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Idea:
statistics of curvature perturbation ζ (i.e. 

inhomogeneities) are primary means to learn 
about inflation

but we only observeζin our Hubble patch and 

local statistics may not be representative



Outline
How are local and global statistics related?

Three Examples:

single-source weakly non-Gaussian IC’s

single-source strongly non-Gaussian IC’s

multi-source initial conditions

Conclusions



Inflation as the origin of structure
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galaxies
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For example, we can measure the 
power spectrum



probability

power spectrum ∼ typical 
spot size
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For example, we can measure the 
power spectrum

two-point function ↔ Power spectrum: 
〈ζ(x)ζ(y)〉↔ Pζ(k)



For instance, with CMB data

analyze power 
spectrum

4

TABLE 1
Estimated power spectrum bands in units of 10�9

Wavenumber k (Mpc�1) Power spectrum band ab WMAP only binned P(k) ACT+WMAP binned P (k)

0.0010 P1 4.99+1.79
�1.77 5.07± 1.82

0.0014 P2 < 3.22 < 3.49
0.0019 P3 < 3.04 < 3.03
0.0025 P4 < 4.34 < 4.15
0.0034 P5 3.32± 0.99 3.52± 1.05
0.0047 P6 2.31+0.60

�0.58 2.29± 0.64
0.0064 P7 2.21± 0.33 2.27± 0.31
0.0087 P8 2.43± 0.19 2.48± 0.20
0.0118 P9 2.29± 0.15 2.35± 0.15
0.0160 P10 2.31± 0.13 2.37± 0.12
0.0218 P11 2.20± 0.11 2.28± 0.11
0.0297 P12 2.38± 0.14 2.40± 0.13
0.0404 P13 2.28± 0.23 2.39± 0.23
0.0550 P14 1.98± 0.20 2.14± 0.14
0.0749 P15 2.37± 0.53 2.41+0.20

�0.28

0.1020 P16 < 4.01 2.20+0.71
�0.80

0.1388 P17 � 2.19+0.79
�0.87

0.1889 P18 � < 2.37
0.2571 P19 � < 2.40
0.3500 P20 � �

a For one-tailed distributions, the upper 95% confidence limit is given, whereas the 68% limits are shown for
two-tailed distributions.
b The primordial power spectrum is normalized by a fixed overall amplitude �2

R,0 = 2.36 ⇥ 10�9 (Larson et al.

2010).

10�3 10�2 10�1

k [Mpc�1]

0

1

2

3

4

5

6

7

8

Pr
im

or
di

al
po

w
er

sp
ec

tru
m

⇥10�9

ACT+WMAP+H0

WMAP+H0

10�11.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7

⇥10�9

Fig. 2.— Primordial power constraints: the constraints on the primordial power spectrum from the ACT data in addition to WMAP
data compared to the WMAP constraints alone. In both cases, a prior on the Hubble parameter from Riess et al. (2009) was included.
Where the marginalised distributions are one-tailed, the upper errorbars show the 95% confidence upper limits. On large scales the power
spectrum is constrained by the WMAP data, while at smaller scales the ACT data yield tight constraints up to k = 0.19 Mpc�1. The
horizontal solid line shows a scale-invariant spectrum, while the dashed black line shows the best-fit ⇥CDM power-law with ns = 0.963
from Dunkley et al. (2010), with the spectra corresponding to the 2� variation in spectral index indicated by solid band. The constraints
are summarized in Table 1.

Hlozek et al 2011

undo post-
inflationary  
evolution of 

perturbations 
to recover 
primordial 

power 
spectrum



How do the statistics we 
observe in our Hubble 
volume relate to what’s 

predicted from inflation?



What’s ζ?
fluctuations in expansion history relative 

to average, over some volume V 
ζ∼

ã2(x,t) = a(t)eζ(x,t) 

a(t) - mean expansion over V

V ζ

see e.g. Wands, Malik, Lyth, and Liddle 2000 



fluctuations in expansion history relative 
to average, over some volume V 

ζ∼

ã2(x,t) = a(t)eζ(x,t) 

a1(t) - mean expansion over V1

V1 ζ1

a2(t) - mean expansion over V2

ζ2

V2

different regions may have different fluctuations 
and different average expansion histories

Local and Global ζ

see e.g. Wands, Malik, Lyth, and Liddle 2000 



a1(t) - mean expansion over V1

V1 ζ1

a2(t) - mean expansion over V2

ζ2

V2

aL(t) - mean expansion over VL

ζ1(x) = ζ(x) - ⟨ζ⟩1  

VL

ζ2(x) = ζ(x) - ⟨ζ⟩2  

ζ -
perturbation with 
respect to average 

expansion in VL

Local and Global ζ

see e.g. Wands, Malik, Lyth, and Liddle 2000 



a1(t) - mean expansion over V1

V1 ζ1

a2(t) - mean expansion over V2

ζ2

V2

aL(t) - mean expansion over VL

ζ1(x) = ζ(x) - ⟨ζ⟩1  

VL

ζ2(x) = ζ(x) - ⟨ζ⟩2  

ζ -
perturbation with 
respect to average 

expansion in VL

∼ constant background modes in V1 and V2 
constant background mode is not locally observable

