A nearly Gaussian Hubble-patch in a non-Gaussian universe

Marilena Loverde (University of Chicago) with Elliot Nelson & Sarah Shandera (Penn. State)

arXiv: 1303.3549

Idea:

statistics of curvature perturbation ζ (i.e. inhomogeneities) are primary means to learn about inflation

but we only observe ζ in our Hubble patch and local statistics may not be representative

How are local and global statistics related? Three Examples: Single-source weakly non-Gaussian IC's single-source strongly non-Gaussian IC's multi-source initial conditions Conclusions

Inflation as the origin of structure

For example, we can measure the power spectrum

For example, we can measure the power spectrum

For instance, with CMB data

How do the statistics we observe in our Hubble volume relate to what's predicted from inflation?

What's ζ?

a(t) - mean expansion over V

 $\zeta \sim fluctuations in expansion history relative$ to average, over some volume V $<math>\tilde{a}^2(x,t) = a(t)e^{\zeta(x,t)}$

see e.g. Wands, Malik, Lyth, and Liddle 2000

 $a_1(t)$ - mean expansion over V_1

 ζ_{\sim} fluctuations in expansion history relative to average, over some volume V $\tilde{a}^2(x,t) = a(t)e^{\zeta(x,t)}$

 $a_2(t)$ - mean expansion over V_2

different regions may have different fluctuations and different average expansion histories

ζ2

see e.g. Wands, Malik, Lyth, and Liddle 2000

VL

a_L(t) – mean expansion over V_L perturbation with ζ – respect to average expansion in V_L

 $a_2(t)$ - mean expansion over V_2

ζ2

 $\zeta_{1}(\mathbf{x}) = \zeta(\mathbf{x}) - \langle \zeta \rangle_{1}$ $\zeta_{2}(\mathbf{x}) = \zeta(\mathbf{x}) - \langle \zeta \rangle_{2}$

see e.g. Wands, Malik, Lyth, and Liddle 2000

 $a_1(t)$ – mean expansion over V_1

 V_1

 V_L

 $a_1(t)$ – mean expansion over V_1

a_L(t) – mean expansion over V_L perturbation with ζ – respect to average expansion in V_L

 $a_2(t)$ - mean expansion over V_2

ζ2

 $\zeta_{1}(\mathbf{x}) = \zeta(\mathbf{x}) - \langle \zeta \rangle_{1}$ $\zeta_{2}(\mathbf{x}) = \zeta(\mathbf{x}) - \langle \zeta \rangle_{2}$

 \sim constant background modes in V₁ and V₂ constant background mode is not locally observable

Vs

local curvature perturbation $\zeta_{s}(x) \equiv \zeta(x) - \zeta_{L}$

 $\zeta_{\mathsf{L}} \equiv \langle \zeta \rangle_{\mathsf{V}_{\mathsf{s}}}$

average over volume V_s

 V_{L}

Vs

 $\zeta_{s} = \zeta - \zeta_{L}$

if ζ is Gaussian, ζ_s and ζ_L are uncorrelated*

* ok, strictly speaking this is only true in Fourier space. corrections depend on how we define volumes, but we can calculate them

 V_{I}

 V_{s}

 $\zeta_{s} = \zeta - \zeta_{L}$

if ζ is Gaussian, ζ_s and ζ_L are <u>uncorrelated</u>*

BUT if ζ is non-Gaussian ζ_s can depend on the value of ζ_L

* ok, strictly speaking this is only true in Fourier space. corrections depend on how we define volumes, but we can calculate them

Non-linear couplings

VL

Vs

2

 $\zeta_{s} = \zeta - \zeta_{L}$

Specifically, if $\zeta = F(\zeta_G(x)) - \langle F(\zeta_G) \rangle$

 ζ s can have a strong dependence on ζ_{L}

possibly familiar example: Non-linear couplings For instance, the quadratic local ansatz: $\zeta = \zeta_G + f_{NL} \zeta_G^2$

nrahin

 $\langle \zeta_s^2 \rangle = \langle \zeta_{G,s}^2 \rangle (1 + 4 f_{NL} \zeta_{G,L}(x))$

