinguish the
matrix elements of O� from the matrix elements of the fermionic operators OF in (8).3

In addition, there is a mixing of the Wilson coe�cients cV V of the ALP–boson interactions
into the coe�cients cF , shown by the last diagram in Figure 3. For the case of QCD this mixing
has been studied in [77, 81],4 and we agree with the findings of these authors. Note that, owing
to our normalization of the coe�cients cV V , the corresponding terms in the evolution equations
are proportional to ↵

2
i , and they are diagonal in generation space. Finally, at two-loop order in

gauge interactions there are additional generation-independent contributions to the evolution
equations, which are proportional to the ALP–fermion couplings. They arise from the second
diagram shown in Figure 2 and are diagonal in generation space. We have derived these
contributions by generalizing the corresponding results obtained for QCD in [82, 83] to the
gauge group of the SM. Combining all e↵ects, we obtain (with q = u, d)

d

d lnµ
cQ(µ) =

1

32⇡2

�
YuY

†
u + YdY

†
d , cQ

 
�

1

16⇡2

�
Yu cuY

†
u + Yd cdY

†
d

�
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�Q

8⇡2
X �

3↵2
s

4⇡2
C

(3)
F c̃GG �

3↵2
2

4⇡2
C

(2)
F c̃WW �

3↵2
1

4⇡2
Y

2
Q c̃BB

�
,

d

d lnµ
cq(µ) =

1

16⇡2

�
Y †

q Yq, cq
 
�

1

8⇡2
Y †

q cQYq +


�q

8⇡2
X +

3↵2
s

4⇡2
C

(3)
F c̃GG +

3↵2
1

4⇡2
Y

2
q c̃BB

�
,

d

d lnµ
cL(µ) =

1

32⇡2

�
YeY

†
e , cL

 
�

1

16⇡2
Ye ceY

†
e +


�L

8⇡2
X �

3↵2
2

4⇡2
C

(2)
F c̃WW �

3↵2
1

4⇡2
Y

2
L c̃BB

�
,

d

d lnµ
ce(µ) =

1

16⇡2

�
Y †

e Ye, ce
 
�

1

8⇡2
Y †

e cLYe +


�e

8⇡2
X +

3↵2
1

4⇡2
Y

2
e c̃BB

�
, (18)

where C
(N)
F = N2�1

2N is the eigenvalue of the quadratic Casimir operator in the fundamental

3This distinction is possible in related models, in which the analogue of the operator O� is not redundant.
An example is provided by the Z

0 model studied in [80], in which @
µ
a in (1) and (4) is replaced by Z

0µ.
4Note that these authors define the dual field-strength tensor as well as the Levi–Civita symbol di↵erently

from us. As a result, their quantity G̃
µ⌫,a di↵ers from ours by a factor (�2).

9

We find: [Bauer, MN, Renner, Schnubel, Thamm (2020); see also: Chala, Guedes, Ramos, Santiago (2020)]
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4 Transformation to the mass basis

Once the e↵ective Lagrangian has been evolved to the weak scale µw, it is appropriate to
express it in terms of fields defined in the broken phase of the electroweak symmetry, which
correspond to the mass eigenstates of physical particles. This leads to

Le↵(µw) =
1

2
(@µa)(@

µ
a)�

m
2
a,0

2
a
2 + Lferm(µw) + cGG

↵s

4⇡

a

f
G

a
µ⌫ G̃

µ⌫,a + c��
↵

4⇡

a

f
Fµ⌫ F̃

µ⌫

+ c�Z
↵

2⇡sw cw

a

f
Fµ⌫ Z̃

µ⌫ + cZZ
↵

4⇡s2w c
2
w

a

f
Zµ⌫ Z̃

µ⌫ + cWW
↵

2⇡s2w

a

f
W

+
µ⌫ W̃

�µ⌫
,

(39)
where sw ⌘ sin ✓W and cw ⌘ cos ✓W denote the sine and cosine of the weak mixing angle, and
we have defined [22]

c�� = cWW + cBB , c�Z = c
2
w cWW � s

2
w cBB , cZZ = c

4
w cWW + s

4
w cBB . (40)

All coupling parameters and operators in (39) are now defined at the weak scale µw. Recall
that the Wilson coe�cients cV V are scale independent.

To obtain the ALP interactions with fermions contained in Lferm we must transform the
fermion fields to the mass basis, in which the Yukawa matrices are diagonalized, see (21).
Under the corresponding field redefinitions the flavor matrices cF transform into new hermitian
matrices

kU = U †
ucQUu , kD = U †

d cQUd , kE = U †
e cLUe ,

kf = W †
f cfWf ; f = u, d, e .

(41)

Note that the two matrices kU and kD are connected via the CKM matrix V , such that

kD = V †kUV , (42)

and are therefore not independent. Likewise, the ALP couplings to the neutrinos are identical
to those to the left-handed charged leptons, i.e. k⌫ = kE. In terms of these matrices we obtain

Lferm(µw) =
@
µ
a

f

h
ūLkU �µuL + ūRku�µuR + d̄LkD�µdL + d̄Rkd�µdR

+ ⌫̄Lk⌫ �µ⌫L + ēLkE�µeL + ēRke�µeR

i
.

(43)

The matrices kF and kf are evaluated at the scale µw. The corresponding expressions can be
obtained from the results compiled in Section 3.2 by recalling that these relations have been
derived in a basis for which all transformation matrices are equal to the unit matrix except
for Ud = V . It thus follows that kU = cQ, kE = k⌫ = cL, ku,d,e = cu,d,e, while kD = V †cQV .

It is instructive to study what the hypothesis of minimal flavor violation [65] implies for the
structure of the ALP–fermion couplings after electroweak symmetry breaking. Transforming
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To obtain the ALP interactions with fermions contained in Lferm we must transform the
fermion fields to the mass basis, in which the Yukawa matrices are diagonalized, see (21).
Under the corresponding field redefinitions the flavor matrices cF transform into new hermitian
matrices

kU = U †
ucQUu , kD = U †

d cQUd , kE = U †
e cLUe ,

kf = W †
f cfWf ; f = u, d, e .

(41)

Note that the two matrices kU and kD are connected via the CKM matrix V , such that

kD = V †kUV , (42)

and are therefore not independent. Likewise, the ALP couplings to the neutrinos are identical
to those to the left-handed charged leptons, i.e. k⌫ = kE. In terms of these matrices we obtain

Lferm(µw) =
@
µ
a

f

h
ūLkU �µuL + ūRku�µuR + d̄LkD�µdL + d̄Rkd�µdR

+ ⌫̄Lk⌫ �µ⌫L + ēLkE�µeL + ēRke�µeR

i
.

(43)

The matrices kF and kf are evaluated at the scale µw. The corresponding expressions can be
obtained from the results compiled in Section 3.2 by recalling that these relations have been
derived in a basis for which all transformation matrices are equal to the unit matrix except
for Ud = V . It thus follows that kU = cQ, kE = k⌫ = cL, ku,d,e = cu,d,e, while kD = V †cQV .

It is instructive to study what the hypothesis of minimal flavor violation [65] implies for the
structure of the ALP–fermion couplings after electroweak symmetry breaking. Transforming
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matrices cQ, cu etc. rotated to the mass basis

Effective Lagrangian in the broken phase:


with:


In the next step, we integrate out the heavy particles t, W, Z and h.
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Unknown UV theory
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Matching contributions to the ALP-boson couplings are absent in the 
standard basis: 


but there are non-trivial matching conditions to the ALP-fermion couplings:

a ⇡
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Figure 5: One-loop matching contributions to the ALP–fermion couplings. In the second diagram
(V1V2) = (WW ), (ZZ), (Z�) or (�Z). In the last two diagrams V = W, Z, but in the sum of all
contributions only the W -boson graphs with internal top quarks (plus the corresponding graphs with
Goldstone bosons) give rise to non-zero contributions.

diagrams involving Higgs bosons give contributions proportional to the Yukawa couplings of
the external fermions. Since the top quark is integrated out in the e↵ective theory below the
weak scale, these graphs are proportional to y

2
f for some light SM fermion f and hence can

be neglected. The first diagram in Figure 5 arises from ALP mixing with the Z boson via a
top-quark loop. The second graph gives rise to matching contributions proportional to the
ALP–boson couplings. The corresponding e↵ects were calculated in [22] for the case where
the external fermions are leptons. Here we generalize these results to the case of quarks,
where however contributions involving virtual top quarks require a special treatment. The
remaining diagrams contain vertex and external-leg corrections from loops involving heavy W

and Z bosons. We have calculated these diagrams in a general R⇠ gauge, finding that the sum
of all contributions yields a gauge-invariant answer. Moreover, the sum of all contributions
involving Z bosons and their Goldstone bosons vanishes. For the diagrams involving W

bosons a non-zero contribution remains, which arises from graphs containing internal top
quarks. These diagrams contribute to the couplings kD(µw) in the left-handed down-quark
sector only, and they are the only source of flavor o↵-diagonal e↵ects. Combining all terms,
we find the matching contributions (with F = U,D,E, ⌫ and f = u, d, e)
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4
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2
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�
ln
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2
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w
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ln

µ
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2
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◆�
. (59)

These contributions must be added to the RG-evolved coe�cients at µ = µw, so that one
obtains kF,f (µw) +�kF,f (µw) for the ALP–fermion couplings just below the weak scale. All
scale-dependent parameters on the right-hand side of the above relations are evaluated at the
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Figure 4: Examples of one-loop matching contributions to the ALP–boson couplings. These
diagrams do not give rise to matching contributions when the form of the e↵ective Lagrangian in (1)
is employed.

Matching corrections of order m2
a/m

2
t or m2

a/m
2
W , which arise from the Taylor expansions of

the functions B1(⌧) and B2(⌧) in (48) in the region where ⌧ � 1, would contribute to the
Wilson coe�cients of dimension-7 operators in the low-energy e↵ective theory below the weak
scale, which we neglect for simplicity.

As a side remark, let us mention briefly that the situation would be di↵erent if we were to
perform the calculations based on the alternative form of the e↵ective Lagrangian shown in
(9). In this case there are non-vanishing matching contributions from top-quark loop diagrams,
which lead to

�c̃GG(µw) = �
ctt(µw)

2
, �c̃��(µw) = �

4ctt(µw)

3
. (56)

Recall that, according to (11) and (40), the coe�cients c̃GG and c̃�� above the weak scale are
related to the corresponding unprimed coe�cients by

c̃GG(µ > µw) = cGG +
1

2

X

q

cqq(µ) = c̃GG(µ) ,

c̃��(µ > µw) = c�� +
X

f

N
f
c Q

2
f cff (µ) = c̃��(µ) ,

(57)

where the sum in the first (second) equation runs over all quark (fermion) species in the SM.
When crossing the weak scale, one needs to add the matching contributions given above, and
this has the e↵ect of removing the contributions from the top quark in these relations. We
thus obtain

c̃GG(µ . µw) = cGG +
1

2

X

q

cqq(µ) +�c̃GG(µw) = cGG +
1

2

X

q 6=t

cqq(µ) ,

c̃��(µ . µw) = c�� +
X

f

N
f
c Q

2
f cff (µ) +�c̃��(µw) = c�� +

X

f 6=t

N
f
c Q

2
f cff (µ) .

(58)

The same procedure repeats itself as µ is evolved to lower energies and one crosses the threshold
of other heavy fermions.

