Small-scale Cosmic Microwave Background Experiments

Christian Reichardt UC Berkeley

Outline

- Why study small scales? What do you see?
- Cosmic microwave background (CMB) power spectrum & interpretation
 - What caused inflation?
- Future directions with CMB lensing
 - SPT-Pol, PolarBear & ACTPol + their successors

Cosmic Timeline

Large-Scale Structure, accelerated expansion

Small-scale CMB touches all these epochs

CMB power spectrum:

etc.

- What caused inflation?
- How many neutrino species are there?

Sunyaev-Zel'dovich (SZ) signal & gravitational lensing:

- What are the neutrino masses?
- How long did the epoch of reionization last?

etc.

THE ATACAMA COSMOLOGY TELESCOPE

ACT HAS OBSERVED ABOUT 1800 SQ. DEGREES AT ARCMINUTE RESOLUTION!

Sudeep Das, Argonne

Stanford, March 28, 2013

The South Pole Telescope (SPT)

Sub-millimeter Wavelength Telescope:

- 10 meter telescope (1.1' FWHM beam)
- Three frequencies: 95, 150, 220 GHz
- Fast scanning (up to 2 deg/sec in azimuth)
- 2" pointing accuracy

Deepest large-area CMB map

Zoom in on an SPT map ~50 deg² from 2500 deg² survey

Radio and dusty galaxies show up as bright spots

Zoom in on an SPT map ~50 deg² from 2500 deg² survey

High signal to noise Sunyaev-Zel'dovich (SZ) galaxy cluster detections as "shadows" against the CMB!

Zoom in on an SPT map ~50 deg² from 2500 deg² survey

Cosmic microwave background (CMB)

Small scale surveys

Two main types of analyses:

(1) Find objects in the map

- Sunyaev-Zel'dovich (SZ) clusters, highredshift galaxies

(2) Calculate the N-point function of the map

- usually power spectrum, but also higher orders

SPT-SZ 2500 deg² survey

Non-exhaustive list of awesomeness:

Objects

2-point

- SZ-selected galaxy cluster catalog (~600 clusters, 85% new discoveries) out to high redshift (for Dark Energy)
- Discovery of a population of strongly lensed, highredshift, star-forming galaxies.
- Most sensitive pre-Planck measurement of CMB power spectrum at ell>~600 (and still most sensitive at ell>~1850).
 - Constraints on duration of epoch of reionization from kinetic SZ.

3-point

4-point

- >30 σ detection of bispectrum due to SZ & galaxies
- 2500 deg² CMB-lensing-derived map of projected mass between z=0 and z=1100.

Outline

Why study small scales? What do you see?

- Cosmic microwave background (CMB) power spectrum and interpretation
 - What caused inflation?
- Future directions with CMB lensing
 - SPT-Pol, PolarBear & ACTPol + their successors

Cosmic microwave power spectrum

Story, Reichardt, *et al.*, 2012 arXiv:1210.7231

with Planck

Reichardt *et al.* 2012 arXiv:1111:0932

(as seen in John Ruhl's talk)

Comparing SPT & Planck

- Cross-spectrum is **consistent** within calibration and beam errors.
- No evidence for scale-dependent differences.

Re-scale:1.8%SPT cal uncertainty:2.6%

[units of Power]

+SPT/ACT+BAO = 0.961 \pm 0.0054

Tensor perturbations and temperature anisotropy

Role of small-scale data

Tensors only affect large scales, but their impact is partially degenerate with the scalar power law slope (n_s) and other parameters.

Small-scale data help disentangle the two.