small-scale power depends on large-scale fluctuations

Dalal, Doré, Huterer, Shirokov 2007

possibly familiar example: Non-linear couplings For instance, the quadratic local ansatz: $\zeta = \zeta_G + f_{NL} \zeta_G^2$ $\langle \zeta_s^2 \rangle = \langle \zeta_{G,s}^2 \rangle (1 + 4 f_{NL} \zeta_{G,L}(x))$ 172611 small-scale power depends on large-scale fluctuations δρ/φ In our Hubble volume this gives rise to the scale-dependent halo bias of Dalal et al $\delta n = \frac{\partial n}{\partial \delta} \delta_{l} + 4 f_{NL} \frac{\partial n}{\partial \sigma} \Phi_{l} \dots \longrightarrow \delta n \sim \left(\frac{\partial n}{\partial \delta} + \frac{4 f_{NL}}{k^{2}} \frac{\partial n}{\partial \sigma} \right) \delta_{l}$ Dalal, Doré, Huterer, Shirokov 2007

possibly familiar example: Non-linear couplings

similarly, the cubic local ansatz: $\zeta = \zeta_G + g_{NL} \zeta_G^3$

 $\langle \zeta_s^3 \rangle = 18 \text{ g}_{\text{NL}} \langle \zeta_{\text{G},s}^2 \rangle^2 \zeta_{\text{G},l}(\mathbf{x}) = 6f_{\text{NL}}^{\text{eff}}(\mathbf{x}) \langle \zeta_{\text{G},s}^2 \rangle$

small-scale skewness depends on large-scale fluctuations

Desjacques & Seljak 2009; Smith, Ferraro, ML 2011

possibly familiar example: Non-linear couplings

δρ/ά

similarly, the cubic local ansatz: $\zeta = \zeta_G + g_{NL} \zeta_G^3$

 $\langle \zeta_{s}^{3} \rangle = 18 \text{ g}_{\text{NL}} \langle \zeta_{\text{G},s}^{2} \rangle^{2} \zeta_{\text{G},l}(\mathbf{x}) = 6 f_{\text{NL}}^{\text{eff}}(\mathbf{x}) \langle \zeta_{\text{G},s}^{2} \rangle$

 $\delta n = \frac{\partial n}{\partial \delta} \delta_1 + 18g_{NL} \frac{\partial n}{\partial S_2} \Phi_1 \dots \longrightarrow (\frac{\partial n}{\partial \delta} + 18g_{NL} \frac{\partial n}{\partial S_3} / k^2) \delta_1(k) \dots$

small-scale skewness depends on large-scale fluctuations

which has been shown to give a similar, scale-dependent bias in halo clustering

Desjacques & Seljak 2009; Smith, Ferraro, ML 2011

So, this large-small scale coupling is somewhat familiar

 $\zeta = \zeta_G + f_{NL} \zeta_G^2 + g_{NL} \zeta_G^3 + \dots$

 $\langle \zeta_{s}^{2} \rangle = \langle \zeta_{G,s}^{2} \rangle (1 + 4 f_{NL} \zeta_{G,L}(x))$ $\langle \zeta_{s}^{3} \rangle = 18 g_{NL} \langle \zeta_{G,s}^{2} \rangle^{2} \zeta_{G,l}(x) = 6 f_{NL}^{eff}(x)$

What are the consequences of this mode coupling?

Suppose our Hubble volume is small compared with the entire post-inflationary patch

Suppose our Hubble volume is small compared with the entire post-inflationary patch

$\text{efine} \quad \text{Post-Innum} \quad \text{If, } \zeta = F(\zeta_G(x)) - \langle F(\zeta_G) \rangle$

Suppose our Hubble volume is small compared with the entire post-inflationary patch

$\text{Post-Intro-}_{\text{ortice}} \text{ If, } \zeta = F(\zeta_G(x)) - \langle F(\zeta_G) \rangle$

other Hubble volumes with different $\zeta_{G,L}$ values

 $\zeta_{G,L} = \int d^{3}x \zeta_{G}(x)$ $V_{s} \sim H_{0}^{-3}$

 $\zeta_{G,L} = \int d^{3}x \zeta_{G}(x)$ $V_{s} \sim H_{0}^{-3}$

random (unknown) variable in each Hubble-size patch

Prob.(ζ_{G,L})

 $\zeta_{\rm G,L}^2 \rangle$

G,L

 $\zeta_{G,L} = \int d^{3}x \zeta_{G}(x)$ $V_{s} \sim H_{0}^{-3}$

variance: $\langle \zeta_{G,L}^{2} \rangle = \int_{(2\pi)^{3}}^{H_{0}} \Delta^{2} \zeta_{G}(\mathbf{k})$ $2\pi/V_{L^{1/3}}$