5.2 Matching contributions to the ALP–fermion couplings

One-loop matching corrections to the ALP–fermion couplings arise from graphs containing
heavy electroweak gauge bosons. Some representative diagrams are shown in Figure 5. Loop
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Figure 6: One-loop matching contributions to the ALP–fermion couplings. In the second diagram
(V1V2) = (WW ), (ZZ), (Z�) or (�Z). In the last two diagrams V = W, Z, but in the sum of all
contributions only the W -boson graphs with internal top quarks (plus the corresponding graphs with
Goldstone bosons) give rise to non-zero contributions.

diagrams involving Higgs bosons give contributions proportional to the Yukawa couplings of
the external fermions. Since the top quark is integrated out in the e↵ective theory below the
weak scale, these graphs are proportional to y

2
f for some light SM fermion f and hence can

be neglected. The first diagram in Figure 6 arises from ALP mixing with the Z boson via a
top-quark loop. The second graph gives rise to matching contributions proportional to the
ALP–boson couplings. The corresponding e↵ects were calculated in [22] for the case where
the external fermions are leptons. Here we generalize these results to the case of quarks,
where however contributions involving virtual top quarks require a special treatment. The
remaining diagrams contain vertex and external-leg corrections from loops involving heavy W

and Z bosons. We have calculated these diagrams in a general R⇠ gauge, finding that the sum
of all contributions yields a gauge-invariant answer. Moreover, the sum of all contributions
involving Z bosons and their Goldstone bosons vanishes. For the diagrams involving W

bosons a non-zero contribution remains, which arises from graphs containing internal top
quarks. These diagrams contribute to the couplings kD(µw) in the left-handed down-quark
sector only, and they are the only source of flavor o↵-diagonal e↵ects. Combining all terms,
we find the matching contributions (with F = U,D,E, ⌫ and f = u, d, e)
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These contributions must be added to the RG-evolved coe�cients at µ = µw, so that one
obtains kF,f (µw) +�kF,f (µw) for the ALP–fermion couplings just below the weak scale. All
scale-dependent parameters on the right-hand side of the above relations are evaluated at the
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scale µw. RG invariance requires that the ALP–boson couplings entering in these relations
must appear in the form of the couplings c̃V1V2 , at least in the coe�cients of the ln(µ2

w/m
2
W,Z)

terms. Hence, via the substitution cV1V2 ! c̃V1V2 we can account for an important subclass of
two-loop matching contributions. The scheme-dependent constant �1 arises from the treatment
of the Levi–Civita symbol in d dimensions. We obtain �1 = �

11
3 in a scheme where ✏

µ⌫↵� is
treated as a d-dimensional object, and �1 = 0 if it is instead treated as a 4-dimensional
quantity.

The non-trivial flavor structure is captured by the quantity
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where xt = m
2
t/m

2
W . These matching contributions are sources of flavor-changing ALP inter-

actions even if the underlying UV theory does not contain new sources of flavor or CP violation
beyond those present in the SM. We have neglected the Yukawa couplings of the light quarks
and leptons. In this approximation there are no flavor o↵-diagonal matching contributions in
the up-quark and lepton sectors.

5.3 ALP–fermion couplings below the electroweak scale

Flavor-diagonal couplings

The flavor-diagonal ALP–fermion interactions in (43) can be expressed in terms of vector and
axial-vector currents. The vector currents are conserved below the weak scale and thus do not
contribute to physical matrix elements. It follows that we can rewrite this Lagrangian in the
equivalent form (for µ . µw)

L
diag
ferm(µ) =

X

f 6=t

cff (µ)

2

@
µ
a

f
f̄ �µ�5f , (61)

where the sum runs over all charged fermion species in the low-energy theory (the quarks
u, d, s, c, b and the leptons e, µ, ⌧). The couplings cff have been defined in (50) in terms of
the diagonal elements of the matrices kf and kF . Note that the ALP–neutrino interactions
can be dropped in the low-energy Lagrangian (but not in the theory above the weak scale,
where they contribute at one-loop order to the ALP couplings to W and Z bosons). Using
integration by parts, the derivative on the neutrino axial-vector current vanishes because the
neutrinos are massless in the SM.

At the matching scale µw, the coe�cients cff (µw) are given by the sum of the contributions
from RG evolution, shown in (51) and (53), and weak-scale matching, see (59) and (60). In
this sum the dependence on the matching scale µw partially cancels out; however, some scale
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where xt = m
2
t/m
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W . These matching contributions are sources of flavor-changing ALP inter-

actions even if the underlying UV theory does not contain new sources of flavor or CP violation
beyond those present in the SM. We have neglected the Yukawa couplings of the light quarks
and leptons. In this approximation there are no flavor o↵-diagonal matching contributions in
the up-quark and lepton sectors.

5.3 ALP–fermion couplings below the electroweak scale

Flavor-diagonal couplings

The flavor-diagonal ALP–fermion interactions in (43) can be expressed in terms of vector and
axial-vector currents. The vector currents are conserved below the weak scale and thus do not
contribute to physical matrix elements. It follows that we can rewrite this Lagrangian in the
equivalent form (for µ . µw)

L
diag
ferm(µ) =

X

f 6=t

cff (µ)

2
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µ
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f̄ �µ�5f , (61)

where the sum runs over all charged fermion species in the low-energy theory (the quarks
u, d, s, c, b and the leptons e, µ, ⌧). The couplings cff have been defined in (50) in terms of
the diagonal elements of the matrices kf and kF . Note that the ALP–neutrino interactions
can be dropped in the low-energy Lagrangian (but not in the theory above the weak scale,
where they contribute at one-loop order to the ALP couplings to W and Z bosons). Using
integration by parts, the derivative on the neutrino axial-vector current vanishes because the
neutrinos are massless in the SM.

At the matching scale µw, the coe�cients cff (µw) are given by the sum of the contributions
from RG evolution, shown in (51) and (53), and weak-scale matching, see (59) and (60). In
this sum the dependence on the matching scale µw partially cancels out; however, some scale
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dependence remains and cancels when the evolution below the weak scale is taken into account
(see Section 6 below). In order to get a feeling for the magnitude of the radiative corrections
we choose the new-physics scale ⇤ = 4⇡f with f = 1TeV and evaluate the coe�cients cff (µ)
in the vicinity of µw = mt. We find numerically
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We use the two-loop expression for the running coupling ↵s(µ) and the one-loop approxima-
tions for the couplings ↵1(µ) and ↵2(µ), and we evaluate the function U(µw,⇤) using the
explicit form (37). For the couplings cdidi in the down-quark sector we work under the as-
sumption of minimal flavor violation and have approximated |Vtb|

2
⇡ 1 and |Vtd|

2
⇡ |Vts|

2
⇡ 0.

From (20), the matching conditions c̃V V (⇤) can be written in the form
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(63)

where the sums run over all quark and fermion flavors. We observe that electroweak radia-
tive corrections are generally very small, while the contributions proportional to ctt from the
Yukawa interactions as well as QCD e↵ects can be sizable. For example, in scenarios where
the ALP–boson couplings at the UV scale are an order of magnitude larger than the ALP-
fermion couplings, the corrections induced by c̃GG can give contributions to cqq(µw) of about
7%, whereas the contributions of c̃WW and c̃BB are negligible. The logarithms of the ratio

22

dependence remains and cancels when the evolution below the weak scale is taken into account
(see Section 6 below). In order to get a feeling for the magnitude of the radiative corrections
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We use the two-loop expression for the running coupling ↵s(µ) and the one-loop approxima-
tions for the couplings ↵1(µ) and ↵2(µ), and we evaluate the function U(µw,⇤) using the
explicit form (37). For the couplings cdidi in the down-quark sector we work under the as-
sumption of minimal flavor violation and have approximated |Vtb|
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where the sums run over all quark and fermion flavors. We observe that electroweak radia-
tive corrections are generally very small, while the contributions proportional to ctt from the
Yukawa interactions as well as QCD e↵ects can be sizable. For example, in scenarios where
the ALP–boson couplings at the UV scale are an order of magnitude larger than the ALP-
fermion couplings, the corrections induced by c̃GG can give contributions to cqq(µw) of about
7%, whereas the contributions of c̃WW and c̃BB are negligible. The logarithms of the ratio
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dependence remains and cancels when the evolution below the weak scale is taken into account
(see Section 6 below). In order to get a feeling for the magnitude of the radiative corrections
we choose the new-physics scale ⇤ = 4⇡f with f = 1TeV and evaluate the coe�cients cff (µ)
in the vicinity of µw = mt. We find numerically
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We use the two-loop expression for the running coupling ↵s(µ) and the one-loop approxima-
tions for the couplings ↵1(µ) and ↵2(µ), and we evaluate the function U(µw,⇤) using the
explicit form (37). For the couplings cdidi in the down-quark sector we work under the as-
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where the sums run over all quark and fermion flavors. We observe that electroweak radia-
tive corrections are generally very small, while the contributions proportional to ctt from the
Yukawa interactions as well as QCD e↵ects can be sizable. For example, in scenarios where
the ALP–boson couplings at the UV scale are an order of magnitude larger than the ALP-
fermion couplings, the corrections induced by c̃GG can give contributions to cqq(µw) of about
7%, whereas the contributions of c̃WW and c̃BB are negligible. The logarithms of the ratio
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dependence remains and cancels when the evolution below the weak scale is taken into account
(see Section 6 below). In order to get a feeling for the magnitude of the radiative corrections
we choose the new-physics scale ⇤ = 4⇡f with f = 1TeV and evaluate the coe�cients cff (µ)
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We use the two-loop expression for the running coupling ↵s(µ) and the one-loop approxima-
tions for the couplings ↵1(µ) and ↵2(µ), and we evaluate the function U(µw,⇤) using the
explicit form (37). For the couplings cdidi in the down-quark sector we work under the as-
sumption of minimal flavor violation and have approximated |Vtb|
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where the sums run over all quark and fermion flavors. We observe that electroweak radia-
tive corrections are generally very small, while the contributions proportional to ctt from the
Yukawa interactions as well as QCD e↵ects can be sizable. For example, in scenarios where
the ALP–boson couplings at the UV scale are an order of magnitude larger than the ALP-
fermion couplings, the corrections induced by c̃GG can give contributions to cqq(µw) of about
7%, whereas the contributions of c̃WW and c̃BB are negligible. The logarithms of the ratio
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The coe�cients Ce↵
�� and C
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�Z in the first two cases are given by
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(47)

where Qf and N
f
c are the electric charges (in units of e) and number of colors of the SM

fermions (quarks and leptons), T f
3 denotes the weak isospin of the left-handed component of

the fermion f , and the sum runs over all SM fermion mass eigenstates. The relevant loop
functions read

B1(⌧) = 1� ⌧ f
2(⌧) , B2(⌧) = 1� (⌧ � 1) f 2(⌧) ,
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f
2(⌧1)� f

2(⌧2)
⇤
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(48)

with f(⌧) as defined in (14). The function B1 ⇡ 1 for all light fermions with mass mf ⌧ ma,

while B1 ⇡ �
m2

a

12m2
f
for heavy fermions (mf � ma). Thus, each electrically charged fermion

lighter than the ALP adds a potentially large contribution to the e↵ective Wilson coe�cient
C

e↵
�� , while fermions heavier than the ALP decouple. Similarly, one finds that B3 ⇡ 1 for all

fermions much lighter than the Z boson (irrespective of the ALP mass), while for the top
quark |B3| ⌧ 1 as long as the ALP is lighter than the top-quark mass. In the third decay
rate in (46) we have defined the phase-space function �(x, y) = (1 � x � y)2 � 4xy and the
parameter integral
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Z 1
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2m2
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h � yzm2
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a

, (49)

where d[xyz] ⌘ dx dy dz �(1 � x � y � z). Throughout this paper mt ⌘ mt(mt) denotes the
running top-quark mass in the MS scheme evaluated at µ = mt. The quantity F is numerically
close to 1 for ALP masses below the weak scale. Finally, we have introduced the parameters

cfifi(µ) = [kf (µ)]ii � [kF (µ)]ii , (50)

which contain the relevant ALP couplings to fermions and will play an important role in our
discussion below. This definition generalizes relation (25) for the top quark to other ALP–
fermion couplings.

