Exploring Two Axes at Colliders: From Precision to Novel Observables intro by Iain Stewart (MIT)

Part (1): "The Higgs pT Spectrum and Total Cross Section with Fiducial Cuts at $N^3LL' + N^3LO$ " talk by Johannes Michel (MIT)

Part (2): "Pure Quark and Gluon Observables with Collinear Drop" talk by Xiaojun Yao (MIT) Exploring Two Axes at Colliders: From Precision to Novel Observables

The Higgs p_T Spectrum and Total Cross Section with Fiducial Cuts at N³LL'+N³LO

Johannes Michel MIT CTP

Joint session with Iain Stewart and Xiaojun Yao

New Physics from Precision at High Energies KITP, 11 May

Exploring Two Axes at Colliders: From Precision to Novel Observables

The Higgs p_T Spectrum and Total Cross Section with Fiducial Cuts at N³LL'+N³LO

based on [2102.08039]

in collaboration with G. Billis, B. Dehnadi, M. Ebert, F. Tackmann

Motivation

- Measure fiducial & differential Higgs cross sections at the LHC
 - Most basic thing to do after discovering the Higgs
 - Most model-independent way we have to search for BSM in the Higgs sector
- Total fiducial cross section measures deviations from SM gluon-fusion rate:

Motivation

- Measure fiducial & differential Higgs cross sections at the LHC
 - Most basic thing to do after discovering the Higgs
 - Most model-independent way we have to search for BSM in the Higgs sector
- Total fiducial cross section measures deviations from SM gluon-fusion rate:

	Individual			Marginalised		
SMEFT	Best fit	95% CL	Scale	Best fit	95% CL	Scale
Coeff.	$[\Lambda = 1 \text{ TeV}]$	range	$\frac{\Lambda}{\sqrt{C}}$ [TeV]	$[\Lambda = 1 \text{ TeV}]$	range	$\frac{\Lambda}{\sqrt{C}}$ [TeV]
C_{Hq}	0.00	[-0.017, +0.012]	8.3	-0.05	[-0.11, +0.012]	4.1
$C_{Hq}^{(1)}$	0.02	[-0.1, +0.14]	2.9	-0.04	[-0.27, +0.18]	2.1
C_{Hd}	-0.03	[-0.13, +0.071]	3.1	-0.39	[-0.91, +0.13]	1.4
C_{Hu}	0.00	[-0.075, +0.073]	3.7	-0.19	[-0.63, +0.25]	1.5
$C_{H\Box}$	-0.27	[-1, +0.47]	1.2	-0.9	[-3, +1.2]	0.69
C_{HG}	0.00	[-0.0034, +0.0032]	17.0	0.00	[-0.014, +0.0086]	9.4
C_{HW}	0.00	[-0.012, +0.006]	11.0	0.12	[-0.38, +0.62]	1.4
C_{HB}	0.00	[-0.0034, +0.002]	19.0	0.07	[-0.09, +0.22]	2.5

[Ellis, Madigan, Mimasu, Sanz, You, 2012.02779; Tab. 6]

Motivation

- Next-to-most basic thing: measure the Higgs transverse momentum
- High $p_T^H \sim \sqrt{\hat{s}} \gg m_H$ increases sensitivity to new operators [...see yesterday's detailed discussion]
- Focus of this talk: $p_T^H \lesssim m_H \sim \sqrt{\hat{s}} \ll 2m_t$ (or p_T^H integrated over)
 - Measure or put bounds on anomalous b, c, and light quark Yukawa couplings [Bishara, Haisch, Monni, Re, 1606.09253; Soreq, Zhu, Zupan, 1606.09621]

• Uncertainty $\Delta \sigma$ on SM prediction translates into discovery reach:

$$rac{\Delta\sigma}{\sigma} \sim rac{v^2}{\Lambda_{
m BSM}^2} ~~ \Leftrightarrow ~~ \Lambda_{
m BSM} \sim v ~ \sqrt{rac{\sigma}{\Delta\sigma}}$$

Challenges for theory

- QCD corrections to gg
 ightarrow H are large: $\sigma/\sigma_{
 m LO}pprox 3$
 - Calculation of inclusive cross section has been pushed to N³LO [Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger '15-'18]
- But LHC experiments apply kinematic selection cuts on Higgs decay products
 - ▶ Need complete interplay of QCD corrections and $\mathcal{O}(1)$ fiducial acceptance

[See talk by Haider Abidi on 27 April about issues with model-dependent acceptance in SMEFT interpretations of $H \rightarrow 4\ell$ – this will be similar, but for the SM baseline...]

Consider $gg
ightarrow H
ightarrow \gamma\gamma$ with ATLAS fiducial cuts:

 $p_T^{\gamma 1} \geq 0.35 \, m_H \,, \quad p_T^{\gamma 2} \geq 0.25 \, m_H \,, \quad |\eta^\gamma| \leq 2.37 \,, \quad |\eta^\gamma|
otin [1.37, 1.52]$

Goal

- Compute fiducial spectrum in $q_T\equiv p_T^H=p_T^{\gamma\gamma}$ at N³LL'+N³LO
- Compute total fiducial cross section at N³LO, and improved by resummation

Consider $gg
ightarrow H
ightarrow \gamma\gamma$ with ATLAS fiducial cuts:

 $p_T^{\gamma 1} \geq 0.35 \, m_H \,, \quad p_T^{\gamma 2} \geq 0.25 \, m_H \,, \quad |\eta^\gamma| \leq 2.37 \,, \quad |\eta^\gamma|
otin [1.37, 1.52]$

Goal

- Compute fiducial spectrum in $q_T\equiv p_T^{\gamma\gamma}$ at N³LL'+N³LO
- Compute total fiducial cross section at N³LO, and improved by resummation
- Previous state of the art was N³LL(+NNLO₁) and NNLO, respectively [Chen et al. '18; Bizoń et al. '18; Gutierrez-Reyes et al. '19; Becher, Neumann '20]

Kicked off recent push for fiducial color singlet at complete three-loop accuracy:

- Complementary N³LO results for fiducial $Y_{\gamma\gamma}$, $\eta_{\gamma1}$, $\Delta\eta_{\gamma\gamma}$ (with different method) [Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607]
- Fiducial N³LL' results for Drell-Yan (and Higgs) q_T spectrum [Camarda, Cieri, Ferrera, 2103.04974; Re, Rottoli, Torrielli, 2104.07509]

Consider $gg
ightarrow H
ightarrow \gamma\gamma$ with ATLAS fiducial cuts:

 $p_T^{\gamma 1} \geq 0.35 \, m_H \,, \quad p_T^{\gamma 2} \geq 0.25 \, m_H \,, \quad |\eta^\gamma| \leq 2.37 \,, \quad |\eta^\gamma|
otin [1.37, 1.52]$

Goal

- Compute fiducial spectrum in $q_T\equiv p_T^{H}=p_T^{\gamma\gamma}$ at N³LL'+N³LO
- Compute total fiducial cross section at N³LO, and improved by resummation

 $\Gamma_H \ll m_H \Rightarrow$ production and decay (acceptance) factorize point by point in q_T, Y :

$$rac{\mathrm{d}\sigma}{\mathrm{d}q_T} = \int \mathrm{d}Y \, oldsymbol{A}(oldsymbol{q_T},oldsymbol{Y};oldsymbol{\Theta}) \, W(oldsymbol{q_T},Y) \,, \quad oldsymbol{A}_{\mathrm{incl}} = 1 \,, \quad W(oldsymbol{q_T},Y) = rac{\mathrm{d}\sigma_{\mathrm{incl}}}{\mathrm{d}q_T \, \mathrm{d}Y}$$

Takeaway

 $\sigma_{\text{incl}} = \int dq_T W(q_T)$ resummation effects from $q_T \ll m_H$ formally cancel $\sigma_{\text{fid}} = \int dq_T A(q_T) W(q_T)$ derived quantity sensitive to resummation effects