 $\zeta_{G,L} = \int d^{3}x \zeta_{G}(x)$ $V_{s} \sim H_{0}^{-3}$

sum over all modes with $k \leq H_0$

variance:

 $\langle \zeta_{G,L}^{2} \rangle = \int_{2\pi/V_{L}^{1/3}}^{H_{0}} \Delta^{2} \zeta_{G}(\mathbf{k}) \longleftarrow$

depends on power spectrum outside horizon! which we don't know

 $\zeta_{G,L} = \int d^3x \zeta_G(x)$ V_s ~ H₀⁻³

 $2\pi/V_{1}^{1/3}$

sum over all modes with $k \leq H_0$ variance: $\langle \zeta_{G,L}^{2} \rangle = \int \frac{d^{3}k}{(2\pi)^{3}} \Delta^{2} \zeta_{G}(\mathbf{k}) \leftarrow$

depends on power spectrum outside horizon! which we don't know

 $N \equiv \frac{1}{3} \ln \frac{V_L}{V}$

 $\langle \zeta_{\rm G,L}^2 \rangle \sim \Delta^2 \zeta_{\rm C} N$ for scale invariant $(n_s=1)$

ML, Nelson, Shandera 2013

Super-horizon perturbations?

 $\Omega_{k} \sim \int d^{3}x \nabla^{2} \zeta(x)$ $V_{s} \sim H_{0}^{-3}$

only modes with $k \sim H_0$ contribute

see e.g. Knox 2006, Erickeck et al 2008, Waterhouse 2008, Vardanyan et al 2009, Guth & Nomura 2012, Kleban & Schillo 2012 ML, Nelson, Shandera 2013

Super-horizon perturbations?

 $\Omega_k \sim \int d^3x \nabla^2 \zeta(x)$ $V_s \sim H_0^{-3}$

only modes with $k \sim H_0$ contribute

ζ_{L} is not something we can observe

see e.g. Knox 2006, Erickeck et al 2008, Waterhouse 2008, Vardanyan et al 2009, Guth & Nomura 2012, Kleban & Schillo 2012

ML, Nelson, Shandera 2013

What are the consequences? Consider three examples of statistics for ζ in V_L: weakly non-Gaussian Nurmi, Byrnes, Tasinato 2013 orite post inflationary patch

Нирр

strongly non-Gaussian

multi-source non-Gaussian

ML, Nelson, Shandera 2013

Examples

Single-source weakly non-Gaussian (usual local ansatz)

Single-source strongly non-Gaussian
Multi-source weakly non-Gaussian

Single-source weak NG
Single-source weak NG globally, $\underline{\zeta = \zeta_{G} + f_{NL}(\zeta_{G}^{2} - \langle \zeta_{G}^{2} \rangle) + g_{NL}(\zeta_{G}^{3} - 3\zeta_{G}\langle \zeta_{G}^{2} \rangle) \dots}$

Nurmi, Byrnes, Tasinato 2013

ML, Nelson, Shandera 2013

Single-source weak NG globally, $\zeta = \zeta_G + f_{NL}(\zeta_G^2 - \langle \zeta_G^2 \rangle) + g_{NL}(\zeta_G^3 - 3\zeta_G \langle \zeta_G^2 \rangle) \dots$

Single-source weak NG globally, $\zeta = \zeta_G + f_{NL}(\zeta_G^2 - \langle \zeta_G^2 \rangle) + g_{NL}(\zeta_G^3 - 3\zeta_G \langle \zeta_G^2 \rangle) \dots$ locally, $\zeta_s = \zeta_{G,s}(1 + 2f_{NL}\zeta_{G,L}) + (f_{NL} + \frac{9}{5}g_{NL}\zeta_{G,L})(\zeta_G^2 - \langle \zeta_G^2 \rangle) + \dots$

Single-source weak NG globally, $\zeta = \zeta_G + f_{NL}(\zeta_G^2 - \langle \zeta_G^2 \rangle) + g_{NL}(\zeta_G^3 - 3\zeta_G \langle \zeta_G^2 \rangle) \dots$ locally,