The scale evolution of these quantities from the new-physics scale ⇤ to the electroweak
scale can be derived from (34). For up-type quarks and charged leptons, the parameters cff
are equal to the di↵erences of ALP–fermion couplings considered in this result, and we have
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(51)
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Corresponding results with :


Note that all ALP couplings enter via the matching conditions:

f = 109 TeV

(m2
t/µ

2
w) in the above expressions show the remaining dependence on the weak matching scale.

This dependence cancels out when evolution e↵ects below the weak scale are included.
The numerical results shown in (62) are relevant for an ALP which is part of a new-physics

sector at a scale ⇤ ⇠ 10TeV. For the QCD axion, one typically considers much higher scales
in the vicinity of f ⇠ 1012±3GeV. This gives rise to significantly enhanced evolution e↵ects.
For example, choosing ⇤ = 4⇡f with f = 1012GeV and setting µw = mt we find
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(64)
The contributions proportional to ctt now give O(1) corrections to all ALP–fermion couplings.

It is very useful to derive a simple, approximate expression for the ALP–fermion couplings
at the scale µw, in which one neglects the small two-loop electroweak evolution e↵ects as well
as the two-loop contributions proportional to the ALP–fermion couplings themselves. This
yields (for q 6= t and µ . µw)
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which as we will see in the next section continues to hold below the weak scale. Note that
only the last term in the first line is scale-dependent in this approximation, and one needs to
adjust the value of �(3)

0 whenever one crosses a quark threshold. In the first relation T
u
3 = 1

2
and T

d
3 = �

1
2 denotes the weak isospin. In the above expressions large logarithms of the scale

ratio ⇤/µw are resummed to all orders in perturbation theory. The most striking e↵ect is the
universal admixture (weighted only by weak isospin) of a contribution proportional to ctt(⇤)
to all ALP–fermion couplings, even those involving the charged leptons. When one re-expands
the above expressions to first order in couplings, one obtains

cff (µ) ⇡ cff (⇤)�

✓
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◆
3y2t (mt)

8⇡2
T

f
3 ctt(⇤) ln

⇤2

m2
t

. (66)

This e↵ect was noted previously in [58], where the opposite sign was obtained and in the
argument of the logarithm the scale µ was used rather than mt. Note, however, that this
e↵ect is due to the first diagram in Figure 5, which no longer contributes below the scale of
the top quark. Also, the resummation e↵ects included here can be numerically very important.
With f = 1012GeV, for instance, formula (66) would predict ±0.84 ctt(⇤), overshooting the
e↵ect by more than a factor of 2.
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Figure 1: Contributions to the a ! gg decay amplitude involving the ALP–gluon coupling (left)
and the ALP couplings to quarks (right). The ALP is drawn as a dotted line. The black circles
indicate vertices deriving from the dimension-5 operators in the e↵ective Lagrangian (1).

and
c̃GG = cGG + TF Tr (cu + cd �NL cQ) ,

c̃WW = cWW � TF Tr (Nc cQ + cL) ,

c̃BB = cBB + Tr
h
Nc

�
Y

2
u cu + Y
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d cd �NL Y

2
Q cQ

�
+ Y

2
e ce �NL Y

2
L cL

i
.

(11)

Here the traces are over generation indices. TF = 1
2 fixes the normalization of the SU(N) group

generators, Nc = 3 is the number of colors, and NL = 2 denotes the number of weak isospin
components. YQ = 1

6 , Yu = 2
3 , Yd = �

1
3 , YL = �

1
2 and Ye = �1 denote the hypercharge

quantum numbers of the SM quarks and leptons. The e↵ective Lagrangians (1) and (9) are
equivalent as long as these relations are taken into account. Note, however, that in (9) there
is no apparent reason for the complex matrices Ỹf to have any particular structure. It is the
shift symmetry encoded in the e↵ective ALP Lagrangian (1) that gives rise to the hierarchical
structure of these matrices, which results from the appearance of the SM Yukawa matrices
in (10). This feature distinguishes an ALP from a generic pseudoscalar boson a. We thus
prefer to take the Lagrangian (1) as the starting point of our calculations. Nevertheless, we
will see that the combinations c̃V V of ALP–boson and ALP–fermion couplings shown in (11)
play an important role in phenomenological applications of the e↵ective Lagrangian and in
the evolution of the ALP couplings from the new-physics scale ⇤ down to lower energies.

It is instructive to illustrate the equivalence of the e↵ective Lagrangians (1) and (9) with
a concrete example. Consider the decay of an ALP with mass ma � ⇤QCD into two gluons,
which manifest themselves as two jets in the final state. The relevant contributions to the
decay amplitude are shown in Figure 1. Calculating the decay rate at one-loop order in
perturbation theory, taking into account radiative corrections calculated in [73], one obtains
[22]
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Here nq is the number of light quark flavors with mass below the ALP mass, and
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where
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Figure 6: Axion–electron coupling cee(mt) in the DFSZ model for di↵erent values of tan � = vu/vd

and axion masses: ma = 1keV (solid), 1 eV (dashed), 1meV (dashed-dotted) and 1µeV (dotted).
The red curve depicts the coupling cee(⇤) at the high scale ⇤ = 4⇡f .

The evolution e↵ects in (65) are of potentially large importance not only for ALPs, but
also for the classical QCD axion. In order to illustrate this fact we consider the DFSZ model
[7, 8], in which the ALP couplings at the UV scale ⇤ = 4⇡f satisfy [87, 88]

cuiui(⇤) =
1

3
cos2 � , cdidi(⇤) = ceiei(⇤) =

1

3
sin2

� , cGG = �
1

2
, (67)

where tan � = vu/vd is the ratio of the vacuum expectation values of the two Higgs doublets,
with a phenomenologically motivated range spanning 0.28 < tan � < 140 [89]. The axion mass
is given by relation (2) with m

2
a,0 = 0, i.e. it is uniquely determined by the decay constant

f . Assuming that the masses of the additional Higgs bosons are larger than ⇤, we can evolve
these coupling parameters down to the weak scale. Figure 6 shows the axion–electron coupling
at the high scale (red line) and the RG-evolved couplings cee(mt) at the electroweak scale for
di↵erent axion masses. The smaller the axion mass, the larger are the evolution e↵ects because
the corresponding values of ⇤ increase proportional to 1/ma, ranging from ⇤ ' 73TeV for
ma = 1keV to ⇤ ' 7.3 · 1010TeV for ma = 1µeV. The figure shows that in the DFSZ model
the axion–electron coupling can be enhanced through evolution e↵ects by up to an order of
magnitude for small values of tan�.

Flavor-changing couplings

The flavor-changing ALP–fermion couplings in (43) can be integrated by parts without intro-
ducing additional contributions to the Wilson coe�cients cV V . This gives (for µ . µw)

L
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ia

2f

X

f

h
(mfi �mfj) (kf + kF )ij f̄ifj + (mfi +mfj) (kf � kF )ij f̄i�5fj

i
,

(68)
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Corresponding results with :


The one-loop admixture of ctt into all ALP-fermion                                         
couplings can have a very important effect, since                                             
it induces an ALP-lepton coupling even in lepto-                                      
phobic ALP models
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Figure 7: Axion–electron coupling cee(mt) in the DFSZ model for di↵erent values of tan � = vu/vd

and axion masses: ma = 1keV (solid), 1 eV (dashed), 1meV (dashed-dotted) and 1µeV (dotted).
The red curve depicts the coupling cee(⇤) at the high scale ⇤ = 4⇡f .

The evolution e↵ects in (65) are of potentially large importance not only for ALPs, but
also for the classical QCD axion. In order to illustrate this fact we consider the DFSZ model
[7, 8], in which the ALP couplings at the UV scale ⇤ = 4⇡f satisfy [83]

cuiui(⇤) =
1

3
cos2 � , cdidi(⇤) = ceiei(⇤) =

1

3
sin2

� , cGG = �
1

2
, (67)

where tan � = vu/vd is the ratio of the vacuum expectation values of the two Higgs doublets,
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a,0 = 0, i.e. it is uniquely determined by the decay constant

f . Assuming that the masses of the additional Higgs bosons are larger than ⇤, we can evolve
these coupling parameters down to the weak scale. Figure 7 shows the axion–electron coupling
at the high scale (red line) and the RG-evolved couplings cee(mt) at the electroweak scale for
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Figure 7: Axion–electron coupling cee(mt) in the DFSZ model for di↵erent values of tan � = vu/vd

and axion masses: ma = 1keV (solid), 1 eV (dashed), 1meV (dashed-dotted) and 1µeV (dotted).
The red curve depicts the coupling cee(⇤) at the high scale ⇤ = 4⇡f .
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and axion masses: ma = 1keV (solid), 1 eV (dashed), 1meV (dashed-dotted) and 1µeV (dotted).
The red curve depicts the coupling cee(⇤) at the high scale ⇤ = 4⇡f .
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and axion masses: ma = 1keV (solid), 1 eV (dashed), 1meV (dashed-dotted) and 1µeV (dotted).
The red curve depicts the coupling cee(⇤) at the high scale ⇤ = 4⇡f .
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tan� = vu/vd

(m2
t/µ

2
w) in the above expressions show the remaining dependence on the weak matching scale.

This dependence cancels out when evolution e↵ects below the weak scale are included.
The numerical results shown in (62) are relevant for an ALP which is part of a new-physics

sector at a scale ⇤ ⇠ 10TeV. For the QCD axion, one typically considers much higher scales
in the vicinity of f ⇠ 1012±3GeV. This gives rise to significantly enhanced evolution e↵ects.
For example, choosing ⇤ = 4⇡f with f = 1012GeV and setting µw = mt we find

cuu,cc(mt) ' cuu,cc(⇤)� 0.350 ctt(⇤)�
h
12.6 c̃GG(⇤) + 0.84 c̃WW (⇤) + 0.10 c̃BB(⇤)

i
· 10�3

,

cdd,ss(mt) ' cdd,ss(⇤) + 0.353 ctt(⇤)�
h
16.8 c̃GG(⇤) + 1.30 c̃WW (⇤) + 0.07 c̃BB(⇤)

i
· 10�3

,

cbb(mt) ' cbb(⇤) + 0.294 ctt(⇤)�
h
16.5 c̃GG(⇤) + 1.23 c̃WW (⇤) + 0.06 c̃BB(⇤)

i
· 10�3

,

ceiei(mt) ' ceiei(⇤) + 0.352 ctt(⇤)�
h
2.09 c̃GG(⇤) + 1.30 c̃WW (⇤) + 0.38 c̃BB(⇤)

i
· 10�3

.

(64)
The contributions proportional to ctt now give O(1) corrections to all ALP–fermion couplings.