Local and Global ζ



ζs

ζs(x) ≣ ζ(x) - ζL  
local curvature perturbation

ζL ≣⟨ζ⟩ 

Vs

VL

Vs

average over volume Vs

Local and Global ζ
DEFINITIONS



Local and Global ζ
if ζ is Gaussian, 

ζs and ζL 

are uncorrelated* 

Vs

VL

ζ

ζs = ζ-ζL

* ok, strictly speaking this is only true in Fourier space. corrections depend on how 
we define volumes, but we can calculate them



Local and Global ζ
if ζ is Gaussian, 

ζs and ζL 

are uncorrelated* 

Vs

VL

ζ

ζs = ζ-ζL

* ok, strictly speaking this is only true in Fourier space. corrections depend on how 
we define volumes, but we can calculate them

BUT if ζ is non- 

Gaussian ζs can depend 
on the value of  ζL 



Non-linear couplings
Vs

VL

ζ

ζs = ζ-ζL

Specifically, if  
ζ = F(ζG(x)) - ⟨F(ζG)⟩

ζs can have a 

strong dependence 
on ζL



Non-linear couplings
For instance, the quadratic local ansatz: ζ = ζG + fNLζG2

〈ζs2〉= 〈ζG,s2〉(1 + 4 fNL ζG,L(x))

small-scale power depends on large-scale fluctuations

Dalal, Doré, Huterer, Shirokov 2007

possibly familiar example:



For instance, the quadratic local ansatz: ζ = ζG + fNLζG2

〈ζs2〉= 〈ζG,s2〉(1 + 4 fNL ζG,L(x))

small-scale power depends on large-scale fluctuations

δρ/ρ

   =    δl + 4fNL    Φl. . . ∂n
∂σ8

∂n
∂δδn ∂n

∂σ8

∂n
∂δ( )4fNL

k2+ δl~δn

In our Hubble volume this gives 
rise to the scale-dependent 

halo bias of Dalal et al

Dalal, Doré, Huterer, Shirokov 2007

Non-linear couplings
possibly familiar example:



Non-linear couplings

〈ζs3〉= 18 gNL〈ζG,s2〉ζG,l(x) ≡ 6fNLeff (x)
2 〈ζG,s2〉

small-scale skewness depends on large-scale fluctuations

similarly, the cubic local ansatz: ζ = ζG + gNLζG3

possibly familiar example:

Desjacques & Seljak 2009; Smith, Ferraro, ML 2011



δρ/ρ

δn =    δl + 18gNL       Φl. . . ∂n
∂δ

∂n
∂S3

Desjacques & Seljak 2009; Smith, Ferraro, ML 2011

(    + 18gNL     /k2 ) δl(k) . . . 
∂n
∂S3

∂n
∂δ

Non-linear couplings

〈ζs3〉= 18 gNL〈ζG,s2〉ζG,l(x) ≡ 6fNLeff (x)
2 〈ζG,s2〉

small-scale skewness depends on large-scale fluctuations

similarly, the cubic local ansatz: ζ = ζG + gNLζG3

which has been shown to give 
a similar, scale-dependent bias 

in halo clustering

possibly familiar example:



So, this large-small scale coupling is 
somewhat familiar 

〈ζs3〉= 18 gNL〈ζG,s2〉ζG,l(x) ≡ 6fNLeff (x)
2

〈ζs2〉= 〈ζG,s2〉(1 + 4 fNL ζG,L(x))

ζ = ζG + fNLζG2 + gNLζG3 + . . .

. . .



What are the consequences 
of this mode coupling?



Suppose our Hubble volume is small compared 
with the entire post-inflationary patch

VL

our

en
tir

e
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∼ c/H0



Suppose our Hubble volume is small compared 
with the entire post-inflationary patch

VL

our

en
tir

e

patch

pos
t-i

nflatio
nary

VsHubble
volume

the small-scale statistics (power  spectrum, bispectrum, trispectrum) ofζ 

measured in our Hubble patch depend on the amplitude of ζG,L in our Hubble patch

ζ = F(ζG(x)) - ⟨F(ζG)⟩If, 



Suppose our Hubble volume is small compared 
with the entire post-inflationary patch