Outline

Power expansion in $q_T \ll m_H$ is organizing principle of the calculation:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_T} = \frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} + \frac{\mathrm{d}\sigma^{(1)}}{\mathrm{d}q_T} + \frac{\mathrm{d}\sigma^{(2)}}{\mathrm{d}q_T} + \cdots$$
$$\sim \frac{1}{q_T} \left[\mathcal{O}(1) + \mathcal{O}\left(\frac{q_T}{m_H}\right) + \mathcal{O}\left(\frac{q_T^2}{m_H^2}\right) + \cdots \right]$$
$$\frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} = \sigma_{\mathrm{LO}}\,\delta(q_T) + \sum_n \alpha_s^n \left\{ \sigma_n^V \delta(q_T) + \sum_m \sigma_{n,m}^{(0)} \left[\frac{\mathrm{ln}^m(q_T/m_H)}{q_T}\right]_+ \right\}$$

Contains LO contribution, virtual corrections, and log-enhanced singular terms

$$rac{\mathrm{d}\sigma^{(1)}}{\mathrm{d}q_T} = \sum_n lpha_s^n \sum_m \sigma^{(1)}_{n,m} rac{1}{m_H} \ln^m(q_T/m_H)$$

Still logarithmically divergent, intimately connected to fiducial cuts

$$\frac{\mathrm{d}\sigma^{(2)}}{\mathrm{d}q_T} = \sum_n \alpha_s^n \sum_m \sigma_{n,m}^{(2)} \frac{q_T}{m_H^2} \ln^m(q_T/m_H) + \cdots$$

 \blacktriangleright Finite as $q_T
ightarrow 0$, extract from fixed-order H+1j calculation

Leading-power factorization & resummation

At leading power in $q_T \ll m_H$, the hadronic dynamics factorize as:

$$egin{aligned} W^{(0)}(q_T,Y) &= m{H}(m{m}_H^2,\mu) \int\!\mathrm{d}^2ec{k}_a\,\mathrm{d}^2ec{k}_b\,\mathrm{d}^2ec{k}_s\,\deltaig(q_T-|ec{k}_a+ec{k}_b+ec{k}_s|ig) \ & imes B_g^{\mu
u}(x_a,ec{k}_a,\mu,
u)\,B_{g\,\mu
u}(x_b,ec{k}_b,\mu,
u)\,m{S}(ec{k}_s,\mu,
u) \end{aligned}$$

At leading power in $q_T \ll m_H$, the hadronic dynamics factorize as:

$$egin{aligned} W^{(0)}(q_T,Y) &= m{H}(m{m}_H^2,\mu) \int\!\mathrm{d}^2ec{k}_a\,\mathrm{d}^2ec{k}_b\,\mathrm{d}^2ec{k}_s\,\deltaig(q_T-ec{k}_a+ec{k}_b+ec{k}_sec{ec{k}}ig) \ & imes B_g^{\mu
u}(x_a,ec{k}_a,\mu,
u)\,B_{g\,\mu
u}(x_b,ec{k}_b,\mu,
u)\,m{S}(ec{k}_s,\mu,
u) \end{aligned}$$

Ingredients satisfy 2D renormalization group equations, e.g. soft function:

$$\mu rac{\mathrm{d}}{\mathrm{d}\mu} \ln ilde{m{S}}(ec{m{b}}_T, \mu, m{
u}) = ilde{\gamma}^g_S(\mu,
u) \qquad
u rac{\mathrm{d}}{\mathrm{d}
u} \ln ilde{m{S}}(ec{m{b}}_T, \mu, m{
u}) = ilde{\gamma}^g_
u(b_T, \mu)$$

- Solve recursively at fixed order
 - Complete log structure of $\mathrm{d}\sigma^{(0)}$
- Closed-form all-order solution
 - Resummed Sudakov peak
- Resummation order specified by perturbative order of anom. dims. and boundary conditions

At leading power in $q_T \ll m_H$, the hadronic dynamics factorize as:

$$egin{aligned} W^{(0)}(q_T,Y) &= m{H}(m{m}_H^2,\mu) \int\! \mathrm{d}^2ec{k}_a\,\mathrm{d}^2ec{k}_b\,\mathrm{d}^2ec{k}_s\,\deltaig(q_T-|ec{k}_a+ec{k}_b+ec{k}_s|ig) \ & imes B_g^{\mu
u}(x_a,ec{k}_a,\mu,
u)\,B_{g\,\mu
u}(x_b,ec{k}_b,\mu,
u)\,m{S}(ec{k}_s,\mu,
u) \end{aligned}$$

To reach $N^{3}LL'$ for $W^{(0)}$, implemented in SCETlib:

- Three-loop soft and hard function ...includes in particular the three-loop virtual form factor [Li, Zhu, '16] [Baikov et al. '09; Lee et al. '10; Gehrmann et al. '10]
- Three-loop unpolarized and two-loop polarized beam functions [Ebert, Mistlberger, Vita '20; Luo, Yang, Zhu, Zhu '20]
 [Luo, Yang, Zhu, Zhu '19; Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov '19]
- Four-loop cusp, three-loop noncusp anomalous dimensions [Brüser, Grozin, Henn, Stahlhofen '19; Henn, Korchemsky, Mistlberger '20; v. Manteuffel, Panzer, Schabinger '20] [Li, Zhu, '16; Moch, Vermaseren, Vogt '05; Idilbi, Ma, Yuan '06; Vladimirov '16]
- N³LL solutions to virtuality/rapidity RGEs in b_T space
- Hybrid profile scales for fixed-order matching [Lustermans, JM, Tackmann, Waalewijn '19]

At leading power in $q_T \ll m_H$, the hadronic dynamics factorize as:

$$egin{aligned} W^{(0)}(q_T,Y) &= m{H}(m{m}_H^2,m{\mu}) \int\!\mathrm{d}^2ec{k}_a\,\mathrm{d}^2ec{k}_b\,\mathrm{d}^2ec{k}_s\,\deltaig(q_T - |ec{k}_a + ec{k}_b + ec{k}_s|ig) \ & imes B_g^{\mu
u}(x_a,ec{k}_a,m{\mu},m{
u})\,B_{g\,\mu
u}(x_b,ec{k}_b,m{\mu},m{
u})\,m{S}(ec{k}_s,m{\mu},m{
u}) \end{aligned}$$

• Use $\mu_{\rm FO} = \mu_R = \mu_F = m_H$ for central predictions

- Gluon form factor contains large "timelike" logarithms $\ln {-m_H^2 {
 m i0}\over \mu^2}$ [Ahrens, Becher, Neubert, Yang '08]
- Resummed by hard evolution from $\mu_H = -im_H$:

$$W(q_T, Y) = H(m_H^2, \mu_H) U_H(Q, \mu_H, \mu_{\rm FO}) \left[\frac{W(q_T, Y)}{H(m_H^2, \mu_{\rm FO})} \right]_{\rm FO}$$

[Ebert, JM, Tackmann '17]

Treating fiducial power corrections right

 \ldots are all the power corrections from the q_T -dependent acceptance:

$$rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T} \equiv \int \mathrm{d}Y \Big[oldsymbol{A}(oldsymbol{q_T},oldsymbol{Y};oldsymbol{\Theta}) - oldsymbol{A}^{(0)}(oldsymbol{Y};oldsymbol{\Theta}) \Big] W^{(0)}(oldsymbol{q_T},oldsymbol{Y})$$

• Uniquely predict all linear power corrections $\mathrm{d}\sigma^{(1)}$ because

$$egin{aligned} W(q_T,Y) &= W^{(0)}(q_T,Y) \Big[1 + \mathcal{O}\Big(rac{q_T^2}{m_H^2}\Big) \Big] \ A(q_T,Y;m{\Theta}) &= A^{(0)}(Y;m{\Theta}) \ \left[1 + \mathcal{O}\Big(rac{q_T}{m_H}\Big)
ight] \end{aligned}$$