It is very useful to derive a simple, approximate expression for the ALP–fermion couplings
at the scale µw, in which one neglects the small two-loop electroweak evolution e↵ects as well
as the two-loop contributions proportional to the ALP–fermion couplings themselves. This
yields (for q 6= t and µ . µw)

cqq(µ) ⇡ cqq(⇤)� 6T q
3

✓
1�

�qb

6

◆
↵t(mt)

↵s(mt)
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◆1
7
�
ctt(⇤)�

4cGG

�
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↵s(µ)� ↵s(⇤)

⇡
,

c``(µ) ⇡ c``(⇤) + 3
↵t(mt)

↵s(mt)


1�

✓
↵s(⇤)

↵s(mt)

◆1
7
�
ctt(⇤) , (65)

which as we will see in the next section continues to hold below the weak scale. Note that
only the last term in the first line is scale-dependent in this approximation, and one needs to
adjust the value of �(3)

0 whenever one crosses a quark threshold. In the first relation T
u
3 = 1

2
and T

d
3 = �

1
2 denotes the weak isospin. In the above expressions large logarithms of the scale

ratio ⇤/µw are resummed to all orders in perturbation theory. The most striking e↵ect is the
universal admixture (weighted only by weak isospin) of a contribution proportional to ctt(⇤)
to all ALP–fermion couplings, even those involving the charged leptons. When one re-expands
the above expressions to first order in couplings, one obtains

cff (µ) ⇡ cff (⇤)�

✓
1�

�fb

6

◆
3y2t (mt)

8⇡2
T

f
3 ctt(⇤) ln

⇤2

m2
t

. (66)

This e↵ect was noted previously in [58], where the opposite sign was obtained and in the
argument of the logarithm the scale µ was used rather than mt. Note, however, that this
e↵ect is due to the first diagram in Figure 5, which no longer contributes below the scale of
the top quark. Also, the resummation e↵ects included here can be numerically very important.
With f = 1012GeV, for instance, formula (66) would predict ±0.84 ctt(⇤), overshooting the
e↵ect by more than a factor of 2.
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Figure 6: Axion–electron coupling cee(mt) in the DFSZ model for di↵erent values of tan � = vu/vd

and axion masses: ma = 1keV (solid), 1 eV (dashed), 1meV (dashed-dotted) and 1µeV (dotted).
The red curve depicts the coupling cee(⇤) at the high scale ⇤ = 4⇡f .

The evolution e↵ects in (65) are of potentially large importance not only for ALPs, but
also for the classical QCD axion. In order to illustrate this fact we consider the DFSZ model
[7, 8], in which the ALP couplings at the UV scale ⇤ = 4⇡f satisfy [87, 88]

cuiui(⇤) =
1

3
cos2 � , cdidi(⇤) = ceiei(⇤) =

1

3
sin2

� , cGG = �
1

2
, (67)

where tan � = vu/vd is the ratio of the vacuum expectation values of the two Higgs doublets,
with a phenomenologically motivated range spanning 0.28 < tan � < 140 [89]. The axion mass
is given by relation (2) with m

2
a,0 = 0, i.e. it is uniquely determined by the decay constant

f . Assuming that the masses of the additional Higgs bosons are larger than ⇤, we can evolve
these coupling parameters down to the weak scale. Figure 6 shows the axion–electron coupling
at the high scale (red line) and the RG-evolved couplings cee(mt) at the electroweak scale for
di↵erent axion masses. The smaller the axion mass, the larger are the evolution e↵ects because
the corresponding values of ⇤ increase proportional to 1/ma, ranging from ⇤ ' 73TeV for
ma = 1keV to ⇤ ' 7.3 · 1010TeV for ma = 1µeV. The figure shows that in the DFSZ model
the axion–electron coupling can be enhanced through evolution e↵ects by up to an order of
magnitude for small values of tan�.

Flavor-changing couplings

The flavor-changing ALP–fermion couplings in (43) can be integrated by parts without intro-
ducing additional contributions to the Wilson coe�cients cV V . This gives (for µ . µw)

L
FCNC
ferm (µ) = �

ia

2f

X

f

h
(mfi �mfj) (kf + kF )ij f̄ifj + (mfi +mfj) (kf � kF )ij f̄i�5fj

i
,

(68)
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where throughout this discussion i 6= j. The fermion masses and coupling parameters must
be evaluated at the scale µ. This form of the Lagrangian makes explicit that flavor-changing
amplitudes are suppressed by the masses of the fermions involved. (The same is true for the
flavor-conserving interactions in (61), but in this case integrating by parts generates additional
contributions to the ALP–gluon and ALP–photon couplings.) At the weak scale µw, the
generation o↵-diagonal coe�cients [kf (µw)]ij and [kF (µw)]ij are again given by the sum of the
contributions from RG evolution and weak-scale matching. Recall that generation o↵-diagonal
matching contributions are captured by the quantity �̂kD(µw) in (60). For all coe�cients other
than kD, one finds from (32) and (33) that flavor-changing interactions at the weak scale are
inherited from the UV scale ⇤. We find

[ku(µw)]ij = [ku(⇤)]ij ; i, j 6= 3 ,

[kU(µw)]ij = [kU(⇤)]ij ; i, j 6= 3 ,

[kd(µw)]ij = [kd(⇤)]ij ,

[ke(µw)]ij = [ke(⇤)]ij ,

[kL(µw)]ij = [kL(⇤)]ij .

(69)

Note that for ku and kU we only need the entries where i, j 6= 3, since the top quark has
been integrated out in the e↵ective theory below the weak scale. If the UV theory respects
minimal flavor violation, then all these couplings vanish. For the o↵-diagonal elements of the
coe�cient kD we find the more interesting result
⇥
kD(µw)

⇤
ij
=

⇥
V †kU(⇤)V

⇤
ij
� V

⇤
miVnj (�m3 + �n3 � 2�m3�n3)

�
1� e

�U(µw,⇤)
�
[kU(⇤)]mn

�
1

6
V

⇤
3iV3j It(µw,⇤) +

⇥
�̂kD(µw)

⇤
ij
,

(70)

where the integral It(µw,⇤) has been defined in (30). If the original ALP Lagrangian (1)
at the new-physics scale respects the principle of minimal flavor violation, the matrix kU is
diagonal, as shown in (45). In this case the above expression simplifies significantly, and we
find

⇥
kD(µw)

⇤
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= V

⇤
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1

6
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2
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2

��
,

(71)

where (again setting the new-physics scale to ⇤ = 4⇡f with f = 1TeV)

ctt(µw) ' 0.826 ctt(⇤)�
⇥
6.17 c̃GG(⇤) + 0.23 c̃WW (⇤) + 0.02 c̃BB(⇤)

⇤
· 10�3

. (72)

Note that under the hypothesis of minimal flavor violation the matrix kU is diagonal but not
necessarily proportional to the unit matrix in generation space, see (45). The first term on

25

the right-hand side of (71) thus accounts for the possibility that [(kU)(⇤)]33 6= [(kU)(⇤)]11. If
this is the case, then the o↵-diagonal matrix elements

⇥
kD(⇤)

⇤
ij
= V

⇤
tiVtj

n
[(kU)(⇤)]33 � [(kU)(⇤)]11

o
(73)

at the new-physics scale can be non-zero, providing a UV source of flavor violation. Evolving
the coe�cients to the weak scale µw = mt, we obtain numerically

[kD(mt)]ij ' [kD(⇤)]ij + 0.019V ⇤
tiVtj

h
ctt(⇤)� 0.0032 c̃GG(⇤)� 0.0057 c̃WW (⇤)

i
. (74)

The matching contributions proportional to c̃GG and c̃WW are very small.
Relation (71) shows explicitly how flavor-changing e↵ects are generated through RG evo-

lution from the new-physics scale ⇤ to the weak scale (first line) and matching contributions
at the weak scale (second and third lines). These loop-induced e↵ects should be considered
as the minimal e↵ects of flavor violation present in any ALP model, even if the matrix kD

is diagonal at the new-physics scale ⇤ (which would be a stronger assumption than minimal
flavor violation). The terms proportional to cWW in (71) agree with a corresponding expres-
sion derived in [54]. Our results for the evolution e↵ects and the contribution proportional to
ctt(µw) are new. The logarithm of (µ2

w/m
2
t ) in the coe�cient of ctt (but not the xt-dependent

remainder) was derived in [57]. The more general expressions shown above, and in particular
the results (60) and (70), which do not assume minimal flavor violation, are derived here for
the first time.

In the sum of the contributions from scale evolution and weak-scale matching, the depen-
dence on the matching scale µw drops out. This is obviously true for the coe�cients in (69),
but it also holds for the sum of all terms on the right-hand side of (70). In fact, we will see in
Section 6 that the flavor o↵-diagonal Wilson coe�cients do not run below the weak scale (in
the approximation where the Yukawa couplings of the light quarks are put to zero). Hence,
the expressions shown in (69) and (70) hold for all values µ < µw.

6 Renormalization-group evolution below the weak scale

Now that we have obtained the values of the Wilson coe�cients at the weak scale, we should
evolve these coe�cients down to lower scales, so that they can be used in calculations of low-
energy observables. Compared with (18) the evolution equations simplify significantly, because
the Yukawa interactions mediated by Higgs exchange are absent in the low-energy theory, as
are diagrams including the heavy weak gauge bosons. The only remaining contributions to
the evolution equations result from the second diagram in Figure 2 and the last diagram in
Figure 3, where the gauge bosons can be gluons or photons. We obtain

d

d lnµ
kq(µ) = �
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c̃�� ,

(75)
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ALP couplings at the weak scale
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(top quark has been integrated out)
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In this case only gluon and photon loops contribute:


We find numerically with :μ0 = 2 GeV
line they are evaluated with nq = 4 flavors. The numerical impact of these low-scale evolution
e↵ects is very small. For example, with µw = mt and µ0 = 2GeV we find

cqq(µ0) = cqq(mt) +
h
3.0 c̃GG(⇤)� 1.4 ctt(⇤)� 0.6 cbb(⇤)

i
· 10�2

+Q
2
q

h
3.9 c̃��(⇤)� 4.7ctt(⇤)� 0.2 cbb(⇤)

i
· 10�5

,

c``(µ0) = c``(mt) +
h
3.9 c̃��(⇤)� 4.7ctt(⇤)� 0.2 cbb(⇤)

i
· 10�5

.

(79)

It is instructive to compare the above results with analogous expressions derived for the
quark coe�cients cqq in [90]. In this paper only QCD evolution e↵ects were included. The
results obtained there are in agreement with our findings when we ignore the terms propor-
tional to the electromagnetic coupling ↵ in the first line of (76). However, in [90] the same
equation was used to account for evolution e↵ects above the electroweak scale. This ignores
the by far dominant contributions from the top-quark Yukawa interactions in (65), which as
we have discussed have an important impact on all ALP–fermion couplings.

The scale-dependent ALP–boson couplings c̃V V defined in (77) are not only relevant in the
context of the evolution equations for the ALP–fermion couplings, but they are also closely
related to some observables of phenomenological interest. In (12) and (46) we have given
explicit expressions for the a ! gg and a ! �� decay rates, the latter of which plays a
pivotal role in the phenomenology of a light ALP. The fermion loop function entering these
expressions satisfies B1(⌧) ⇡ 1 for ⌧ ⌧ 1 (corresponding to “light” fermions with mf ⌧ ma)
and B1(⌧) ⇡ 0 for ⌧ � 1 (corresponding to “heavy” fermions with mf � ma). Moreover,
the loop function B2(4m2

W/m
2
a) ⇡ 0 for a light ALP with mass ma ⌧ mW . Let us now apply

an MS-like approximation scheme, in which we treat the “light” fermions as (approximately)
massless and the “heavy” fermions as infinitely heavy. We then obtain

C
e↵
gg ⇡ cGG +

1

2

X

q

cqq(ma) ✓(ma �mq) = c̃GG(ma) ,

C
e↵
�� ⇡ c�� +

X

f

N
f
c Q

2
f cff (ma) ✓(ma �mf ) = c̃��(ma) ,

(80)

where the e↵ective couplings on the right-hand side are precisely those defined in (77).

