Making sense of "north-south asymmetry"

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Primordial Cosmology, KITP, UC Santa Barbara, April 8, 2013

Terminology

- "Power asymmetry"
 - The power spectrum measured from one direction in the sky is different from that measured from the opposite direction.

- "Dipole modulation"
 - The observed temperature field is modulated by a dipolar function, T(n) -> T(n)[I+A n\cdot p], where p is some preferred direction.

Be aware:

- A power asymmetry can result from a dipole modulation, but a dipole modulation is not the only explanation for a power asymmetry!
- A dipole modulation gives a powerful constraint on the magnitude of a power asymmetry, assuming that a dipole modulation is the correct phenomenology.
 - However, that's not the only possibility.

Phenomenology [low-L]

- Power asymmetry is seen (at ~2–3σ) at low multipoles,
 e.g., I<100
- Dipole modulation is also seen (at $\sim 2-3\sigma$) at low multipoles, e.g., I<100, with A ~ 0.07 (7% modulation)
- The low-multipole asymmetry/modulation points toward the same location in the sky

Phenomenology [high-L]

- Dipole modulation is seen (at ~4σ) at high multipoles, e.g., 500<l<2000, with A~0.003 (0.3% modulation)
- The direction points toward the CMB dipole direction.
- This is the expected result: A = $2.5*(v/c) \sim 0.003$

Changes in the modulation directions as a function of I_{max}

Low-L modulation does not extend to higher multipoles

Planck 2013 XXIII

Current status

- Dipole modulation:
 - A~0.07 at I<100 pointing toward (I,b)=(226,-17)
 - A~0.003 at I>100 pointing toward the CMB dipole
- Power asymmetry:
 - Seen at |<|00|
 - How about |>|00?

Power asymmetry at high L?

2000 1600

 But, this appears to be inconsistent with the dipole modulation constraints from higher multipoles!

Planck 2013 XXIII

Galactic mask used by this analysis

CS_SMICA89

Galactic mask used for cosmology

CL39

Hemispherical masks

north_1225_b1_cs_smica89

Monday, April 8, 13

south_1225_b1_cs_smica89

Aggressive Mask $\Delta C_{\ell}/C_{\ell}$ 0.07 800 400 1200 1600 0 Agreement? 1.20 (I,b)=(225,1) with fsky=0.89 (CS-SMICA89) 1.15 1.10 North/South .05 .00 0.95 0.90 0.85 500 1000

Planck team

My analysis

Changing Mask

cosmology

Multipoles,

Galactic mask used for NG/Doppler

union73

Changing Mask

NG/doppler

(I,b)=(225,1) with fsky=0.73 (Union73)

4 Man Man Mar

Multipoles, I

However...

In the isotropy paper, they appear to say that their mask has 90 deg DIAMETER; rather than the radius.

Correct masks?

north_1225_b1_cs_smica89

south_1225_b1_cs_smica89

aggressive

NG/doppler

Now too much asymmetry?

Other directions

- The low-L direction, (I,b)=(226,-17), give qualitatively similar results.
- The CMB dipole direction gives insignificant power asymmetries.

Conclusion

- Still confusing... (Which mask did the Planck team actually use? Did I do something wrong?)
- The power asymmetry at the level of 10% at high multipoles is in contradiction with the constraints from NG and Doppler analyses, assuming that the dipolar modulation is the correct phenomenology.
- The power asymmetry *does* appear to depend on the mask used for the analysis, and its magnitude decreases as the mask is enlarged. Not a robust feature?