- Also capture enhanced corrections $\sim q_T/p_L$ when approaching edges $p_L o 0$ of Born phase space ... example coming up
- Resummed to the same accuracy as leading-power terms by resumming $W^{(0)}$ and keeping exact $A(q_T, Y; \Theta)$

[Presence of linear terms pointed out in Ebert, Tackmann '20] [Factorization demonstrated in Ebert, JM, Stewart, Tackmann '20; see talk yesterday at QCD Evolution '21]

Fiducial power corrections induce resummation effects in the total cross section

Compare fixed-order series, isolating the effect of
$$\int dq_T \frac{d\sigma^{fpc}}{dq_T}$$
:

$$\begin{split} \sigma_{\rm incl}^{\rm FO} &= 13.80 \left[1 + 1.291 \right. + 0.783 \left. + 0.299 \right] \rm pb \\ \sigma_{\rm fid}^{\rm FO} &= 6.928 \left[1 + 1.429 \right. + 0.723 \left. + 0.481 \right] \rm pb \\ &= 6.928 \left[1 + (1.300 + 0.129_{\rm fpc}) + (0.784 - 0.061_{\rm fpc}) + (0.331 + 0.150_{\rm fpc}) \right] \rm pb \end{split}$$

Fiducial power corrections show no convergence, remainder is similar to inclusive

Fiducial power corrections induce resummation effects in the total cross section

Two ways to understand this:

1. Acceptance acts as a weight in the q_T integral

 $\sigma_{
m incl} = \int \mathrm{d} q_T \, W(q_T) \qquad \sigma_{
m fid} = \int \mathrm{d} q_T \, \pmb{A}(\pmb{q_T}) \, W(q_T)$

Fiducial power corrections induce resummation effects in the total cross section

Two ways to understand this:

- 1. Acceptance acts as a weight in the q_T integral
- 2. We're cutting on the resummation-sensitive photon p_T

Fiducial power corrections induce resummation effects in the total cross section

Compare fixed-order series, isolating the effect of
$$\int dq_T \frac{d\sigma^{fpc}}{dq_T}$$
:

- $$\begin{split} \sigma_{\rm incl}^{\rm FO} &= 13.80 \left[1 + 1.291 \right. \\ &+ 0.783 \right. \\ &+ 0.299 \left] \, {\rm pb} \\ \sigma_{\rm fid}^{\rm FO} &= 6.928 \left[1 + 1.429 \right. \\ &+ 0.723 \right. \\ &+ 0.481 \left] \, {\rm pb} \\ &= 6.928 \left[1 + (1.300 \! + \! 0.129_{\rm fpc}) + (0.784 \! \! 0.061_{\rm fpc}) + (0.331 \! + \! 0.150_{\rm fpc}) \right] \, {\rm pb} \end{split}$$
 - Fiducial power corrections show no convergence, remainder is similar to inclusive

After resummation of $\sigma^{(0)} + \sigma^{
m fpc}$, at successive matched orders:

$$\sigma_{
m incl}^{
m res} = 24.16 \left[1 + 0.756 + 0.207 + 0.024
ight]
m pb$$
 $\sigma_{
m fid}^{
m res} = 12.89 \left[1 + 0.749 + 0.171 + 0.053
ight]
m pb$

NOTE Checked explicitly that in our profile scale setup, $\sigma_{\text{incl}}^{\text{res}}$ and $\sigma_{\text{incl}}^{\text{FO}}$ agree within Δ_{resum}

▶ Differ in the fiducial case ⇒ resummation effect is resolved

Extracting the nonsingular cross section

So we dealt with this ...

$$rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}q_T} = \int\!\mathrm{d}Y\,A(q_T,Y;\Theta)\,W^{(0)}(q_T,Y) = rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} + rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T}$$

To match to FO and be able to integrate to the total cross section, we still need:

$$\frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{nons}}}{\mathrm{d}q_T} = \int \mathrm{d}Y \, \boldsymbol{A}(\boldsymbol{q}_T, \boldsymbol{Y}; \boldsymbol{\Theta}) \left[W_{\mathrm{FO}}^{(2)}(\boldsymbol{q}_T, \boldsymbol{Y}) + \cdots \right] = \left[\frac{\mathrm{d}\sigma_{\mathrm{FO}_1}}{\mathrm{d}q_T} - \frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{sing}}}{\mathrm{d}q_T} \right]_{\boldsymbol{q}_T > 0}$$

$$\Rightarrow \ \sigma = \int_0^{q_T^{\text{off}}} \mathrm{d}q_T \left[\frac{\mathrm{d}\sigma^{\text{sing}}}{\mathrm{d}q_T} + \frac{\mathrm{d}\sigma^{\text{nons}}_{\text{FO}}}{\mathrm{d}q_T} \right] + \int_{q_T^{\text{off}}} \mathrm{d}q_T \frac{\mathrm{d}\sigma_{\text{FO}_1}}{\mathrm{d}q_T}$$

Challenges:

- Obtaining stable H+1j results for $q_T
 ightarrow 0$ is hard ...in particular at NNLO1
- Dropping the nonsingular below $q_T \leq q_T^{ ext{cut}}$ is not viable, either ...as we'll see shortly
 - In the context of q_T subtractions: crucial to use differential subtraction, not slicing

So we dealt with this ...

$$rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}q_T} = \int\!\mathrm{d}Y\,A(q_T,Y;\Theta)\,W^{(0)}(q_T,Y) = rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} + rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T}$$

To match to FO and be able to integrate to the total cross section, we still need:

$$\frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{nons}}}{\mathrm{d}q_T} = \int \mathrm{d}Y \, \boldsymbol{A}(\boldsymbol{q}_T, \boldsymbol{Y}; \boldsymbol{\Theta}) \left[W_{\mathrm{FO}}^{(2)}(\boldsymbol{q}_T, \boldsymbol{Y}) + \cdots \right] = \left[\frac{\mathrm{d}\sigma_{\mathrm{FO}_1}}{\mathrm{d}q_T} - \frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{sing}}}{\mathrm{d}q_T} \right]_{\boldsymbol{q}_T > 0}$$

Key idea

Fit nonsingular data to known form at subleading power and integrate analytically:

$$\left. q_T \frac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{nons}}}{\mathrm{d}q_T} \right|_{lpha_s^n} = \left. \frac{q_T^2}{m_H^2} \sum_{k=0}^{2n-1} \! \left(a_k + b_k \frac{q_T}{m_H} + c_k \frac{q_T^2}{m_H^2} + \cdots \right) \ln^k \! \frac{q_T^2}{m_H^2}
ight.$$

- Include higher-power b_k, c_k to get unbiased a_k
- Allows us to use more precise data at higher q_T as lever arm in the fit

So we dealt with this ...

$$rac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}q_T} = \int\!\mathrm{d}Y\,A(q_T,Y;\Theta)\,W^{(0)}(q_T,Y) = rac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}q_T} + rac{\mathrm{d}\sigma^{\mathrm{fpc}}}{\mathrm{d}q_T}$$

To match to FO and be able to integrate to the total cross section, we still need:

$$rac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{nons}}}{\mathrm{d}q_T} = \int \mathrm{d}Y \, oldsymbol{A}(oldsymbol{q_T},oldsymbol{Y};oldsymbol{\Theta}) \left[W^{(2)}_{\mathrm{FO}}(oldsymbol{q_T},Y) + \cdots
ight] = \left[rac{\mathrm{d}\sigma_{\mathrm{FO}_1}}{\mathrm{d}q_T} - rac{\mathrm{d}\sigma_{\mathrm{FO}}^{\mathrm{sing}}}{\mathrm{d}q_T}
ight]_{q_T > 0}$$

Fixed-order inputs:

- NLO contribution to $W(q_T, Y)$ at $q_T > 0$ is easy
- At NNLO, renormalize & implement bare analytic results for $W(q_T, Y)$ [Dulat, Lionetti, Mistlberger, Pelloni, Specchia '17]
- At N³LO, use existing binned NNLO₁ results from NNLOjet [Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '15-16; as used in Chen et al. '18; Bizoń et al. '18]
- Use N³LO total inclusive cross section as additional fit constraint on underflow [Mistlberger '18]

- Perform separate χ^2 fits of $\{a_k^{\text{incl,fid}}\}$ to inclusive and fiducial nonsingular data [generated by our analytic implementation]
- Increase fit window to larger q_T until p value decreases
- Include subleading log coefficients at next higher power until p value decreases
- Also test intermediate combination to ensure fit is stable [procedure follows Moult, Rothen, Stewart, Tackmann, Zhu '15-'16]

- Perform separate χ^2 fits of $\{a_k^{\text{incl,fid}}\}$ to inclusive and fiducial nonsingular data [generated by our analytic implementation]
- Increase fit window to larger q_T until p value decreases
- Include subleading log coefficients at next higher power until p value decreases
- Also test intermediate combination to ensure fit is stable [procedure follows Moult, Rothen, Stewart, Tackmann, Zhu '15-'16]

- Perform separate χ^2 fits of $\{a_k^{\text{incl,fid}}\}$ to inclusive and fiducial nonsingular data [generated by our analytic implementation]
- Increase fit window to larger q_T until p value decreases
- Include subleading log coefficients at next higher power until p value decreases
- Also test intermediate combination to ensure fit is stable [procedure follows Moult, Rothen, Stewart, Tackmann, Zhu '15-'16]

- Perform separate χ^2 fits of $\{a_k^{\text{incl,fid}}\}$ to inclusive and fiducial nonsingular data [generated by our analytic implementation]
- Increase fit window to larger q_T until p value decreases
- Include subleading log coefficients at next higher power until p value decreases
- Also test intermediate combination to ensure fit is stable [procedure follows Moult, Rothen, Stewart, Tackmann, Zhu '15-'16]

Setup:

- Perform a combined fit to all inclusive and fiducial data
 [NNLO1: Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '15-16; as used in Chen et al. '18; Bizoń et al. '18]

 [Incl. N³LO: Mistlberger '18]
- Empirically find $0.4 \leq a_k^{
 m fid}/a_k^{
 m incl} \leq 0.55$ at (N)NLO \Rightarrow use as weak 1σ constraint
 - Makes sense, $a_k^{\mathrm{fid,incl}}$ are same underlying $W^{(2)}$ in slightly different Y range
 - Note that we are not just rescaling any part of the cross section by an acceptance

• Add
$$\sigma_{\text{incl}}(q_T \leq q_T^{\text{cut}}) = \sigma_{\text{incl}}^{\text{N}^3\text{LO}} - \sigma_{\text{incl}}(q_T > q_T^{\text{cut}})$$
 as additional incl. data point ^{25/3C}

This is not a slicing calculation

Most general form of q_T subtractions:

$$\sigma = \sigma^{\text{sing}}(\boldsymbol{q}_T^{\text{off}}) + \sigma^{\text{nons}}(\boldsymbol{q}_T^{\text{cut}}) + \int_{\boldsymbol{q}_T^{\text{cut}}}^{\boldsymbol{q}_T^{\text{off}}} \mathrm{d}q_T \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T} - \frac{\mathrm{d}\sigma^{\text{sing}}}{\mathrm{d}q_T}\right] + \int_{\boldsymbol{q}_T^{\text{off}}} \mathrm{d}q_T \frac{\mathrm{d}\sigma}{\mathrm{d}q_T}$$

- We literally take $q_T^{\text{cut}} = 0$, second term *identically* vanishes
- Slicing calculation would use finite $q_T^{
 m cut}\sim 2\,{
 m GeV}$ and take $\sigma^{
 m nons}(q_T^{
 m cut})pprox 0$
- That would be a bad (catastrophic) approximation with (without) $\sigma^{
 m fpc} \subset \sigma_{
 m sing}$

This is not a slicing calculation

A word of numerical caution:

- Contributions from $\sigma^{
 m fpc}(q_T \lesssim 0.1 {
 m GeV})$ can be as high as ${\cal O}(10\%) imes \sigma_{
 m LO}$
- If evaluated by MC, as e.g. in projection-to-Born method, unbiased integration at these low q_T will be challenging (generation cuts, stability of amplitudes, ...)

Results

The fiducial q_T spectrum at N³LL'+N³LO

- Total uncertainty is $\Delta_{tot} = \Delta_{q_T} \oplus \Delta_{\varphi} \oplus \Delta_{match} \oplus \Delta_{FO} \oplus \Delta_{nons}$ [See also Ebert, JM, Stewart, Tackmann, 2006.11382 for details]
- Observe excellent perturbative convergence & uncertainty coverage
 - Crucial to consider *every* variation to probe all parts of the prediction
 - Three-loop beam function has noticeable efffect on central value and band
- Divide $H o \gamma\gamma$ branching ratio ${\cal B}_{\gamma\gamma}$ out of data [LHC Higgs Cross Section WG, 1610.07922]
- Data are corrected for other production channels, photon isolation efficiency [ATLAS, 1802.04146]

The total fiducial cross section at N³LO and N³LL′+N³LO

- Large N³LO correction to fiducial cross section (worse than inclusive)
 - Caused by fiducial power corrections, not captured by rescaling
- Resummation restores convergence
 - Needs both q_T and timelike resummation (different effects, neither is sufficient)

Interesting: Infrared sensitivity observed e.g. in $\Delta \eta_{\gamma\gamma}$ spectrum at N³LO [Chen, Gehrmann, Glover, Huss, Mistlberger, 2102.07607]

⇔ Precisely the fiducial p.c.'s we can deal with and resum
- Presented N³LL'+N³LO and N³LO predictions for the fiducial p_T^H spectrum and the total fiducial cross section for $gg \to H \to \gamma\gamma$ at the LHC
 - First direct comparison to LHC data at this order and level of precision
- Observed, explained, and resummed large fiducial power corrections induced by the experimental acceptance
 - Even total fiducial cross sections are sensitive to q_T resummation effects
- Nonsingular extraction and matching to total cross section made possible by combining all information from N³LO $\sigma_{\rm incl}$, fixed-order H + 1j data, fiducial power corrections, and known functional form at subleading power
- Reached a new level of theory control for two cornerstone LHC observables

- Presented N³LL'+N³LO and N³LO predictions for the fiducial p_T^H spectrum and the total fiducial cross section for $gg \to H \to \gamma\gamma$ at the LHC
 - First direct comparison to LHC data at this order and level of precision
- Observed, explained, and resummed large fiducial power corrections induced by the experimental acceptance
 - Even total fiducial cross sections are sensitive to q_T resummation effects
- Nonsingular extraction and matching to total cross section made possible by combining all information from N³LO $\sigma_{\rm incl}$, fixed-order H + 1j data, fiducial power corrections, and known functional form at subleading power
- Reached a new level of theory control for two cornerstone LHC observables

Thank you for your attention!