7 Matching onto the chiral Lagrangian

Using the results derived in the previous sections, the e↵ective ALP Lagrangian (54) can be
evolved down to scales far below the scale of electroweak symmetry breaking. When one
reaches energies of order 1–2GeV, only the three light quark flavors u, d, s remain as active
degrees of freedom. In order to study the low-energy interactions of a light ALP with hadrons,
one should match this Lagrangian onto a chiral e↵ective Lagrangian incorporating the ALP
couplings to the light pseudoscalar mesons (⇡, K, ⌘). In order to find the bosonized form of
the ALP–gluon interaction, one eliminates the aGG̃ term in favor of ALP couplings to quark
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Figure 2: Examples of one-loop and two-loop diagrams contributing at the same order in pertur-
bation theory if cV V and cF have similar magnitude.

The sum runs over the six quark species of the SM. The parameters cqq(ma) describe the
flavor-diagonal ALP couplings to the quark mass eigenstates and will be defined later in
(50). They are connected with the ALP–fermion couplings cq and cQ after these have been
transformed into the mass basis of the SM quarks. The above result is obtained based on the
e↵ective Lagrangian (1). If instead the calculations are starting from the alternative form of
the e↵ective Lagrangian shown in (9), one finds

C
e↵
gg = c̃GG +

1

2

X

q

cqq(ma)


B1

✓
4m2

q

m2
a

◆
� 1

�
. (15)

The “�1” inside the bracket accounts for the di↵erence in the fermion loop function, which
is a consequence of the di↵erence in the Feynman rules for the ALP–fermion vertices derived
from the two Lagrangians. At the same time, the coe�cient c̃GG di↵ers from cGG by the
terms shown in the first equation in (11). Because of the trace, the di↵erence between the two
parameters is invariant under the unitary transformation to the mass basis, and one finds

c̃GG = cGG +
1

2
Tr (cu + cd � 2cQ) = cGG +

1

2

X

q

cqq . (16)

We thus find that the above two relations for Ce↵
gg are indeed equivalent.

It is possible to work with a hybrid form of the e↵ective ALP Lagrangian, in which the
ALP–fermion interactions consist of both derivative terms, such as in (1), and non-derivative
terms, such as in (4). This is useful, in particular, for low-energy applications in the context
of the chiral e↵ective Lagrangian. We will come back to this point in Section 7.

Our definitions of the ALP couplings in (1) are such that the parameters cV V and cF are
expected to be of O(1) when one applies the counting rules of naive dimensional analysis
[74–76]. These rules imply, in particular, that the ALP–boson couplings cV V should be ac-
companied by a loop factor ⇠ ↵i/(4⇡), as shown in (1). However, one can conceive models
in which these couplings are induced by loops involving a parametrically large number Nf

of new heavy fermions, such that cV V / Nf � 1 can (at least partially) compensate for
the loop suppression. In our analysis below, we account for this possibility by including the
one-loop corrections proportional to the ALP–boson couplings in the RG equations for the
ALP–fermion couplings, even though they provide two-loop contributions ⇠ (↵i/⇡)2 to these
equations. A second rationale for this approach lies in the fact that in many concrete ALP
models only certain ALP couplings are non-zero at the UV scale. Our treatment in the next

7
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Matching to the chiral Lagrangian
Georgi, Kaplan, Randall (1986) have developed a                                               
model-independent chiral Lagrangian approach                                                                        
valid for any ALP model


In the quark mass basis, the starting point is (at ):μχ ≈ 4π fπ
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We present a consistent implementation of weak decays involving an axion or axion-like particle in

the context of an e↵ective chiral Lagrangian. We argue that previous treatments of such processes

have used an incorrect representation of the flavor-changing quark currents in the chiral theory. As

an application, we derive model-independent results for the decays K� ! ⇡�a and ⇡� ! e�⌫̄ea at

leading order in the chiral expansion and for arbitrary axion couplings and mass. In particular, we

find that the K� ! ⇡�a branching ratio is almost 40 times larger than previously estimated.

Axions and axion-like particles (collectively referred to
as ALPs in this work) are new types of elementary par-
ticles, which arise in a large class of extensions of the
Standard Model (SM) and are well motivated theoreti-
cally. They can provide an elegant solution to the strong
CP problem based on the Peccei–Quinn mechanism [1–
8]. More generally, ALPs can arise as pseudo Nambu–
Goldstone bosons in models with explicit global symme-
try breaking. Low-energy weak-interaction processes im-
ply some of the most stringent bounds on the couplings
of ALPs to gluons and other SM particles [9–12].

In a seminal paper [13], Georgi, Kaplan and Randall
have derived the e↵ective chiral Lagrangian accounting
for the interactions of a light ALP (with mass below the
scale of chiral symmetry breaking, µ� = 4⇡f⇡) with the
light pseudoscalar mesons, opening the door to a model-
independent description which does not rely on the de-
tails of Peccei–Quinn symmetry breaking. In this Let-
ter, we reanalyze this problem and point out a small but
important omission in the representation of the weak-
interaction quark currents in the e↵ective theory, which
has far-reaching consequences. Despite the 35-year his-
tory of the subject, we find that even recent papers on
weak decays such as K�

! ⇡�a and ⇡�
! e�⌫̄ea omit

the contributions of relevant Feynman diagrams and thus
employ incomplete expressions for the decay amplitudes
(see e.g. [14–16]). In many phenomenological studies,
the amplitudes are derived by starting from an ampli-
tude for a decay process involving a ⇡0 or ⌘ meson and
accounting for the (kinetic) mixing of the ALP with these
neutral mesons by means of mixing angles ✓⇡a and ✓⌘a.
Below we recall the well-known fact that in the approach
of [13] the mixing angles are unphysical, because they
depend on the parameters of the chiral rotation used to
eliminate the ALP–gluon coupling in the e↵ective La-
grangian. It is customary to adopt a “default choice”
for these parameters, which eliminates the mass mixing
in the e↵ective Lagrangian. However, there always ex-
ist other contributions to the decay amplitude, in which
the ALP participates in the relevant interaction vertices.

Neglecting these “direct” contributions leads to incorrect
predictions. In fact, they are essential to ensure that the
auxiliary parameters of the chiral rotation cancel out in
predictions for physical quantities. (Only a very special
class of models, in which the ALP couples to SM fields
only through phases in the quark mass matrices, with no
derivative interactions and no couplings to gluons at the
low scale µ�, is an exception to this rule, see e.g. [11, 17].)
The starting point of our study is the e↵ective ALP

Lagrangian at a scale of order µ� ⇡ 1.6GeV, which we
write in the form [13]

Le↵ = LQCD +
1

2
(@µa)(@µa)�

m2
a,0

2
a2

+ cGG
↵s

4⇡

a

f
Ga

µ⌫ G̃µ⌫,a + c��
↵

4⇡

a

f
Fµ⌫ F̃µ⌫

+
@µa

f

⇣
q̄LkQ�µ qL + q̄R kq �µ qR + . . .

⌘
.

(1)

Here q is a 3-component vector in generation space con-
taining the three light quark flavors u, d, s. The ALP
decay constant f is related to the scale of global (Peccei–
Quinn) symmetry breaking by ⇤ = 4⇡f and is assumed
to lie above the scale of electroweak symmetry breaking.
It governs the overall magnitude of the ALP interactions
with SM particles, the leading of which are mediated by
dimension-5 operators. (In the literature on QCD ax-
ions, one often defines the axion decay constant fa in
terms of the strength of the axion–gluon coupling, such
that 1/fa = �2cGG/f .) The parameters cGG and c�� de-
termine the strengths of the ALP interactions with glu-
ons and photons, while the hermitian matrices kQ and
kq contain the ALP couplings to left-handed and right-
handed quarks. The o↵-diagonal entries of these matrices
account for the possibility of flavor-changing s ! d tran-
sitions. The dots represent analogous couplings to lep-
tons. The ALP couplings are scale-dependent quantities.
Their evolution from the new-physics scale ⇤ down to the
scale µ� has recently been studied in detail [18, 19]. The
mass parameter m2

a,0 provides an explicit soft breaking
of the shift symmetry a ! a + c, which is a (classical)
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To bosonize this theory, one first eliminates the ALP-gluon coupling using 
the chiral rotation:


Modified quark mass matrix and ALP couplings:

2

symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
kQ + ��

q

�
e�i��

q a/f ,

k̂q(a) = ei�
+
q a/f

�
kq + �+

q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form

L
�
e↵ =

f2
⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†

⇤
+

f2
⇡

4
B0Tr

⇥
m̂q(a)⌃

†+h.c.
⇤

+
1

2
@µa @µa �

m2
a,0

2
a2 + ĉ��

↵

4⇡

a

f
Fµ⌫ F̃µ⌫ ,

(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a = c2

GG
f2
⇡ m2

⇡

f2

2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
⇡

f2

◆�
,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


m2

a (ĉuu � ĉdd)

m2
⇡ � m2

a

�
m2

⇡�

m2
⇡ � m2

a

�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject
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a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which
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son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]
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where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
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where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that
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where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form
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up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
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ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
kQ + ��

q

�
e�i��

q a/f ,

k̂q(a) = ei�
+
q a/f

�
kq + �+

q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form

L
�
e↵ =

f2
⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†

⇤
+

f2
⇡

4
B0Tr

⇥
m̂q(a)⌃

†+h.c.
⇤

+
1

2
@µa @µa �

m2
a,0

2
a2 + ĉ��
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where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject

2

symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,
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(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
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⇣
k̂Q⌃�⌃ k̂q
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, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ
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⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form
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where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term
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up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle
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where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject
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symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
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contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp
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where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,
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where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa
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k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form
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(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
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up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle
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where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject
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• Quadratic terms in the Lagrangian yield the QCD instanton contribution to 
the ALP mass in addition to the bare mass term:


• The ALP potential is periodic in the field and breaks the classical shift 
symmetry to the discrete subgroup: 
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symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
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i
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�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp
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where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)
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where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
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, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ
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The leading-order chiral Lagrangian can then be ex-

pressed in the form
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(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG
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f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term
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up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle
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where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd
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. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject
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• In addition, there is mass mixing and kinetic mixing between the ALP and 
the neutral pseudoscalar mesons, e.g.:


where:


• Often authors eliminate the mass mixing by the “default choice”       
jjjjjjjjjjjjj                     , which is adequate for the QCD axion


• For ALPs, the mixing can be eliminated by choosing: 

For the special choice u = md/(mu+md) and d = mu/(mu+md), the quantity � vanishes
and relation (99) reduces to a result derived in [22]. But this choice does not eliminate the
ALP–pion mixing. Instead, in the presence of a non-vanishing ALP mass the optimal choice
of the q parameters is
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In the limit where m2
a/m

2
⇡ ! 0 this reduces to the default choice usually adopted in the litera-

ture, but for generic ALP masses the additional contributions introduce important corrections.
With the choice (101) the physical neutral-pion state does not contain an admixture of the
ALP at first order in f⇡/f , the parameter ĉ�� in the e↵ective Lagrangian (87) agrees with the
e↵ective ALP–photon coupling C
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Finally, with this choice the physical ALP mass can be expressed as
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This result generalizes relation (2) to arbitrary values of the Lagrangian parameter m2
a,0.