 $\zeta_{s} = \zeta_{G,s}(1 + 2f_{NL}\zeta_{G,L}) + (f_{NL} + \frac{9}{5}g_{NL}\zeta_{G,L})(\zeta_{G}^{2} - \langle \zeta_{G}^{2} \rangle) + \dots$

non-Gaussian

Single-source weak NG globally, $\zeta = \zeta_G + f_{NL}(\zeta_G^2 - \langle \zeta_G^2 \rangle) + g_{NL}(\zeta_G^3 - 3\zeta_G \langle \zeta_G^2 \rangle) \dots$ locally, $\zeta_s = \zeta_{G,s}(1 + 2f_{NL}\zeta_{G,L}) + (f_{NL} + \frac{9}{5}g_{NL}\zeta_{G,L})(\zeta_G^2 - \langle \zeta_G^2 \rangle) + \dots$

Nurmi, Byrnes, Tasinato 2013

ML, Nelson, Shandera 2013

Single-source weak NG globally, $\zeta = \zeta_G + f_{NL}(\zeta_G^2 - \langle \zeta_G^2 \rangle) + g_{NL}(\zeta_G^3 - 3\zeta_G \langle \zeta_G^2 \rangle) \dots$ locally,

 $\zeta_{s} = \zeta_{G,s}(1 + 2f_{NL}\zeta_{G,L}) + (f_{NL} + \frac{9}{5}g_{NL}\zeta_{G,L})(\zeta_{G}^{2} - \langle \zeta_{G}^{2} \rangle) + \dots$

Gaussian

-ζ_{G,L} ~ 🔿

non-Gaussian

Single-source weak NG
obally,

$$\zeta = \zeta_{G} + f_{NL} (\zeta_{G}^{2} - \langle \zeta_{G}^{2} \rangle) + g_{NL} (\zeta_{G}^{3} - 3\zeta_{G} \langle \zeta_{G}^{2} \rangle) \dots$$
cally,

$$\zeta_{s} = \zeta_{G,s} (1 + 2f_{NL} \zeta_{G,L}) + (f_{NL} + \frac{9}{5}g_{NL} \zeta_{G,L}) (\zeta_{G}^{2} - \langle \zeta_{G}^{2} \rangle) + \dots$$

$$P_{\zeta} \Big|_{i_{n} V_{s}} P_{\zeta} (1 + 2f_{NL} \zeta_{G,L}) + (f_{NL} + \frac{9}{5}g_{NL} \zeta_{G,L}) (\zeta_{G}^{2} - \langle \zeta_{G}^{2} \rangle) + \dots$$

$$P_{\zeta} \Big|_{i_{n} V_{s}} P_{\zeta} (1 + 2f_{NL} \zeta_{G,L}) + (f_{NL} + \frac{9}{5}g_{NL} + (f_{NL} + \frac{9}{5}g_{NL}) + (f_{NL} + \frac{9}{5}g_{NL} + (f_{NL} + \frac{9}{5}g_{NL}) + (f_{NL} + \frac{$$

in V_s

Nurmi, Byrnes, Tasinato 2013

gl

lo

Single-source weak NG
globally,

$$\zeta = \zeta_{G} + f_{NL} (\zeta_{G}^{2} - \langle \zeta_{G}^{2} \rangle) + g_{NL} (\zeta_{G}^{3} - 3 \zeta_{G} \langle \zeta_{G}^{2} \rangle) \dots$$
locally,

$$\zeta_{S} = \zeta_{G,S} (1 + 2f_{NL} \zeta_{G,L}) + (f_{NL} + \frac{9}{5} g_{NL} \zeta_{G,L}) (\zeta_{G}^{2} - \langle \zeta_{G}^{2} \rangle) + \dots$$

$$P_{\zeta} \begin{vmatrix} = P_{\zeta} (1 + 2f_{NL} \zeta_{G,L}) \\ f_{NL} \end{vmatrix} = f_{NL} - \frac{12}{5} f_{NL}^{2} \zeta_{G,L} + \frac{9}{5} g_{NL} \zeta_{G,L} + \dots$$

$$f_{NL} \sqrt{\Delta^{2} \zeta} \ll 1$$

$$g_{NL} \begin{vmatrix} = g_{NL} - \frac{18}{5} f_{NL} g_{NL} \zeta_{G,L} + \frac{12}{5} h_{NL} \zeta_{G,L} \end{vmatrix}$$

Nurmi, Byrnes, Tasinato 2013

g

Single-source weak NG

probabilistic relationship between observations in V_s \sim H_0^{-3} and V_L

Single-source weak NG

probabilistic relationship between observations in V_s \sim H_0^{-3} and V_L

see also Nurmi, Byrnes, Tasinato 2013

ML, Nelson, Shandera 2013

Single-source weak NG

probabilistic relationship between observations in $V_{s}\,\sim\,H_{0}^{-3}$ and V_{L}