Backup

Uncertainty breakdown

 $\begin{array}{ll} \Delta_{q_T} & \mbox{36 independent scale variations in } W^{(0)} \mbox{ factorization} \\ \Delta_{\varphi} & \mbox{Vary phase of hard scale over } \arg \mu_H \in \{\pi/4, 3\pi/4\} \\ \Delta_{\rm match} & \mbox{Vary transition points governing resummation turn-off} \\ \Delta_{\rm FO} & \mbox{Vary } \mu_R/m_H \in \{1/2, 2\} \mbox{ (dominates over } \mu_F \mbox{ due to overall } \alpha_s^2) \\ \Delta_{\rm nons} & \mbox{Uncertainty on nonsingular extraction} \end{array}$

Efficient evaluation of beam function finite terms in SCETlib

• Beam function kernels are large expressions of HPLs and rational prefactors:

- Many tools for numerically evaluating *individual* HPLs on the market ... [e.g. Gehrmann, Remiddi '01; Buehler, Duhr '11; Ablinger, Blümlein, Round, Schneider '18]
- ! But big sum is slow and has uncontrolled floating-point cancellations, in particular in limits $z \to 0, 1$ relevant for convolution $I_{ij}^{(n)} \otimes f_j$ against PDFs

Key idea

Implement the kernels *directly* as smart series expansions, using algebraic methods inspired by those developed for individual HPLs

- Separate branch cuts by subtractions

 Much more complex due to rational terms
 Treat Q_a(z) as additional primitives

 Remap variables, push out remaining branch cut
 - Improves convergence radii of series
 - Get $I_{ij}^{(3)}, P_{ij}^{(2)}, \ldots$ at machine precision in $\mathcal{O}(50k)$ cycles for any z, ≥ 100 times faster than naive implementation (and much more precise)

12

 \ldots relies on fast & stable (for $q_T
ightarrow 0$) algorithm for evaluating the acceptance:

$$A(q_T,Y;\Theta) = rac{1}{4\pi}\int\!\mathrm{d}\cos heta\,\mathrm{d}arphi\,\hat{\Theta}(q^\mu,\cos heta,arphi)$$

- $\hat{\Theta}(q_T = 0, Y, \cos \theta, \mathscr{P})$ is trivial
- For $q_T \neq 0$, analytically solve generic $\hat{\Theta}$ for bounds in θ at given q_T, Y, φ
- Do remaining 1D integral over φ adaptively
- Takes O(1 ms) on 2.50 GHz CPU for 10⁻⁷ target precision

Pure Quark and Gluon Observables with Collinear Drop

Xiaojun Yao MIT

On-going project with Iain W. Stewart

KITP "New Physics from Precision at High Energies" Program May 11, 2021

Disentangling Quark- and Gluon-Initiated Jets

Jet observables contain quark & gluon contributions

$$X = f_q X_q + f_g X_g$$
$$f_q + f_g = 1$$

Only know total distribution from measurements, want to know individual fraction and distribution

Increase sensitivity in BSM physics searches

Motivations of quark/gluon discrimination

Constrain parton shower generators

Better understand QCD jets

Improve probes of quark-gluon plasma in heavy ion collisions

• Can we extract quark & gluon fractions (and distributions)?

Jet Topics: A Data-Driven Technique

Two samples of jets: A = Z + jet, B = dijets

E.M.Metodiev, J.Thaler arXiv:1802.00008

Jet topics distributions

$$p_{T1}(x) = \frac{p_A(x) - \kappa(A|B)p_B(x)}{1 - \kappa(A|B)}$$
$$p_{T2}(x) = \frac{p_B(x) - \kappa(B|A)p_A(x)}{1 - \kappa(B|A)}$$

$$f_q^A > f_q^B$$

$$\kappa(q|g) = \kappa(g|q) = 0$$

$$p_q(x)$$

$$p_g(x)$$

Jet Topics: A Data-Driven Technique

• Two samples of jets: A = Z + jet, B = dijets

E.M.Metodiev, J.Thaler arXiv:1802.00008

Jet topics limitations

Typical observables do not have mutual irreducibility

E.g. SD $\kappa(g \mid q) = 0$ jet mass $x = m_{J_{SD}}$ $\kappa(q \mid g) = \frac{C_F}{C_A}$ Relies on Sudakov suppression (significant experimental uncertainty in this region)

Relies on Casimir scaling (LL)

Obtain Fractions from Special Observables

- Two samples of jets $p_A(x) = f_q^A p_q(x) + f_g^A p_g(x)$ $p_B(x) = f_q^B p_q(x) + f_q^B p_g(x)$
- Assume we had pure quark and gluon observables in different kinematic regions respectively

$$p_A(x) = f_q^A p_q(x) \qquad p_A(y) = f_g^A p_g(y)$$
$$p_B(x) = f_q^B p_q(x) \qquad p_B(y) = f_g^B p_g(y)$$

• Can obtain fractions from:

$$\begin{aligned} \frac{f_q^A}{f_q^B} &= \frac{p_A(x)}{p_B(x)} & \frac{f_g^A}{f_g^B} &= \frac{p_A(y)}{p_B(y)} \\ f_q^A &+ f_g^A &= 1 & f_q^B + f_g^B &= 1 \end{aligned}$$
 And we also obtain $p_q(x)$, $p_g(x)$

 This motivates finding pure quark and gluon observables, which we will show can be done with collinear drop

Soft Drop

SD with parameters (z_{cut}, β)

Start with jet defined by anti-kT with radius R

M.Dasgupta, A.Fregoso, S.Marzani G.P. Salam arXiv:1307.0007

A.J.Larkoski,S.Marzani,G.Soyez J.Thaler arXiv:1402.2657

• Re-cluster the jet in Cambridge-Aachen algorithm: first combine pairs w/ smallest

$$\Delta R_{ij} = (\phi_i - \phi_j)^2 + (y_i - y_j)^2 \approx \theta_{ij} \cosh \eta_J$$

Obtain a tree, consistent with LL branching history: large angle radiated first

Define jet observables using the groomed jet (jet mass, ...)

Jet Mass in Collinear Drop

- CD defined from two SD's, second one more aggressive, IRC safe
- Jet mass in CD:

Ζ.

Y.T.Chien, I.W.Stewart arXiv:1907.11107

 $\log_{10}(\Delta m^2/p_T^2)$

$$\Delta m^{2} = m_{J_{SD1}}^{2} - m_{J_{SD2}}^{2} = \left(\sum_{i \in J_{SD1}} p_{i}^{\mu}\right)^{2} - \left(\sum_{i \in J_{SD2}} p_{i}^{\mu}\right)^{2} = Q\left(\sum_{i \in J_{SD1}} p_{i}^{+} - \sum_{i \in J_{SD2}} p_{i}^{+}\right)$$

$$\frac{d\sigma}{d\Delta m} \sim H \times S_{G1} \times S_{G2} \times S_{C1} \otimes S_{C2}$$
Factorization v.s. Monte Carlo
$$\int_{R=0.8, \text{ partonic gluon jet}} \int_{R=0.8, \text{ partonic gluon jet}} \int_{(z_{cut1}, \beta_{1})=(0.1, 0)} \int_{(z_{cut2}, \beta_{2})=(0.1, 0)} \int_{(z_{$$

Cumulative Jet Mass in Collinear Drop in SCET

Cumulative Jet Mass in Collinear Drop in SCET

$$\begin{split} \mathbf{Cumulative \, jet \, mass} \quad & \Sigma^{\text{pert}}(\Delta m_c^2) = \int_0^{\Delta m_c^2} \mathrm{d}\Delta m^2 \frac{\mathrm{d}\sigma}{\mathrm{d}\Delta m^2} = \sum_{j=q,g} H_j \Sigma_j^{\text{pert}} \\ & \Sigma_{j,\text{NLL}}^{\text{pert}}(\Delta m_c^2 \approx 0) = \\ & \exp\left(\frac{2C_j}{1+\beta_1} K(\mu_{\text{gs1}},\mu) - \frac{2C_j}{1+\beta_2} K(\mu_{\text{gs2}},\mu) - 2C_j \frac{2+\beta_1}{1+\beta_1} K(\Lambda_{\text{cs1}},\mu) + 2C_j \frac{2+\beta_2}{1+\beta_2} K(\Lambda_{\text{cs2}},\mu)\right) \\ & \times \left(\frac{\mu_{\text{gs1}}}{Q_{\text{gs1}}}\right)^{\frac{2C_j}{1+\beta_1} \omega(\mu_{\text{gs1}},\mu)} \left(\frac{\mu_{\text{gs2}}}{Q_{\text{gs2}}}\right)^{\frac{-2C_j}{1+\beta_2} \omega(\mu_{\text{gs1}},\mu)} \left(\frac{Q_{\text{cut1}}^{\frac{1+\beta_1}{1+\beta_1}}}{Q\Lambda_{\text{cs1}}^{\frac{2+\beta_1}{1+\beta_1}}}\right)^{2C_j \omega(\Lambda_{\text{cs1}},\mu)} \left(\frac{Q_{\text{cut2}}^{\frac{1+\beta_2}{1+\beta_2}}}{Q\Lambda_{\text{cs2}}^{\frac{2+\beta_2}{1+\beta_2}}}\right)^{-2C_j \omega(\Lambda_{\text{cs2}},\mu)} \\ & \text{Y.T.Chien, I.W.Stewart} \\ & \text{arXiv:1907.11107} \end{split}$$