When the e↵ective chiral Lagrangian (87) is expressed in terms of the physical states given
in (97), one finds (now for general q parameters)
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where Dµ⇡
± = (@µ ⌥ ieAµ)⇡±, and for simplicity we have suppressed the subscript “phys”

on the fields. The coe�cient in front of the ALP–photon coupling, which is the sum of
the coe�cient ĉ�� and a contribution from the Wess–Zumino–Witten term, is nothing but the
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The parameter m2
⇡,0 = B0(md+mu) gives the leading-order contribution to the pion mass. In

order to find the properly normalized mass eigenstates, we first diagonalize the matrix Z, i.e.
we construct the unitary matrix UZ such that U †

ZZ UZ = Zdiag. We then rescale the fields
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Importantly, some scheme-dependent terms enter the admixture of an ALP component in the
physical pion state. Inverting the first relation, and eliminating the bare mass terms in favor
of the physical ones, we find
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The physical masses squared of the neutral pion and the ALP are given by the eigenvalues m2
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(100)

In the limit where m
2
a,0 ⌧ m

2
⇡,0 we recover relation (2). Note that the ALP mass receives a

scheme-dependent contribution involving the q parameters. This is not a problem, because
only the physical mass parameter m2

a is observable, whereas the “bare” mass parameter m2
a,0

is not.
8These relations and (100) holds as long as |m
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2
⇡,0f⇡/f . In the opposite limit one would

obtain maximal mixing, i.e. ⇡
0
phys = 1p

2
(⇡0

± a) + O(f⇡/f). Besides the fact that such a large mixing would

require a fine-tuning of the mass parameters that is rather implausible, it would modify the properties of the
neutral pion in a way that is incompatible with experimental findings.
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2

symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
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q a/f ,
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�
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q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form
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(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
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(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle
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where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject
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• In many paper the mixing angles are treated as “physical” quantities, 
which is misleading, because they are κq dependent quantities


• We keep the auxiliary parameters κq and δq arbitrary and explicitly check 
that physical quantities are independent of their choice


• In terms of the physical mass eigenstates, the SU(2) chiral Lagrangian is 
found to be:

Figure 8: Dependence of the phase-space functions g00(r) (blue) and g+�(r) (red) on the ALP
mass (with r = m

2
⇡/m

2
a).

quantity C
e↵
�� given in (92). It is independent of the choice of the q parameters. The remaining

dependence, which enters via the quantity �, drops out when one calculates physical matrix
elements. Indeed, using integration by parts it can be seen that the coe�cient of � vanishes
when the equations of motion for the pion fields are used. They can thus be dropped from
the e↵ective Lagrangian. It follows that a single parameter �cud governs the leading-order
interactions of the ALP with pions, and we obtain the final expression
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This generalizes the e↵ective axion–pion Lagrangian derived in [101] to the case of an ALP
with non-zero mass parameter m2

a.
As an important application of the Lagrangian (104) we consider the decays of an ALP

into three pions, which is allowed if the ALP mass is larger than 3m⇡. We obtain the decay
amplitudes
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(106)
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now only QED

Matching to the chiral Lagrangian

M. Neubert                                                                        Adventures in the ALPs: Effective Lagrangians (March 16, 2021)                                                                                     26

[Bauer, MN, Renner, Schnubel, Thamm (2020)]



For the hadronic decay  we find:


These are the dominant hadronic decay channels for an ALP with mass 
above  and below 2 GeV

a → 3π

3 mπ

where m
2
+� = (p⇡+ + p⇡�)2 is the invariant mass squared of the charged pion pair. These ex-

pressions agree with corresponding results derived in [22]. In this reference also the di↵erential
distributions in the Dalitz plot were derived. Note that the chiral expansion makes sense only
in the region of phase space where the pion momenta are small compared with the scale of
chiral symmetry breaking, 4⇡f⇡ ' 1.63GeV. This requires the ALP to be lighter than about
3GeV. For the total decay rates one finds
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where (with 0  r  1/9)
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(108)

Both functions are normalized such that gab(0) = 1, and they vanish at the threshold r = 1/9.
The dependence of these two functions on the ALP mass is shown in Figure 8. Interestingly,
the two decay rates are almost of equal size, despite of the fact that the rate of the a ! 3⇡0

mode contains a symmetry factor 1/6. From a phenomenological point of view the a ! 3⇡
decay rates can be important. For ma = 1GeV, we find that �(a ! 3⇡)/�(a ! ��) '

4.6 (�cud/C
e↵
�� )

2, where the ratio of couplings is naturally of O(1), see (92) and (98).

8 Conclusions

Axions and axion-like particles (commonly referred to as ALPs in this work) are well-motivated
new-physics candidates in extensions of the Standard Model (SM) with a spontaneously broken
global symmetry. In these models the mass scale of the new-physics sector is set by the scale
at which the global symmetry is broken, whereas the mass of the associated pseudo Nambu–
Goldstone boson (the ALP) can be significantly smaller. The fundamental coupling structure
of an ALP is therefore determined at the ultra-violet (UV) scale ⇤, while most experimental
searches are performed at energies comparable to its mass. The couplings at this low scale
dictate the most relevant interactions of an ALP, its branching ratios and the most promising
search strategies. In this work we have derived the low-energy ALP couplings by starting
from the most general Lagrangian including all leading-order dimension-5 operators at the
UV scale, systematically evolving the coupling parameters to lower energies, and matching
onto an e↵ective Lagrangian below the electroweak scale and finally to the chiral Lagrangian.
The corresponding equations represent a complete framework for calculating the couplings of
an ALP to SM particles at any given scale.

At the UV scale the e↵ective ALP Lagrangian can be defined in terms of di↵erent but
equivalent operator bases, which make manifest either the derivative nature of the ALP cou-
plings or the suppression of the ALP–fermion interactions by the fermion masses. We have
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the e↵ective Lagrangian. It follows that a single parameter �cud governs the leading-order
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This generalizes the e↵ective axion–pion Lagrangian derived in [101] to the case of an ALP
with non-zero mass parameter m2

a.
As an important application of the Lagrangian (104) we consider the decays of an ALP

into three pions, which is allowed if the ALP mass is larger than 3m⇡. We obtain the decay
amplitudes
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Figure 8: Dependence of the phase-space functions g00(r) (blue) and g+�(r) (red) on the ALP
mass (with r = m

2
⇡/m

2
a).

quantity C
e↵
�� given in (92). It is independent of the choice of the q parameters. The remaining

dependence, which enters via the quantity �, drops out when one calculates physical matrix
elements. Indeed, using integration by parts it can be seen that the coe�cient of � vanishes
when the equations of motion for the pion fields are used. They can thus be dropped from
the e↵ective Lagrangian. It follows that a single parameter �cud governs the leading-order
interactions of the ALP with pions, and we obtain the final expression
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This generalizes the e↵ective axion–pion Lagrangian derived in [101] to the case of an ALP
with non-zero mass parameter m2

a.
As an important application of the Lagrangian (104) we consider the decays of an ALP

into three pions, which is allowed if the ALP mass is larger than 3m⇡. We obtain the decay
amplitudes
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• Strongest particle-physics constraint on ALP couplings for mass range



• Despite a 35-year history, we find that even nowadays most papers on 
this process are based on inconsistent equations


• The chiral implementation of the leading SU(3)-octet weak-interaction 
operator is:


where        is the chiral representation of the left-handed current 

ma < mK − mπ ≈ 354 MeV

Weak decay K → πa

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by

Lji
µ = �
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4
e
i(��

qi
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k̂Q �⌃ k̂q⌃

†⇤ji . (13)

This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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Lij
µ

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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[Bernard, Draper, Soni, Politzer, Wise (1985); Crewther (1986);  Kambor, Missimer, Wyler (1990)]



Georgi, Kaplan, Randall used:


where the phase factor results from the chiral rotation, but the Noether 
theorem gives instead:
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Weak decay K → πa
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3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by

Lji
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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Cancellation of auxiliary parameters:


with:

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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Final-state radiation Initial-state radiation “direct” flavor-changing 

ALP contributionpreviously omitted contributions

‣ Find that omitted contributions have a huge 
effect (parametrically dominant terms)


‣ Including only the first two diagrams (ALP-
meson mixing) gives an uncontrolled 
approximation (except in very special cases)
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
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! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
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with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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while the last diagram is scheme independent. Via the
mixing angles ✓⇡a and ✓⌘a the results for D1 and D2 de-
pend on the q parameters, see (10). The expressions for
D4 and D5, on the other hand, depend only on the �q
parameters. Only the third diagram, in which the ALP
is emitted from the weak-interaction vertex, depends on
both sets of parameters. In the sum of all contribu-
tions the dependence on the auxiliary parameters cancels
(apart from an unambiguous contribution proportional to
u + d + s = 1). But this cancellation only works if
the derivative ALP interactions in (13) are included.

Adding up all contributions, we obtain for the decay
amplitude (for mu = md)

iAK�!⇡�a =
N8

4f


16cGG

(m2
K � m2

⇡)(m
2
K � m2

a)

4m2
K � m2

⇡ � 3m2
a

+ 6(cuu + cdd � 2css)m2
a

m2
K � m2

a

4m2
K � m2

⇡ � 3m2
a

+ (2cuu + cdd + css) (m
2
K � m2

⇡ � m2
a) + 4cssm2

a

+ (kd + kD � ks � kS) (m
2
K + m2

⇡ � m2
a)

�

�
m2

K � m2
⇡

2f
[kq + kQ]

23 . (16)

Note that the transition K�
! ⇡�a proceeds via the

dynamically enhanced octet operator, whereas the corre-
sponding decay K�

! ⇡�⇡0 receives contributions from
the 27-plet operator with isospin change �I = 3

2 only.
This e↵ect is well known and is referred to as “octet en-
hancement” [9, 10]. Attempts to estimate the K�

! ⇡�a
decay rate as ✓2

⇡a times the K�
! ⇡�⇡0 rate miss this

important e↵ect. Another interesting feature of the re-
sult (16) is its dependence on the flavor-conserving ALP
vector couplings (kd + kD) and (ks + kS) to down and
strange quarks. In the presence of the weak interactions
the currents d̄�µd and s̄�µs are not individually con-
served (unlike in QCD), and hence these couplings can
have observable e↵ects.