Planck: $f_{NL} = 2.7 \pm 5.8!$ (planck collaboration 2013)

see also Nurmi, Byrnes, Tasinato 2013

ML, Nelson, Shandera 2013

power spectrum ~ $\langle \zeta_G^2 \rangle$ P

trispectrum ~ $\langle \zeta_{G}^{2} \rangle^{2p}$

bispectrum ~ $\langle \zeta_G^2 \rangle^{3p}/2$

Single-source Strong NG globally: $\zeta(x) = \zeta_{G}^{P}(x) - \langle \zeta_{G}^{P} \rangle$ power spectrum ~ $\langle \zeta_{G}^{2} \rangle^{P}$ bispectrum ~ $\langle \zeta_{G}^{2} \rangle^{3p/2}$ trispectrum ~ $\langle \zeta_{G}^{2} \rangle^{2p}$ $frispectrum ~ \langle \zeta_{G}^{2} \rangle^{2p}$

Single-source Strong NG globally: $\zeta(\mathbf{x}) = \zeta_{G}^{P}(\mathbf{x}) - \langle \zeta_{G}^{P} \rangle$ power spectrum ~ $\langle \zeta_G^2 \rangle^p$ $> 1 \sim f_{NL} \sqrt{\Delta^2 \zeta} \sim g_{NL} \Delta^2 \zeta$ bispectrum ~ $\langle \zeta_{G}^{2} \rangle^{3p}/2$ trispectrum ~ $\langle \zeta_{G}^{2} \rangle^{2p}$ strongly non-Gaussian **Ρ(**ζ) e.g. p=3 ML, Nelson, Shandera 2013

locally:

$$\zeta_{s}(x) = p \zeta_{G,s}(x) \zeta_{G,L}^{p-1} + {p \choose 2} \zeta_{G,s}^{2}(x) \zeta_{G,L}^{p-2} + {p \choose 3} \zeta_{G,s}^{3}(x) \zeta_{G,L}^{p-3} + \dots$$
$$- {p \choose 2} \langle \zeta_{G,s}^{2}(x) \rangle \zeta_{G,L}^{p-2} + \dots$$

locally:

$$\zeta_{s}(x) = p \zeta_{G,s}(x) \zeta_{G,L}^{p-1} + {p \choose 2} \zeta_{G,s}^{2}(x) \zeta_{G,L}^{p-2} + {p \choose 3} \zeta_{G,s}^{3}(x) \zeta_{G,L}^{p-3} + \dots$$
$$- {p \choose 2} \langle \zeta_{G,s}^{2}(x) \rangle \zeta_{G,L}^{p-2} + \dots$$

on average, all terms are equally important

locally:

$$\zeta_{s}(\mathbf{x}) = p \zeta_{G,s}(\mathbf{x}) \zeta_{G,L}^{p-1} + {p \choose 2} \zeta_{G,s}^{2}(\mathbf{x}) \zeta_{G,L}^{p-2} + {p \choose 3} \zeta_{G,s}^{3}(\mathbf{x}) \zeta_{G,L}^{p-3} + \dots$$
$$- {p \choose 2} \langle \zeta_{G,s}^{2}(\mathbf{x}) \rangle \zeta_{G,L}^{p-2} + \dots$$

on average, all terms are equally important

BUT if: $\zeta_{G,L} \gg \sqrt{\zeta_{G,s}^2}$

locally:

$$\zeta_{s}(\mathbf{x}) = p \zeta_{G,s}(\mathbf{x}) \zeta_{G,L}^{p-1} + {p \choose 2} \zeta_{G,s}^{2}(\mathbf{x}) \zeta_{G,L}^{p-2} + {p \choose 3} \zeta_{G,s}^{3}(\mathbf{x}) \zeta_{G,L}^{p-3} + \dots$$
$$- {p \choose 2} \langle \zeta_{G,s}^{2}(\mathbf{x}) \rangle \zeta_{G,L}^{p-2} + \dots$$
on average all terms are equally important

 $\zeta_{G,L} \gg \sqrt{\zeta_{G,S}^2}$ BUT if:

 $\zeta_{s} = \chi_{G} + f_{NL} (\chi_{G}^{2} - \langle \chi_{G}^{2} \rangle) + g_{NL} (\chi_{G}^{3} - 3\chi_{G} \langle \chi_{G}^{2} \rangle) \dots$

locally:

$$\zeta_{s}(\mathbf{x}) = p \zeta_{G,s}(\mathbf{x}) \zeta_{G,L}^{p-1} + {p \choose 2} \zeta_{G,s}^{2}(\mathbf{x}) \zeta_{G,L}^{p-2} + {p \choose 3} \zeta_{G,s}^{3}(\mathbf{x}) \zeta_{G,L}^{p-3} + \dots$$
$$- {p \choose 2} \langle \zeta_{G,s}^{2}(\mathbf{x}) \rangle \zeta_{G,L}^{p-2} + \dots$$
on average, all terms are equally important

BUT if:
$$\zeta_{G,L} \gg \sqrt{\zeta_{G,s}^2}$$

 $\zeta_{s} = \chi_{G} + f_{NL} (\chi_{G}^{2} - \langle \chi_{G}^{2} \rangle) + g_{NL} (\chi_{G}^{3} - 3\chi_{G} \langle \chi_{G}^{2} \rangle) \dots$

you recover statistics that are only weakly non-Gaussian!

Can $\zeta_{G,L} \gg \sqrt{\zeta_{G,s}^2}$?

Can $\zeta_{G,L} \gg \sqrt{\zeta_{G,s}^2}$?

roughly: $\zeta_{G,L} = \sqrt{\frac{N_s}{N_s}}$ for $n_s = 1$

Can $\zeta_{G,L} \gg \sqrt{\zeta_{G,s}^2}$?

 $\frac{\zeta_{\rm G,L}}{\sqrt{\langle \zeta_{\rm G,L}^2 \rangle}} \gg$

roughly:

for $n_s = 1$

number of subhorizon e-folds ~60?

(as before, number of super-horizon e-folds)

Can $\zeta_{G,L} \gg \sqrt{\zeta_{G,s}^2}$?

roughly: $\zeta_{G,L} = \sqrt{\frac{N_s}{N_s}}$ for $n_s = 1$ $\sqrt{\zeta_{G,L}^2} > \sqrt{\frac{N_s}{N}}$

(N doesn't have to be as large for $n_s < 1$)

so, we can have $\zeta_{G,L} \gg \sqrt{\zeta_{G,s}^2}$

giving our condition for weak non-Gaussianity in a region with background mode ζ_{G,L}

but our Hubble-patch appears to be really, really Gaussian (f_{NL} really small!)

But, for $\zeta(\mathbf{x}) = \zeta_G^P(\mathbf{x}) - \langle \zeta_G^P \rangle$ in V_L, we can produce $\Delta^2_{\zeta} \sim 10^{-9}$ and weakly non-Gaussian, in agreement with observations Single-source Strong NG But, for $\zeta(x) = \zeta_{G}^{P}(x) - \langle \zeta_{G}^{P} \rangle$ in V_L, we can produce $\Delta^{2}_{\zeta} \sim 10^{-9}$ and weakly non-Gaussian, in agreement with observations

Multi-source weak NG I

Multi-source weak NG I

Assume two uncorrelated fields generate ζ in V_L

$$\zeta = \phi_{G} + \sigma_{G} + \tilde{f}_{NL} (\sigma_{G}^{2} - \langle \sigma_{G}^{2} \rangle)$$

Multi-source weak NG I Assume two uncorrelated fields generate ζ in V_L $\zeta = \phi_{G} + \sigma_{G} + \tilde{f}_{NL} (\sigma_{G}^{2} - \langle \sigma_{G}^{2} \rangle)$ $\langle \phi_{\rm G} \sigma_{\rm G} \rangle = 0$ $P_{\zeta} = P_{\phi} + P_{\sigma}$ $f_{NL} = \widetilde{f}_{NL} / (1 + P_{\phi} / P_{\sigma})^2$ $\tau_{\rm NL} = 2 (1 + P_{\phi} / P_{\sigma}) f_{\rm NL}^2$ ML, Nelson, Shandera 2013

Multi-source weak NG I

Assume two uncorrelated fields generate ζ in V_L

 $\zeta = \phi_{G} + \sigma_{G} + \tilde{f}_{NL} (\sigma_{G}^{2} - \langle \sigma_{G}^{2} \rangle)$