A significant fraction of events have the two SD jet masses equal

The constant at $\Delta m_c = 0$ gives this fraction (perturbatively)

The constant differs for quark and gluon jets and depends on CD parameters —> we will exploit this in the following construction

Nonperturbative Correction via Shape Function

Separating perturbative CS function and nonperturbative shape function

$$S_{C_j}(\ell_1^+ Q_{\text{cut1}}^{\frac{1}{1+\beta_1}}, \beta_1, \mu) = \int dk_1 S_{C_j}^{\text{pert}}(\ell_1^+ Q_{\text{cut1}}^{\frac{1}{1+\beta_1}} - k_1^{\frac{2+\beta_1}{1+\beta_1}}, \beta_1, \mu) F_1^j(k_1, \beta_1)$$

In position space:

Independent of z_{cut1}

A.H.Hoang, S.Mantry, A.Pathak, I.W.Stewart, arXiv:1906.11843

$$\widetilde{S}_{C_j}(yQQ_{\text{cut1}}^{\frac{-1}{1+\beta_1}},\beta_1,\mu) = \widetilde{S}_{C_j}^{\text{pert}}(yQQ_{\text{cut1}}^{\frac{-1}{1+\beta_1}},\beta_1,\mu)\widetilde{F}_1^j(yQQ_{\text{cut1}}^{\frac{-1}{1+\beta_1}},\beta_1)$$

Similarly for CS function associated w/ (z_{cut2}, β_2)

Deep nonperturbative regime

This is the constant region

$$\Delta m_c^2 \lesssim \Lambda_{\rm QCD} Q \left(\frac{\Lambda_{\rm QCD}}{Q_{\rm cut2}}\right)^{\frac{1}{1+\beta_2}}$$

From now on focus on this regime

Nonperturbative Correction via Shape Function

Separating perturbative CS function and nonperturbative shape function

$$S_{C_j}(\ell_1^+ Q_{\text{cut1}}^{\frac{1}{1+\beta_1}}, \beta_1, \mu) = \int dk_1 S_{C_j}^{\text{pert}}(\ell_1^+ Q_{\text{cut1}}^{\frac{1}{1+\beta_1}} - k_1^{\frac{2+\beta_1}{1+\beta_1}}, \beta_1, \mu) F_1^j(k_1, \beta_1)$$

In position space:

Independent of *z*_{cut1} A.H.Hoang, S.Mantry, A.Pathak,

 $\widetilde{S}_{C_{i}}(yQQ_{\text{cut1}}^{\frac{-1}{1+\beta_{1}}},\beta_{1},\mu) = \widetilde{S}_{C_{i}}^{\text{pert}}(yQQ_{\text{cut1}}^{\frac{-1}{1+\beta_{1}}},\beta_{1},\mu) \widetilde{F}_{1}^{j}(yQQ_{\text{cut1}}^{\frac{-1}{1+\beta_{1}}},\beta_{1})$ I.W.Stewart, arXiv:1906.11843

Cumulative distribution with shape function

$$\Sigma(\Delta m_c, p_T, \eta_J, R, z_{\text{cut}\,i}, \beta_i) = H_q(p_T, \eta_J, R)\Sigma_q + H_g(p_T, \eta_J, R)\Sigma_g \qquad \Sigma_j = \Sigma_j^{\text{pert}} \otimes F_j$$

$$\begin{split} \Sigma_{j,\mathrm{NLL}}(\Delta m_{c}^{2}) &= \exp\left(\frac{2C_{j}}{1+\beta_{1}}K(\mu_{\mathrm{gs1}},\mu) - \frac{2C_{j}}{1+\beta_{2}}K(\mu_{\mathrm{gs2}},\mu) - 2C_{j}\frac{2+\beta_{1}}{1+\beta_{1}}K(\Lambda_{\mathrm{cs1}},\mu) + 2C_{j}\frac{2+\beta_{2}}{1+\beta_{2}}K(\Lambda_{\mathrm{cs2}},\mu)\right) \\ &\times \left(\frac{\mu_{\mathrm{gs1}}}{Q_{\mathrm{gs1}}}\right)^{\frac{2C_{j}}{1+\beta_{1}}\omega(\mu_{\mathrm{gs1}},\mu)} \left(\frac{\mu_{\mathrm{gs2}}}{Q_{\mathrm{gs2}}}\right)^{\frac{-2C_{j}}{1+\beta_{2}}\omega(\mu_{\mathrm{gs1}},\mu)} \left(\frac{Q_{\mathrm{cut1}}^{\frac{1}{1+\beta_{1}}}}{Q\Lambda_{\mathrm{cs1}}^{\frac{2+\beta_{1}}{1+\beta_{1}}}}\right)^{2C_{j}\omega(\Lambda_{\mathrm{cs1}},\mu)} \left(\frac{Q_{\mathrm{cut2}}^{\frac{1}{1+\beta_{2}}}}{Q\Lambda_{\mathrm{cs2}}^{\frac{2+\beta_{2}}{1+\beta_{2}}}}\right)^{-2C_{j}\omega(\Lambda_{\mathrm{cs2}},\mu)} \\ &\times \widetilde{F}_{1}^{j} \left(QQ_{\mathrm{cut1}}^{\frac{-1}{1+\beta_{1}}}\Delta m_{c}^{-2}e^{-\frac{\partial}{\partial\eta}},\beta_{1}\right)\widetilde{F}_{2}^{j} \left(QQ_{\mathrm{cut2}}^{\frac{-1}{1+\beta_{2}}}\Delta m_{c}^{-2}e^{-\frac{\partial}{\partial\eta}},\beta_{2}\right)\frac{e^{-\gamma_{E}\eta}}{\Gamma(1+\eta)}\bigg|_{\eta=2C_{j}\omega(\Lambda_{\mathrm{cs1}},\Lambda_{\mathrm{cs2}})} \quad \begin{array}{c} \mathrm{Now \ depends}\\ \mathrm{on \ }\Delta m_{c}^{2} \end{array}$$

Construction of Pure Quark/Gluon Observables

• Form linear combination from two sets of CD parameters: $z_{cut i}^{(a)}$, $z_{cut i}^{(b)}$, i = 1,2

$$\begin{aligned} \mathcal{Q} &= \Sigma(\Delta m_c^{(b)}, p_T, \eta_J, R, z_{\text{cut } i}^{(b)}, \beta_i) - \xi_g \Sigma(\Delta m_c^{(a)}, p_T, \eta_J, R, z_{\text{cut } i}^{(a)}, \beta_i) \\ \mathcal{G} &= \Sigma(\Delta m_c^{(b)}, p_T, \eta_J, R, z_{\text{cut } i}^{(b)}, \beta_i) - \xi_q \Sigma(\Delta m_c^{(a)}, p_T, \eta_J, R, z_{\text{cut } i}^{(a)}, \beta_i) \end{aligned} \qquad \Sigma = \sum_j H_j \widetilde{F}_j \Sigma_j^{\text{pert}} \mathcal{G}_j$$