In order to compare our result (16) with some previous
calculations, we work to leading order in the ratio m̄/ms,
consider the limit where m2

a ⌧ m2
K and assume the case

of a minimal flavor-violating ALP, for which css = cdd
and kd + kD = ks + kS [19]. We then obtain the simple
result (still with mu = md, neglecting the small 27-plet
contributions, and setting 1/fa = �2cGG/f)
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Barring cancellations, the contribution proportional to
N8 dominates as long as |[kq + kQ]23/cGG| ⌧ 3 · 10�7,

which we assume from now on. Eliminating the parame-
ter N8 via the KS ! ⇡+⇡� decay amplitude, we obtain
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For a long-lived ALP with mass ma ⌧ m⇡, the upper
limit Br(K�

! ⇡�X) < 2.0 · 10�10 (90% CL) reported
by NA62 [30] from a search for a feebly interacting new
particle X implies

1
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���� <
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31.9TeV
. (19)

Estimating the weak-interaction contribution to the de-
cay amplitude from kinetic ALP–meson mixing (see e.g.
[14–16]) corresponds to retaining only the first two dia-
grams in Figure 1, evaluated with the default choice of q

parameters. Under the approximations described above
this leads to
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which underestimates the amplitude by a factor
m2

a/(4m
2
K) and predicts the wrong sign for the contri-

bution proportional to cuu. If mass mixing with the ⌘0 is
included, one finds an additional small contribution pro-
portional to sin ✓⌘⌘0 m2

⇡/m2
K [15, 16] relative to the lead-

ing term in our result. The authors of [13] performed a
more careful evaluation of the K�

! ⇡�a decay rate for
the case of a QCD axion (m2

a ⇡ 0) without couplings to
matter (cqq = 0). In this case diagrams D1 and D2 van-
ish when one adopts the default choice of q parameters,
and the graphs D4 and D5 vanish if one chooses �q = 0.
In the evaluation of the third diagram the authors omit-
ted the derivative couplings of the axion shown by the
last term in (13). They obtained (this formula was not
explicitly shown in the paper, but we have derived it from
their arguments and the presented numerical result)
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iN8m2

K

4fa
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. (21)

This contribution to the amplitude is smaller than the
corresponding term in (17) by a factor mu

2(mu+md) ⇡ 0.16,
corresponding to an underestimation of the branching ra-
tio by about a factor 37. (In [13] the authors state that
they have derived the same result in a di↵erent scheme
with �q = q, in which the ALP is removed from the
weak-interaction vertex. With their omission, we can-
not reproduce that the two treatments lead to the same
expression.)
We have also applied our matching prescription (13) to

derive the ⇡�
! e�⌫̄ea decay amplitude, finding again a

result that is independent of the choice of the �q and q
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
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kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
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V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
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Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which
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kQ(µ�)� kq(µ�)
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= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�
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! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-
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dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
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udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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Weak decay K → πa
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
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accounting for an additional phase factor arising from the
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the special choice �q = q one can eliminate the non-
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remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
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where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�
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decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
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ALP-pion mixing ALP-η mixing “direct” contribution

Final-state radiation Initial-state radiation Flavor-changing ALP

coupling

Georgi, Kaplan and Randall have only 
considered the axion-gluon coupling cGG 
and find a result smaller by a factor 
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f
cGG m2

⇡ (�u � �s) , (15)

while the last diagram is scheme independent. Via the
mixing angles ✓⇡a and ✓⌘a the results for D1 and D2 de-
pend on the q parameters, see (10). The expressions for
D4 and D5, on the other hand, depend only on the �q
parameters. Only the third diagram, in which the ALP
is emitted from the weak-interaction vertex, depends on
both sets of parameters. In the sum of all contribu-
tions the dependence on the auxiliary parameters cancels
(apart from an unambiguous contribution proportional to
u + d + s = 1). But this cancellation only works if
the derivative ALP interactions in (13) are included.

Adding up all contributions, we obtain for the decay
amplitude (for mu = md)
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Note that the transition K�
! ⇡�a proceeds via the

dynamically enhanced octet operator, whereas the corre-
sponding decay K�

! ⇡�⇡0 receives contributions from
the 27-plet operator with isospin change �I = 3

2 only.
This e↵ect is well known and is referred to as “octet en-
hancement” [9, 10]. Attempts to estimate the K�

! ⇡�a
decay rate as ✓2

⇡a times the K�
! ⇡�⇡0 rate miss this

important e↵ect. Another interesting feature of the re-
sult (16) is its dependence on the flavor-conserving ALP
vector couplings (kd + kD) and (ks + kS) to down and
strange quarks. In the presence of the weak interactions
the currents d̄�µd and s̄�µs are not individually con-
served (unlike in QCD), and hence these couplings can
have observable e↵ects.

In order to compare our result (16) with some previous
calculations, we work to leading order in the ratio m̄/ms,
consider the limit where m2

a ⌧ m2
K and assume the case

of a minimal flavor-violating ALP, for which css = cdd
and kd + kD = ks + kS [19]. We then obtain the simple
result (still with mu = md, neglecting the small 27-plet
contributions, and setting 1/fa = �2cGG/f)
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(17)
Barring cancellations, the contribution proportional to
N8 dominates as long as |[kq + kQ]23/cGG| ⌧ 3 · 10�7,

which we assume from now on. Eliminating the parame-
ter N8 via the KS ! ⇡+⇡� decay amplitude, we obtain
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For a long-lived ALP with mass ma ⌧ m⇡, the upper
limit Br(K�

! ⇡�X) < 2.0 · 10�10 (90% CL) reported
by NA62 [30] from a search for a feebly interacting new
particle X implies

1

fa

����1 +
cuu + cdd
2cGG

���� <
1

31.9TeV
. (19)

Estimating the weak-interaction contribution to the de-
cay amplitude from kinetic ALP–meson mixing (see e.g.
[14–16]) corresponds to retaining only the first two dia-
grams in Figure 1, evaluated with the default choice of q

parameters. Under the approximations described above
this leads to

AK�!⇡�a ⇡
iN8m2

a

8fa
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1�

cuu � cdd
2cGG

◆
, (20)

which underestimates the amplitude by a factor
m2

a/(4m
2
K) and predicts the wrong sign for the contri-

bution proportional to cuu. If mass mixing with the ⌘0 is
included, one finds an additional small contribution pro-
portional to sin ✓⌘⌘0 m2

⇡/m2
K [15, 16] relative to the lead-

ing term in our result. The authors of [13] performed a
more careful evaluation of the K�

! ⇡�a decay rate for
the case of a QCD axion (m2

a ⇡ 0) without couplings to
matter (cqq = 0). In this case diagrams D1 and D2 van-
ish when one adopts the default choice of q parameters,
and the graphs D4 and D5 vanish if one chooses �q = 0.
In the evaluation of the third diagram the authors omit-
ted the derivative couplings of the axion shown by the
last term in (13). They obtained (this formula was not
explicitly shown in the paper, but we have derived it from
their arguments and the presented numerical result)

AK�!⇡�a ⇡
iN8m2

K

4fa

mu

mu + md
. (21)

This contribution to the amplitude is smaller than the
corresponding term in (17) by a factor mu

2(mu+md) ⇡ 0.16,
corresponding to an underestimation of the branching ra-
tio by about a factor 37. (In [13] the authors state that
they have derived the same result in a di↵erent scheme
with �q = q, in which the ALP is removed from the
weak-interaction vertex. With their omission, we can-
not reproduce that the two treatments lead to the same
expression.)
We have also applied our matching prescription (13) to

derive the ⇡�
! e�⌫̄ea decay amplitude, finding again a

result that is independent of the choice of the �q and q

[Bauer, MN, Renner, Schnubel, Thamm (2021)]



Expressing the ALP couplings in terms of the couplings at the scale   
with , and assuming MFV, we find:


The coefficients refer to , but they vary by less than 10% over the entire 
allowed mass range. Two “benchmarks”:
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2 Preliminaries

Our starting point is the e↵ective ALP Lagrangian at a scale of order µ� = 4⇡f⇡, which we
write in the form
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(1)

Here q is a vector containing the three light quark flavors (u, d, s), mq is the diagonal quark
mass matrix, and kQ,q are hermitian matrices containing the ALP couplings to left-handed
and right-handed quarks. In components, these matrices have the form

kQ =
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k11
U 0 0

0 k11
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D
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The o↵-diagonal entries account for the possibility of flavor-changing s ! d transitions.
In order to study the low-energy interactions of a light ALP with hadrons, one should

match this Lagrangian onto a chiral e↵ective Lagrangian incorporating the ALP couplings to
the light pseudoscalar mesons (⇡, K, ⌘).1 In order to find the bosonized form of the ALP–gluon
interaction, one eliminates the aGG̃ term in favor of ALP couplings to quark bilinears, whose
chiral representation is well known. To this end, we perform the chiral rotation [37, 88, 92, 93]

q ! exp


�i (�q + q�5) cGG

a

f

�
q , (3)

where �q and q are hermitian matrices, which we choose to be diagonal in the quark mass
basis. Under the chiral rotation the measure of the path integral is not invariant [94, 95], and
this generates extra terms adding to the anomalous ALP couplings to gluons and photons.
Imposing the condition

Trq = u + d + s = 1 (4)

1In this work we ignore the singlet meson ⌘1 and do not consider the mixing between ⇡0, ⌘ and ⌘0.

1
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strong-interaction phase of g8

weak phase of Vtd*

• only  :   “indirect” contribution (g8) dominatescGG ≠ 0
• only  :   “direct” contribution (from RG running) dominatescWW ≠ 0

 proportional to Vtd*Vts in MFV←

[see e.g.: Gori, Perez, Tobioka (2020)]



More generally, one can derive bounds  for all relevant ALP 
couplings using the NA62 upper limit                                                       (90% CL), 
which implies:


‣ very strong bounds on flavor-changing ALP couplings in the UV


‣ strong bounds on ALP couplings to fermions (cu or cQ)


‣ relatively strong bounds on ALP-boson couplings

|cii | / f < [Λeff
ii ]−1

  phenomenologyK → πa
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while the last diagram is scheme independent. Via the
mixing angles ✓⇡a and ✓⌘a the results for D1 and D2 de-
pend on the q parameters, see (10). The expressions for
D4 and D5, on the other hand, depend only on the �q
parameters. Only the third diagram, in which the ALP
is emitted from the weak-interaction vertex, depends on
both sets of parameters. In the sum of all contribu-
tions the dependence on the auxiliary parameters cancels
(apart from an unambiguous contribution proportional to
u + d + s = 1). But this cancellation only works if
the derivative ALP interactions in (13) are included.

Adding up all contributions, we obtain for the decay
amplitude (for mu = md)
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Note that the transition K�
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dynamically enhanced octet operator, whereas the corre-
sponding decay K�

! ⇡�⇡0 receives contributions from
the 27-plet operator with isospin change �I = 3

2 only.
This e↵ect is well known and is referred to as “octet en-
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important e↵ect. Another interesting feature of the re-
sult (16) is its dependence on the flavor-conserving ALP
vector couplings (kd + kD) and (ks + kS) to down and
strange quarks. In the presence of the weak interactions
the currents d̄�µd and s̄�µs are not individually con-
served (unlike in QCD), and hence these couplings can
have observable e↵ects.