 $\langle \phi_{\rm G} \sigma_{\rm G} \rangle = 0$

 $\mathsf{P}_{\zeta} = \mathsf{P}_{\phi} + \mathsf{P}_{\sigma}$

 $f_{NL} = f_{NL} / (1 + P_{\phi} / P_{\sigma})^{2}$ $\tau_{NL} = 2 (1 + P_{\phi} / P_{\sigma}) f_{NL}^{2}$

skewness suppressed/kurtosis boosted relative to skewness

Multi-source weak NG I Assume two uncorrelated fields generate ζ in V_L $\zeta = \phi_{G} + \sigma_{G} + \tilde{f}_{NL} (\sigma_{G}^{2} - \langle \sigma_{G}^{2} \rangle)$ $\langle \phi_{G} \sigma_{G} \rangle = 0$ $P_{\zeta} = P_{\phi} + P_{\sigma}$

locally $P\zeta \left| = P\zeta \left(1 + \frac{12}{5} f_{NL} \left(1 + P\phi / P_{\sigma} \right) \sigma_{G,L} \right) \right.$ $f_{NL} \left| = f_{NL} \left(1 + \frac{12}{5} \left(\frac{\tau_{NL} - 2 f_{NL}^{2}}{f_{NL}} \right) \left(1 + P\phi / P_{\sigma} \right) \sigma_{G,L} \right) \right.$

ML, Nelson, Shandera 2013

Multi-source weak NG I Assume two uncorrelated fields generate ζ in V_L $\zeta = \phi_{G} + \sigma_{G} + \tilde{f}_{NL} (\sigma_{G}^{2} - \langle \sigma_{G}^{2} \rangle)$ $\langle \phi_{G} \sigma_{G} \rangle = 0$ $P_{\zeta} = P_{\phi} + P_{\sigma}$ only $\sigma_{G,L}$ modulates local stats locally $\mathsf{P}_{\zeta} = \mathsf{P}_{\zeta} \left(1 + \frac{12}{5} \mathsf{f}_{\mathsf{NL}} \left(1 + \mathsf{P}_{\phi} / \mathsf{P}_{\sigma} \right) \sigma_{\mathsf{G,L}} \right)$ $|f_{NL}| = f_{NL} \left(1 + \frac{12}{5} \left(\frac{\tau_{NL} - 2 f_{NL}^2}{f_{NL}}\right) \left(1 + P_{\phi} / P_{\sigma}\right) \sigma_{G,L}\right)$
Multi-source weak NG I Assume two uncorrelated fields generate ζ in V_L $\zeta = \phi_{G} + \sigma_{G} + \tilde{f}_{NL} (\sigma_{G}^{2} - \langle \sigma_{G}^{2} \rangle)$ $\langle \phi_{G} \sigma_{G} \rangle = 0$ $P_{\zeta} = P_{\phi} + P_{\sigma}$ only $\sigma_{G,L}$ modulates local stats locally $\mathsf{P}_{\zeta} = \mathsf{P}_{\zeta} \left(1 + \frac{12}{5} \mathsf{f}_{\mathsf{NL}} \left(1 + \mathsf{P}_{\phi} / \mathsf{P}_{\sigma} \right) \sigma_{\mathsf{G,L}} \right)$ $f_{\text{NL}} = f_{\text{NL}} \left(1 + \frac{12}{5} \left(\frac{\tau_{\text{NL}} - 2 f_{\text{NL}}^2}{f_{\text{NL}}} \right) \left(1 + P_{\phi} / P_{\sigma} \right) \sigma_{\text{G,L}} \right)$ for fixed f_{NL} , $P\zeta$ typical modulation is larger $\langle (1 + P_{\phi}/P_{\sigma})^2 \sigma_{G,L}^2 \rangle \sim (1 + P_{\phi}/P_{\sigma}) \langle \zeta_{G,L}^2 \rangle$

Multi-source weak NG I

for fixed f_{NL} , $P\zeta$ typical modulation is larger

Multi-source weak NG II

Multi-source weak NG II

 $\zeta = \phi_{\rm G} + \tilde{f}_{\rm NL} \left(\sigma_{\rm G}^2 - \langle \sigma_{\rm G}^2 \rangle \right)$

take $\widetilde{f}_{NL}\Delta_{\sigma} \sim 1$, but $\Delta_{\phi}^{2} \gg \Delta_{\sigma}^{2}$ so still only weakly non-Gaussian f_{NL} , $\tau_{NL} \sim c$ scale-dependent

but, for $\sigma_{G,L} \gg \sqrt{\sigma_{G,S}^2}$

can again recover weakly non-Gaussian statistics with constant $f_{\rm NL}$, $\tau_{\rm NL}$

Multi-Source weak NG II Local parameters are modulated by $\sigma^2_{G,L}$, instead of $\sigma_{G,L}$ so probability distributions are highly skewed!