Plan: adjust $\xi_{q/g}$ to make pure quark and gluon observables in small Δm_c^2 regime

E.g.
$$Q = H_q(\widetilde{F}_q^{(b)}\Sigma_q^{\text{pert}(b)} - \xi_g \widetilde{F}_q^{(a)}\Sigma_q^{\text{pert}(a)}) + H_g(\widetilde{F}_g^{(b)}\Sigma_g^{\text{pert}(b)} - \xi_g \widetilde{F}_g^{(a)}\Sigma_g^{\text{pert}(a)})$$

$$\xi_g = \frac{(\Sigma_g^{\text{pert}}\widetilde{F}_g)^{(b)}}{(\Sigma_g^{\text{pert}}\widetilde{F}_g)^{(a)}}$$

$$\widetilde{F}_{j}(\Delta m_{c}^{2}, z_{\text{cut}\,i}, \beta_{i}) = \widetilde{F}_{1}^{j} \left(Q Q_{\text{cut}1}^{\frac{-1}{1+\beta_{1}}} \Delta m_{c}^{-2} e^{-\frac{\partial}{\partial \eta}}, \beta_{1} \right) \widetilde{F}_{2}^{j} \left(Q Q_{\text{cut}2}^{\frac{-1}{1+\beta_{2}}} \Delta m_{c}^{-2} e^{-\frac{\partial}{\partial \eta}}, \beta_{2} \right) \frac{e^{-\gamma_{E}\eta}}{\Gamma(1+\eta)} \bigg|_{\eta=0}$$
• Problem: ξ_{j} depends on \widetilde{F}_{j}

Arguments of shape function depend on Δm_c^2 and $z_{\text{cut }i}^{(a,b)}$

Construction of Pure Quark/Gluon Observables

$$\widetilde{F}_{j}(\Delta m_{c}^{2}, z_{\operatorname{cut} i}, \beta_{i}) = \widetilde{F}_{1}^{j} \left(Q Q_{\operatorname{cut} 1}^{\frac{-1}{1+\beta_{1}}} \Delta m_{c}^{-2} e^{-\frac{\partial}{\partial \eta}}, \beta_{1} \right) \widetilde{F}_{2}^{j} \left(Q Q_{\operatorname{cut} 2}^{\frac{-1}{1+\beta_{2}}} \Delta m_{c}^{-2} e^{-\frac{\partial}{\partial \eta}}, \beta_{2} \right) \frac{e^{-\gamma_{E} \eta}}{\Gamma(1+\eta)} \bigg|_{\eta=0}$$

• We can make shape function a common factor by imposing:

$$\left(\Delta m_c^{(a)}\right)^2 \left(Q_{\text{cut1}}^{(a)}\right)^{\frac{1}{1+\beta_1}} Q^{-1} = \left(\Delta m_c^{(b)}\right)^2 \left(Q_{\text{cut1}}^{(b)}\right)^{\frac{1}{1+\beta_1}} Q^{-1} \left(\Delta m_c^{(a)}\right)^2 \left(Q_{\text{cut2}}^{(a)}\right)^{\frac{1}{1+\beta_2}} Q^{-1} = \left(\Delta m_c^{(b)}\right)^2 \left(Q_{\text{cut2}}^{(b)}\right)^{\frac{1}{1+\beta_2}} Q^{-1}$$

Solve by picking

$$\frac{(\Delta m_c^{(a)})^2}{(\Delta m_c^{(b)})^2}, \quad z_{\text{cut2}}^{(b)}$$

• Then we have for Q (hard process independent of Δm_c^2)

$$\mathcal{Q} = \Sigma^{(b)} - \xi_g \Sigma^{(a)} = H_q \widetilde{F}_q (\Sigma_q^{\text{pert}(b)} - \xi_g \Sigma_q^{\text{pert}(a)}) + H_g \widetilde{F}_g (\Sigma_g^{\text{pert}(b)} - \xi_g \Sigma_g^{\text{pert}(a)})$$

- Find value of ξ_g such that gluon contribution to ${\it Q}$ vanishes

$$\xi_g = \frac{\Sigma_g^{\text{pert}(b)}}{\Sigma_g^{\text{pert}(a)}} \text{ is constant, independent of } \Delta m_c^2$$

Similar procedure for \mathscr{G} : $\xi_q = \frac{\Sigma_q^{\text{pert}(b)}}{\Sigma_q^{\text{pert}(a)}}$

• Finally have pure quark and gluon observables:

$$\mathcal{Q} = H_q \widetilde{F}_q (\Sigma_q^{\text{pert}(b)} - \xi_g \Sigma_q^{\text{pert}(a)}) \qquad \qquad \mathcal{G} = H_g \widetilde{F}_g (\Sigma_g^{\text{pert}(b)} - \xi_q \Sigma_g^{\text{pert}(a)})$$

Construction of Pure Quark/Gluon Observables

• Pure quark and gluon observables:

$$\begin{split} \mathcal{Q} &= H_q \widetilde{F}_q (\Sigma_q^{\text{pert}(b)} - \xi_g \Sigma_q^{\text{pert}(a)}) & \xi_g = \frac{\Sigma_g^{\text{pert}(b)}}{\Sigma_g^{\text{pert}(a)}} \\ \mathcal{G} &= H_g \widetilde{F}_g (\Sigma_g^{\text{pert}(b)} - \xi_q \Sigma_g^{\text{pert}(a)}) & \xi_q = \frac{\Sigma_q^{\text{pert}(b)}}{\Sigma_q^{\text{pert}(a)}} \end{split}$$

• Remaining free parameters are:

$$(\Delta m_c^{(a)})^2$$
, β_1 , β_2 , $z_{\text{cut1}}^{(a)}$, $z_{\text{cut2}}^{(a)}$, $z_{\text{cut1}}^{(b)}$

We constructed a class of observables

Maximize Disentangling Power

• NLL expression of ξ_i

$$\xi_{j} = \exp\left(\frac{2C_{j}}{1+\beta_{1}}\left(K(Q_{gs1}^{(b)},\mu) - K(Q_{gs1}^{(a)},\mu)\right) - \frac{2C_{j}}{1+\beta_{2}}\left(K(Q_{gs2}^{(b)},\mu) - K(Q_{gs2}^{(a)},\mu)\right)\right)$$

Constraint imposed: $z_{cut2}^{(b)} = z_{cut2}^{(a)}\left(\frac{z_{cut1}^{(b)}}{z_{cut1}^{(a)}}\right)^{\frac{1+\beta_{2}}{1+\beta_{1}}}$

• If ξ_q and ξ_g close, difficult in experiments; we want to maximize their difference

$$p_T = 300 \text{ GeV} \ \beta_1 = 1 \ \beta_2 = 0$$

$$p_T = 300 \text{ GeV} \ \beta_1 = 0 \ \beta_2 = 0$$

Applications of Pure Quark and Gluon Observables

• Two samples of jets: A = Z + jet, B = dijets

Quark and gluon fractions: $f_q^{A/B}$, $f_g^{A/B} = 1 - f_q^{A/B}$

- Construct pure quark and gluon observables for both A and B samples in small Δm_c^2 region

$$\begin{aligned} \mathcal{Q}_A &= f_q^A \mathcal{Q} & \qquad \mathcal{G}_A = f_g^A \mathcal{G} \\ \mathcal{Q}_B &= f_q^B \mathcal{Q} & \qquad \mathcal{G}_B = f_g^B \mathcal{G} \end{aligned}$$