Hitting TT sample variance limit

Planck - same limits internally

Implications for inflation (variations on n_s vs. r)

Implications for inflation

PLANCK (plus upcoming small-scale polarization experiments) will be 3X better on n_s : -> $\sigma^{PLANCK+SPT3g}(n_s) \sim 0.0046$ 22, 2013 0.2 Future polarization experiments (SPT-3G, Simons Array, Adv. ACTPol) will be >10X better on r: 0.1 $-> \sigma^{SPT3G}(r) \sim 0.005$ 0.0 1.00 n_{s} (Scalar index)

Outline

- Why study small scales? What do you see?
 Cosmic microwave background (CMB) power spectrum & interpretation
 What caused inflation?
- Future directions with CMB lensing
 - SPT-Pol, PolarBear, ACTPol + their successors

from Oliver Zahn

15°

from Oliver Zahn

15°

from Oliver Zahn

15°

Difference

CMB is a unique lensing source

1. Low systematic uncertainties:

- Gaussian, well-understood power spectrum
- Known, unique redshift

2. High redshift

No higher-z source

CMB Lensing Milestones (firsts @ >3 σ)

1) 3 σ; **CMB x LSS** (WMAP+) Smith et al **2007**

2) 4 σ ; CMB TTTT (WMAP+ACT) Das et al 2011

3) 5 σ; **CMB TT** (WMAP+SPT) Keisler, Reichardt et al **2011**

Weighing the Hubble Volume

work being led by O. Zahn

SPT map of 6% of matter in observable Universe

- S/N > 1 per mode on large scales
- Less sky than Planck

Lensing detection:

~20 σ in SPT ~30 σ in Planck

The Next Frontier: Polarization

Smith et al 2008

- Any polarization pattern can be decomposed into "E" (grad) and "B" (curl) modes
- Quadrupole anisotropy introduces polarization at surface of last scattering
- Density fluctuations do not produce "B" modes!
- "B" modes are created by:
 - On large scales: primordial gravity waves from Inflation
 - On small scales: lensing of the CMB from large scale structure

Effect of Lensing on the CMB Power Spectrum: B-modes from Lensing

Current Small-Scale Polarization Experiments

First light for both experiments Jan. 2012!

Site: SPT: South Pole PB: Chile ACT: Chile		Next 5 years					150 GHz beams: SPT: 1.2' PB: 3.5' ACT: 1.7'		
2012	(too 2013	day) 201	4	2015	20	16	2017	2018	
SPTpol: 1536 detectors 90 & 150 GHz						SPT-3	G: 15k de 90, 150 & 2	etectors 220 GHz	
PolarBe	ear: 1274 c	letectors 150 GHz	PB2:	7.5k det 90 & 15	ectors 0 GHz	Simor Arra	ns 22.5k de ıy: 90 & 1	etectors 50 GHz	
		ACTPol:	3072 de	tectors by 90 & 150	⁷ 2014) GHz		Adv. ACT 30, 40, 220 & 2	Pol: 16k 90, 150, 270 GHz	

Science

SPT/ACT:

Investigate dark energy using galaxy cluster abundances:

i.e. SPT-Pol:

4x deeper maps than SPT

lower mass threshold and find ~1000 clusters

All:

Measure "B-mode" polarization to constrain **neutrino mass** and **energy scale of inflation**.

i.e. SPT-Pol or PolarBear:

 $r \lesssim 0.04 \ (95\%)$

SPT-3G will have 10x more clusters

- 8000 clusters
- Improves DES dark energy figure of merit by x4 (Wu et al. 2010)
- 2% mass calibration from CMB-cluster lensing

Credit: B. Benson

SPT-3G: Lensing power spectrum

CMB Lensing
 Detection Significance

 -SPT-SZ=20-σ
 -Planck=30-σ
 -SPT-3G=150-σ

SPT-3G will measure individual lensing modes out to ell~800 (Planck will go ell~60)

• Cross-correlating with DES will measure galaxy bias to <1%

Credit: G. Holder

To 50% of the sky

Simons Array Chile - 2016

Array of 3 m telescopes: >22,500 detectors at 80-240 GHz

Survey of high redshift structure
Study inflation, neutrino mass, early dark energy, curvature, ...

In conclusion

- Small-scale CMB measurements are consistent with Planck.
- Small-scale CMB allows:
 - Constraints on inflation
 - as well as investigations of dark energy, neutrino mass, number of neutrino species, ...
 - High S/N lensing maps
- Expect first B-mode results from CMB polarization experiments this year!
 - New window into inflation and structure growth at z~2