Multi-Source weak NG II Local parameters are modulated by $\sigma^2_{G,L}$, instead of $\sigma_{G,L}$ so probability distributions are highly skewed!

average values in all V_L

ML, Nelson, Shandera 2013

OK, so . . . ?

How does this change inferences about inflationary model?

What kind of model parameters does this actually change? Or how does this change inferences about models?

Also, we've assumed that Δ^2 , $f_{\rm NL}$, are free and independent parameters, may not be true in a real model

How does this change inferences about inflationary model?

(I) worked example: curvaton
(II) your example? thoughts?

How does this change inferences ?

worked example: curvaton curvaton only at curvaton decay, $V(\sigma) = m^2 \sigma^2$

Linde & Mukhanov 1997; Lyth and Wands 2002 Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011

How does this change inferences ? worked example: curvaton, no perturbations from inflaton curvaton only at curvaton decay, $V(\sigma) = m^2 \sigma^2$

 $\zeta = \frac{2\delta\sigma}{3\sigma*} - \frac{5}{4}\left(\frac{2\delta\sigma}{3\sigma*}\right)^2 + \frac{25}{12}\left(\frac{2\delta\sigma}{3\sigma*}\right)^3 + \dots$

Linde & Mukhanov 1997; Lyth and Wands 2002 Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011 σ

V(σ)

How does this change inferences ? worked example: curvaton, no perturbations from inflaton curvaton only at curvaton decay, $V(\sigma) = m^2 \sigma^2$

$$\begin{split} \zeta &= \frac{2\delta\sigma}{3\sigma *} - \frac{5}{4} \left(\frac{2\delta\sigma}{3\sigma *} \right)^2 + \frac{25}{12} \left(\frac{2\delta\sigma}{3\sigma *} \right)^3 + . \\ \Delta \zeta^2 &\to \Delta \zeta^2 \left(1 - 3\zeta_L \right) \\ f_{\rm NL} &\to f_{\rm NL} \end{split}$$

Linde & Mukhanov 1997; Lyth and Wands 2002 Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011 $\boldsymbol{\sigma}$

V(σ)

How does this change inferences ? worked example: curvaton, no perturbations from inflaton curvaton only at curvaton decay, $V(\sigma) = m^2 \sigma^2$ $V(\sigma)$

Linde & Mukhanov 1997; Lyth and Wands 2002 Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011

ML, Wayne Hu

 $\boldsymbol{\sigma}$

How does this change inferences ? worked example: curvaton, no perturbations from inflaton curvaton and radiation at curvaton $decay, V(\sigma) = m^2 \sigma^2$

$$\zeta = \frac{2r\delta\sigma}{3\sigma} + \left(\frac{5}{4r} - \frac{5}{3} - \frac{5}{6}\right) \left(\frac{2r\delta\sigma}{3\sigma}\right) + \frac{5}{6}$$

shift in $\sigma *$ also shifts r

Linde & Mukhanov 1997; Lyth and Wands 2002 Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011 decay

 $\equiv \frac{3\Omega_{\sigma}}{3\Omega_{\sigma} + 4\Omega_{r}} \Big|_{\sigma}$

 σ

How does this change inferences ? worked example: curvaton, no perturbations from inflaton curvaton and radiation at curvaton decay, $V(\sigma) = m^2 \sigma^2$

$$\zeta = \frac{2r\delta\sigma}{3\sigma} + \left(\frac{5}{4r} - \frac{5}{3} - \frac{5}{6}\right) \left(\frac{2r\delta\sigma}{3\sigma}\right) + .$$

shift in $\sigma *$ also shifts r

but see

 $\equiv \frac{3\Omega_{\sigma}}{3\Omega_{\sigma} + 4\Omega_{r}}$

Linde & Mukhanov 1997; Lyth and Wands 2002 Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011 decay

 σ

Summary

- The curvature perturbation ζ has local non-Gaussianity (even at a relatively small level) the statistics observed in our Hubble volume may be a biased sample
- We explicitly computed local/global relationship in three simple examples that each give local statistics consistent with observations, even if globally, the statistics are very different and inconsistent with observations