

Planck 2013: Measuring the Cosmic Microwave Background with the High Frequency Instrument

Brendan Crill JPL/Caltech For the Planck team

22 April 2013

HFI on the Planck spacecraft

HFI in numbers

Quantity	Units						
Reference frequency ν	[GHz]	100	143	217	353	545	857
Number of bolometers		0	11	12	12	3	4
Effective beam solid angle Ω	[arcmin ²]	105.78	59.95	28.45	26.71	26.53	24.24
Error in solid angle σ_{Ω}	[arcmin ²]	0.55	0.08	0.03	0.02	0.03	0.03
Spatial variation (rms) $\Delta \Omega$	[arcmin ²]	0.31	0.25	0.27	0.25	0.34	0.19
Effective beam FWHM ₁	[arcmin]	9.66	7.27	5.01	4.86	4.84	4.63
Effective beam FWHM ₂	[arcmin]	9.65	7.25	4.99	4.82	4.68	4.33
Effective beam ellipticity ϵ		1.186	1.036	1.177	1.147	1.161	1.393
Variation (<i>rms</i>) of the ellipticity $\Delta \epsilon$		0.023	0.009	0.030	0.028	0.036	0.076
Sensitivity per beam solid angle	$[\mu K]$	10	6	12	39		
, i	[kJv sr ⁻¹]					13	14
Sensitivity	[µK deg]	1.8	0.8	1.0	3.5		
	[kJy sr ⁻¹ deg]					1.1	1.1
Relative calibration accuracy	[%]	≲ 0.2	-	≲ 0.2	≲1	≲ 5	≲ 5
Absolute calibration accuracy	[%]	≲ 0.5	≲ 0.5	≤ 0.5	≲ 1.2	≲ 10	≲ 10

PLANCK

How HFI sees the sky

Discrepancy with WMAP

PLANCK

at low multipole...

HFI beam maps

B. P. Crill

Effective beams and window function

- Angular response for a given pixel in the map comes from combination of scanning beam and scan history of Planck
 - Calculated using real space method (FEBECOP) and harmonic space methods (Quickbeam and Ficsbell)

8

Near Sidelobes Measured on Jupiter

HFI beam radial profiles

Planck / WMAP discrepancy

- As of now, still a mystery
- Discrepancy has angular scale dependence, not fully described by a single 2.5% number
- Suborbital missions use WMAP to calibrate..

JPL Bolometers in HFI

Spider-web bolometer

Holmes et al (2008)

* Semiconductor thermistors
* Operate at 100 mK
* A long heritage from suborbital missions (Boomerang, Maxima,

Archeops, Bicep, Acbar, etc...).

A chunk of time ordered data

HFI Core Team: HFI Data Processing

Bolometers detect anything that deposits heat: cosmic rays

• Galactic cosmic ray hits: 1-2 per second in each bolometer: much higher rate than expected

Cosmic Ray glitch families

- Called "glitches" because they create unusable transients in the data
- Short glitches: particles directly impact bolometers [expected]
- Long glitches: particles impact Si wafer support structure [most common]

Fraction of flagged data

Noise improvement with glitch tail subtraction

Remaining correlated noise in polarization sensitive bolometers: unflagged correlated glitch tails

Time ordered data after deglitching

Nearly every data sample is touched: but signal bias $<5x10^{-4}$ on all scales

HFI Core Team: HFI Data Processing

Noise after deglitching

Calibration of HFI

- For 100-353 GHz we use WMAP 7 solar dipole [due to sun's motion relative to CMB]; 545-857 use Uranus + Neptune
- We see the orbital dipole with high S/N [modulation of solar dipole by Planck's orbit around the sun] but for now don't use it to calibrate
- Simultaneously fit for galactic template [from Planck maps] as well as dipole

Fit to the dipole vs. time

ADC nonlinearity!

- Bolometer voltage digitized by an analog-to-digital converter
- Nonlinearity measured on-orbit for each bolometer, now working to correct this 2.0

2013 solution: solve for time varying gain in mapmaking

Map quality improves greatly

Null tests to check data quality

- The Planck Legacy Archive contains two types of data splits:
 - Single survey maps: 6 month timescales; different scan angle, different integration time; spacecraft on opposite side of solar system
 - Half-ring maps: ~20 minute timescales; nearly identical integration time & sky
- These maps should show identical sky structure to within the noise
 143 GHz FIRST+LAST
 143 GHz FIRST-LAST

Half-ring differences

353 GHz

25.0 μK{CMB}

545 GHz

857 GHz

KITP 22 April 2013

-25.0

353 GHz

545 GHz

857 GHz

Power spectra of differenced maps

HFI null tests: Survey 1 vs. Survey 2

• Compare survey difference power spectra [galactic mask applied] with simulations

PLANCK

Conclusions

- HFI's maps are of exceptionally good quality
 - Tiny residuals in survey null tests have no impact on cosmology
- Some systematic challenges handled:
 - Beams, measured to ~1e-5 level
 - Higher than expected cosmic ray flux, templates fitted out
 - ADC nonlinearity, corrected as a fitted gain with time
- Significant angular power spectrum discrepancy with WMAP must be understood
- Polarization measurements to be delivered in 2014