• Can obtain fractions from:

$$\frac{f_q^A}{f_q^B} = \frac{\mathcal{Q}_A}{\mathcal{Q}_B} \qquad \qquad \frac{f_g^A}{f_g^B} = \frac{\mathcal{G}_A}{\mathcal{G}_B}$$

$$f_q^A + f_g^A = 1 \qquad \qquad f_q^B + f_g^B = 1$$

Conclusions

- Construct pure quark/gluon observables with collinear drop
 - Linear combination of cumulative jet mass observables with different CD parameters $z_{\text{cut }i}^{(a,b)}$
 - Use two jet mass bins, we construct observables with ξ_q , ξ_g , whose definitions are independent of nonperturbative corrections
 - Application: extracting fractions of quark and gluon jets from jet samples
- Future plans:
 - Theory predictions in the intermediate region to understand the transition to the "constant" regions
 - Monte Carlo studies (compare hadronization model predictions with those from shape functions)

Backup

SD jet mass

Casimir scaling in SD jet mass at LL

$$\Sigma_g(m) = \Sigma_q(m)^{\frac{C_A}{C_F}} \qquad p_j(m) = \frac{d\Sigma_j(m)}{dm}$$

$$\begin{aligned} \kappa_{qg}^{\text{Cas.}} &= \min_{m} \frac{p_q(m)}{p_g(m)} = \min_{m} \frac{\frac{d\Sigma_q}{dm}}{\frac{C_A}{C_F} \Sigma_q^{C_A/C_F - 1} \frac{d\Sigma_q}{dm}} = \frac{C_F}{C_A} \min_{m} \Sigma_q^{1 - C_A/C_F} = \frac{C_F}{C_A}, \\ \kappa_{gq}^{\text{Cas.}} &= \min_{m} \frac{p_g(m)}{p_q(m)} = \min_{m} \frac{\frac{C_A}{C_F} \Sigma_q^{C_A/C_F - 1} \frac{d\Sigma_q}{dm}}{\frac{d\Sigma_q}{dm}} = \frac{C_A}{C_F} \min_{m} \Sigma_q^{C_A/C_F - 1} = 0, \end{aligned}$$

1

Backup: SD Jet Mass

Backup: CD Jet Mass

• Jet mass in CD: CD defined from two SD's, second one more aggressive

Backup: Global Soft Functions

Global soft functions at one loop in MSbar

$$S_{G_{j}}^{\text{ren}}(Q_{\text{gs1}},\beta_{1},\mu) = 1 + \frac{\alpha_{s}(\mu)C_{j}}{\pi(1+\beta_{1})} \left(\ln^{2}\frac{\mu}{Q_{\text{gs1}}} - \frac{\pi^{2}}{24}\right)$$
$$S_{\overline{G}_{j}}^{\text{ren}}(Q_{\text{gs2}},\beta_{2},\mu) = 1 - \frac{\alpha_{s}(\mu)C_{j}}{\pi(1+\beta_{2})} \left(\ln^{2}\frac{\mu}{Q_{\text{gs2}}} - \frac{\pi^{2}}{24}\right)$$

• RGE of global soft functions

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}\ln S_{G_j}^{\mathrm{ren}}(Q_{\mathrm{gs1}},\beta_1,\mu) = \frac{2C_j}{1+\beta_1}\Gamma_{\mathrm{cusp}}\ln\frac{\mu}{Q_{\mathrm{gs1}}} + \gamma_{S_{G_j}}$$
$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}\ln S_{\overline{G_j}}^{\mathrm{ren}}(Q_{\mathrm{gs2}},\beta_2,\mu) = -\frac{2C_j}{1+\beta_2}\Gamma_{\mathrm{cusp}}\ln\frac{\mu}{Q_{\mathrm{gs2}}} - \gamma_{\overline{S}_{G_j}}$$

• At one loop, non-cusp anomalous dimensions = 0

Backup: Collinear Soft Functions

Collinear soft functions in position space at one loop in MSbar

$$\widetilde{S}_{C_{j}}^{\text{ren}}(yQQ_{\text{cut1}}^{\frac{-1}{1+\beta_{1}}},\beta_{1},\mu) = 1 + \frac{\alpha_{s}C_{j}}{\pi}\frac{2+\beta_{1}}{1+\beta_{1}}\left(-\ln^{2}\frac{\mu y^{\frac{1+\beta_{1}}{2+\beta_{1}}}Q^{\frac{1+\beta_{1}}{2+\beta_{1}}}}{Q_{\text{cut1}}^{\frac{1}{2+\beta_{1}}}} + \frac{\pi^{2}}{24}\right) \qquad \text{Laplace transform}$$

$$\widetilde{S}_{\overline{C_{j}}}^{\text{ren}}(yQQ_{\text{cut2}}^{\frac{-1}{1+\beta_{2}}},\beta_{2},\mu) = 1 - \frac{\alpha_{s}C_{j}}{\pi}\frac{2+\beta_{2}}{1+\beta_{2}}\left(-\ln^{2}\frac{\mu y^{\frac{1+\beta_{2}}{2+\beta_{2}}}Q^{\frac{1+\beta_{2}}{2+\beta_{2}}}}{Q_{\text{cut2}}^{\frac{1}{2+\beta_{2}}}} + \frac{\pi^{2}}{24}\right) \qquad \widetilde{f}(y) = \int_{0}^{\infty} \mathrm{d}x \,\exp\big(-ye^{-\gamma_{E}}\Delta m^{2}\big)f(\Delta m^{2})$$

RGE of collinear soft functions in position space

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}\ln\widetilde{S}_{C_{j}}^{\mathrm{ren}}\left(yQQ_{\mathrm{cut1}}^{\frac{-1}{1+\beta_{1}}},\beta_{1},\mu\right) = 2C_{j}\Gamma_{\mathrm{cusp}}(\alpha_{s})\ln\frac{Q_{\mathrm{cut1}}^{\frac{1}{1+\beta_{1}}}}{\mu^{\frac{2+\beta_{1}}{1+\beta_{1}}}Qy} + \gamma_{S_{C_{j}}}$$
$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}\ln\widetilde{S}_{\overline{C}_{j}}^{\mathrm{ren}}\left(yQQ_{\mathrm{cut2}}^{\frac{-1}{1+\beta_{2}}},\beta_{2},\mu\right) = -2C_{j}\Gamma_{\mathrm{cusp}}(\alpha_{s})\ln\frac{Q_{\mathrm{cut2}}^{\frac{1}{1+\beta_{2}}}}{\mu^{\frac{2+\beta_{2}}{1+\beta_{2}}}Qy} - \gamma_{S_{\overline{C}_{j}}}$$

1

• At one loop, non-cusp anomalous dimensions = 0

$$K(\mu_1,\mu_2) = \int_{\alpha_s(\mu_1)}^{\alpha_s(\mu_2)} d\alpha \frac{\Gamma_{\text{cusp}}(\alpha)}{\beta(\alpha)} \int_{\alpha_s(\mu_1)}^{\alpha} \frac{d\alpha'}{\beta(\alpha')} \qquad \qquad \omega(\mu_1,\mu_2) = \int_{\alpha_s(\mu_1)}^{\alpha_s(\mu_2)} d\alpha \frac{\Gamma_{\text{cusp}}(\alpha)}{\beta(\alpha)}$$

• So far, we only consider perturbative case

• Case when CS1 mode becomes nonperturbative

• Case when CS2 mode becomes nonperturbative

Backup: Model of Shape Function

Models of shape function

$$F_{i}^{j}(k_{i},\beta_{i}) = \frac{1}{\Lambda} \left(\sum_{n=0}^{\infty} c_{n}^{j}(\beta_{i}) f_{n}(x,p) \right)^{2} \qquad x = \frac{k_{i}}{\Lambda} \qquad \Lambda \sim \Lambda_{\text{QCD}}$$

Basis function
$$f_{n}(x,p) = \sqrt{(2n+1)Y(x,p)}P_{n}(y(x))$$
$$y(x,p) = -1 + 2\int_{0}^{x} dx' Y(x',p)$$
$$Y(x,p) = \frac{(p+1)^{p+1}}{\Gamma(p+1)}x^{p}e^{-(p+1)x}$$
Legendre polynomial

Z.Ligeti, I.W.Stewart, F.J.Tackmann arXiv:0807.1926