In order to compare our result (16) with some previous
calculations, we work to leading order in the ratio m̄/ms,
consider the limit where m2

a ⌧ m2
K and assume the case

of a minimal flavor-violating ALP, for which css = cdd
and kd + kD = ks + kS [19]. We then obtain the simple
result (still with mu = md, neglecting the small 27-plet
contributions, and setting 1/fa = �2cGG/f)
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Barring cancellations, the contribution proportional to
N8 dominates as long as |[kq + kQ]23/cGG| ⌧ 3 · 10�7,

which we assume from now on. Eliminating the parame-
ter N8 via the KS ! ⇡+⇡� decay amplitude, we obtain
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For a long-lived ALP with mass ma ⌧ m⇡, the upper
limit Br(K�

! ⇡�X) < 2.0 · 10�10 (90% CL) reported
by NA62 [30] from a search for a feebly interacting new
particle X implies
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Estimating the weak-interaction contribution to the de-
cay amplitude from kinetic ALP–meson mixing (see e.g.
[14–16]) corresponds to retaining only the first two dia-
grams in Figure 1, evaluated with the default choice of q

parameters. Under the approximations described above
this leads to
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2cGG

◆
, (20)

which underestimates the amplitude by a factor
m2

a/(4m
2
K) and predicts the wrong sign for the contri-

bution proportional to cuu. If mass mixing with the ⌘0 is
included, one finds an additional small contribution pro-
portional to sin ✓⌘⌘0 m2

⇡/m2
K [15, 16] relative to the lead-

ing term in our result. The authors of [13] performed a
more careful evaluation of the K�

! ⇡�a decay rate for
the case of a QCD axion (m2

a ⇡ 0) without couplings to
matter (cqq = 0). In this case diagrams D1 and D2 van-
ish when one adopts the default choice of q parameters,
and the graphs D4 and D5 vanish if one chooses �q = 0.
In the evaluation of the third diagram the authors omit-
ted the derivative couplings of the axion shown by the
last term in (13). They obtained (this formula was not
explicitly shown in the paper, but we have derived it from
their arguments and the presented numerical result)

AK�!⇡�a ⇡
iN8m2

K

4fa

mu

mu + md
. (21)

This contribution to the amplitude is smaller than the
corresponding term in (17) by a factor mu

2(mu+md) ⇡ 0.16,
corresponding to an underestimation of the branching ra-
tio by about a factor 37. (In [13] the authors state that
they have derived the same result in a di↵erent scheme
with �q = q, in which the ALP is removed from the
weak-interaction vertex. With their omission, we can-
not reproduce that the two treatments lead to the same
expression.)
We have also applied our matching prescription (13) to

derive the ⇡�
! e�⌫̄ea decay amplitude, finding again a

result that is independent of the choice of the �q and q

cGG cWW cuu cdd kD12 kD12/|VtdVts|

61.3 6.5 1126 31.0 1.9・108 60 000Λeff
ii [TeV]

cii



• Axions and axion-like particles appear in well-motivated extensions of the 
SM, in particular those addressing the strong CP problem


• They are an interesting target for searches in high-energy physics (using 
flavor and collider probes), astroparticle physics and cosmology


• If the scale of Peccei-Quinn symmetry breaking is far above the weak 
scale, it is important to connect the low-energy ALP couplings in a 
systematic way with the couplings in the UV theory


• A correct implementation of the left-handed quark currents in the chiral 
Lagrangian is required to correctly obtain the  decay amplitudeK → πa

Summary

M. Neubert                                                                        Adventures in the ALPs: Effective Lagrangians (March 16, 2021)                                                                                     34



Adventures in the ALPs Part II:
Lepton Flavour Violation

Marvin Schnubel, Matthias Neubert New Physics from Precision at High Energies

Prisma+ Cluster of Excellence KITP, UC Santa Barbara

Johannes Gutenberg-University, Mainz 16.03.2021

M. Bauer, M. Neubert, S. Renner, MS, A. Thamm (arXiv: 1908.00008, 2012.12272, 2102.13112 and work in  
preparation)



Motivation
• Lepton flavor number is accidental
symmetry of Standard Model

➢ No Standard Model (SM) background
in absence of neutrino masses

• With neutrino masses and 
oscillations:

•In low mass region best bounds from
cosmology → focus on mass region

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 2

[Petkov (1977), Hernandéz-Tomé, Lopéz Castro, Roig (2019)]

ADVENTURES IN THE ALPS PART II: LEPTON FLAVOUR VIOLATION 2

[Kim (1987)]



The ALP-Model
• Assume the existence of a new spin-0 resonance   , which is a gauge singlet under the 
SM and whose mass is much lighter than the electroweak scale

•The low energy Lagrangian reads

• Allow ALP-lepton coupling to be off-diagonal

• Neglect ALP-neutrino couplings

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 3ADVENTURES IN THE ALPS PART II: LEPTON FLAVOUR VIOLATION 3



The ALP-Model

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• Photon coupling loop-induced:

• with , where                                    and     

• where we have defined

• Assume universal ALP-lepton coupling                                                      ,  

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 4

[Bauer, Neubert, Thamm (2017)]
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The ALP lifetime effect

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• Effective branching ratios often depend on ALP decay length, such that

• for decays

• for invisible ALPs

with                                                               the fraction of ALPs that decay in a detector of      
radius

➢ These effects can alter the shapes of excluded regions drastically.

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 5ADVENTURES IN THE ALPS PART II: LEPTON FLAVOUR VIOLATION 5



Constraints of LFV ALP couplings

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• In each sector assume one coupling to be dominant

• Apply experimental cuts and take event selection criteria into account, e.g. time 

difference between decay products and detector geometry

• Give prospects of future experiments where available

• Physics of muon sector can be easily transferred to tau sector

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 6ADVENTURES IN THE ALPS PART II: LEPTON FLAVOUR VIOLATION 6



Constraints in the Muon Sector
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Overview over Branching Ratios and Projections

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 8ADVENTURES IN THE ALPS PART II: LEPTON FLAVOUR VIOLATION 8

LFV Channel Current limit Projection

[MEG Coll. (2016)] [MEGII Coll. (2018)]

[SINDRUM Coll. (1988)] [Perrevoort, Mu3e (2018)]

[Perrevoort, Mu3e (2018)][Bayes et al (2014)]

[Bolton et al (1988)]

[LAMPF Coll (1986)]

[SINDRUM-II (2006)]
[Mu2e (2014)]

[COMET (2020)]



Constraints on LFV ALP-e-µ Coupling
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Constraints on LFV ALP-e-µ Coupling
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Constraints on LFV ALP-e-µ Coupling
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µ to e Conversion

• Allow only ALP-lepton couplings
• Not competitive to other experiments

despite experimentally highly constraining



Constraints on LFV ALP-e-µ Coupling
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µ to e Conversion

with effective atomic charge

nuclear matrix element

muon capture rate

and

experimentally: 
[SINDRUM-II (2006)]

[Kuno, Okada (2001)]



Constraints on LFV ALP-e-µ Coupling
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Constraints on LFV ALP-e-µ Coupling
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Muonium-Antimuonium oscillation

• Contributes via s- and t-channel diagrams

• In both cases
[Hou, Wong (1996)]



Constraints on LFV ALP-e-µ Coupling
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Muonium-Antimuonium oscillation

• Can be mapped onto four-fermion 

operators

• Only limit that is independent of diagonal 

lepton coupling

• Transition probability depends on 

magnetic field

[Willmann et al. (1999)]



Constraints on LFV ALP-e-µ Coupling
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Constraints on LFV ALP-e-µ Coupling

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 17ADVENTURES IN THE ALPS PART II: LEPTON FLAVOUR VIOLATION 17

µ to ea and µ to eaγ

• Strongest constraints in small mass region

• Can mediate µ to 3e, eγγ

• µ to eaγ is µ to ea with ISR/FSR



Constraints on LFV ALP-e-µ Coupling
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µ to ea and µ to eaγ

• µ to eaγ could be competitive despite

theoretically orders of magnitude smaller

due to better experimental handling

[Bayes et al (2014)]

[Bolton et al (1988)]



Constraints on LFV ALP-e-µ Coupling
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Constraints on LFV ALP-e-µ Coupling
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Muon decays

• Strongest bounds for

• Strongest limit achieved with on-shell ALP



Constraints on LFV ALP-e-µ Coupling
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Muon decays

• Most stringent bounds of LFV muon decays:

[MEG Coll. (2016)]

[SINDRUM Coll. (1988)]

[LAMPF Coll (1986)]



Details on Muon decays

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• For µ to eγ use form–factor decomposition:

• By using Ward identity can get rid of F1 and F1
5
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Details on Muon decays

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• We find

with

• For simplicity set me=0 

• Calculate form-factors at arbitrary q2 because diagrams appear as sub-diagrams in       

µ to 3e
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Details on Muon decays
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• For                                    can have subsequent                                  decay

•

➢ Many orders of magnitude more sensitive to LFV couplings than

➢ Overcomes phase-space suppression of 3-body decay

• Use same technique for

• Without strong time cuts the search for                    would be sensitive to lighter ALPs 



Details on Muon Decays

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• If ALP is boosted and decay photons hit the detector closer than its spatial resolution, 

can mimic               , 
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Constraints on LFV ALP-e-µ Coupling
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Mu2e,COMET

Mu3e

Mu3e

Mu3e, MEGII



Anomalous magnetic Moments

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• Current tension of experiment and theory prediction of 3.7σ (aμ) and 2.4σ (ae)

• Similar diagrams as

• aμ receives contribution from flavor-preserving couplings:

• And flavor-violating ones: 

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 27

[Bennet et al (2006), Kesharvarzi et al (2018), Davier et al (2020)]
[Hanneke, Fogwell, Gabrielse (2008) and (2011)]

[Bauer, Neubert, Thamm (2017), Chang et al (2001), 
Marciano et al (2016)]
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Anomalous magnetic Moments

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• Explanation of both          and          based on flavor-violating couplings to e and μ is ruled

out by muonium oscillations for all masses ma

• Explanation of both or based on τ-couplings is ruled out by

• Both anomalies can be explained simultaneously if

o is present at tree level and

o Non-universal lepton couplings                                          and 

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 28

[Endo, Iguro, Kitahara (2020)]
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Anomalous magnetic Moments
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Anomalous magnetic Moments
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Anomalous electric Moments

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

•

• Low SM background,

• SM contribution arises at 4-loop order 

• Only constrains imaginary part  

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATIONAXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION 31

[Bernreuther, Suzuki (1991), Booth (1993), ACME Collaboration (2018)]
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Anomalous electric Moments
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Constraints in the Tau Sector
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Overview over Branching Ratios and Projections
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LFV Channel Current limit

[ARGUS]

[BaBar]

[BaBar]

[ARGUS]

[BaBar]

[BaBar]

[BaBar]



Constraints on LFV ALP-τ-e Coupling
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Constraints on LFV ALP-τ-µ Coupling
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FCCee

LHCb, BelleII



Summary and Conclusion

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• Studied lepton-flavor violating ALP couplings and their constraints from decay and non-

decay experiments

• Transferred the results from muon to tau sector

• Largest constraints arise in mass range                                   due to resonant ALP decays

• We have shown that searches for LFV transitions provide highly complementary 

constraints on ALP couplings to photons and leptons, strengthening the case for a broad 

program of experiments hunting LFV decays.
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Summary and Conclusion

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• We studied lepton-flavor violating ALP couplings and their constraintss from decay and 

non-decay experiments

• Transferred the results from muon to tau sector

• Largest constraints arise in mass range                                   due to resonant ALP decays

• We have shown, that searches for LFV transitions provide highly complementary 

constraints on ALP couplings to photons and leptons, strengthening the case for a broad 

program of experiments hunting LFV decays.
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Technical Details

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• Partial decay rate of µ to 3e:
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p1 and p2 electron momenta
p3 positron momentum



Analytic Expressions of the Form Factors

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• The                     form factors via ALP read (for arbitrary q²):
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Analytic Expressions of the Form Factors

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• With the loop functions:
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Analytic Expressions of the Form Factors

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• With the functions:
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Form Factors used in Δaμ

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• Used loop functions are

• Where h1,2 are the same as in the decay form factors
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Bounds from Muonium Oscillations

AXIONLIKE PARTICLES AND LEPTON-FLAVOR VIOLATION

• Dependence on magnetic field encoded in parameter

where

and the Muonium 1S hyperfine splitting  
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