VL

our

en
tir

e

patch

pos
t-i

nflatio
nary

VsHubble
volume

the small-scale statistics (power  spectrum, bispectrum, trispectrum) ofζ 

measured in our Hubble patch depend on the amplitude of ζG,L in our Hubble patch

ζ = F(ζG(x)) - ⟨F(ζG)⟩If, 

other Hubble volumes 
with different ζG,L values



ζG,L= ∫d3x
Vs ∼ H0-3

ζG(x)

typical size of ζG,L?



random (unknown) variable
in each Hubble-size patch

ζG,L= ∫d3x
Vs ∼ H0-3

ζG(x)

typical size of ζG,L?



typical size of ζG,L?

variance:

ζG,L= ∫d3x
Vs ∼ H0-3

ζG(x)

⟨ζG,L2⟩∫d3k
(2π)3
Δζ(k)2

H0

2π/VL1/3

=
G

⟨ζG,L2⟩

ζG,L 

Prob.(ζG,L)



sum over all modes with k ≲ H0 

depends on power spectrum 
outside horizon! 

which we don’t know

variance:

ζG,L= ∫d3x
Vs ∼ H0-3

ζG(x)

⟨ζG,L2⟩∫d3k
(2π)3
Δζ(k)2

H0

2π/VL1/3

=
G

typical size of ζG,L?



sum over all modes with k ≲ H0 

depends on power spectrum 
outside horizon! 

which we don’t know

for scale invariant (ns=1)

2π/Vs1/3

N ≣   ln VL

Vs

1
3

variance:

ζG,L= ∫d3x
Vs ∼ H0-3

ζG(x)

⟨ζG,L2⟩∫d3k
(2π)3
Δζ(k)2

2π/VL1/3

=
G

Δζ2⟨ζG,L2⟩∼ NG

typical size of ζG,L?



N ≣   ln VL

Vs

1
3

examples

ML, Nelson, Shandera 2013

ζG,L= ∫d3x
Vs ∼ H0-3

ζG(x)

⟨ζG,L2⟩∫d3k
(2π)3
Δζ(k)2

2π/VL1/3

=
G

2π/Vs1/3

typical size of ζG,L?



Super-horizon 
perturbations?

Ωk ∫d3x ∇2 ζ(x)
Vs ∼ H0-3

 ∼ 
H0-1

only modes with k ∼ H0 contribute

see e.g. Knox 2006, Erickeck et al 2008, Waterhouse 2008, Vardanyan et al 2009, Guth & Nomura 2012, Kleban & Schillo 2012   
ML, Nelson, Shandera 2013



Super-horizon 
perturbations?

Ωk ∫d3x ∇2 ζ(x)
Vs ∼ H0-3

 ∼ 
H0-1

only modes with k ∼ H0 contribute

see e.g. Knox 2006, Erickeck et al 2008, Waterhouse 2008, Vardanyan et al 2009, Guth & Nomura 2012, Kleban & Schillo 2012   
ML, Nelson, Shandera 2013

ζL is not something we can observe



VL

What are the consequences?

our

en
tir

e

patch

pos
t -

inflationar
y

Vs

Hubble

volume

Consider three examples of statistics for ζ in VL :
• weakly non-Gaussian

• strongly non-Gaussian

• multi-source non-Gaussian

ML, Nelson, Shandera 2013

Nurmi, Byrnes, Tasinato 2013

Nelson & Shandera 2012



Examples
Single-source weakly non-Gaussian (usual 
local ansatz)

Single-source strongly non-Gaussian

Multi-source weakly non-Gaussian 

ML, Nelson, Shandera 2013



Single-source weak NG



Single-source weak NG

ML, Nelson, Shandera 2013

ζ = ζG + fNL (ζG2 - ⟨ζG2⟩) + gNL (ζG3 -3ζG⟨ζG2⟩) . . .

Nurmi, Byrnes, Tasinato 2013

globally,



Single-source weak NG

ML, Nelson, Shandera 2013

ζ = ζG + fNL (ζG2 - ⟨ζG2⟩) + gNL (ζG3 -3ζG⟨ζG2⟩) . . .

Nurmi, Byrnes, Tasinato 2013

globally,

ζG

ζ
G - fNL ζ

G 2

ζG+ fNL ζG
2

ζG+ gNL ζG3

ζG - gNL ζG3

ζ ζ

ζ ζ



Single-source weak NG

ML, Nelson, Shandera 2013

ζ = ζG + fNL (ζG2 - ⟨ζG2⟩) + gNL (ζG3 -3ζG⟨ζG2⟩) . . .

Nurmi, Byrnes, Tasinato 2013

globally,

⟨ζζζ⟩∼fNL⟨ζGζG⟩⟨ζGζG⟩

⟨ζζζζ⟩ - 3⟨ζζ⟩2∼fNL2⟨ζGζG⟩⟨ζGζG⟩⟨ζGζG⟩

+ gNL⟨ζGζG⟩⟨ζGζG⟩⟨ζGζG⟩

⟨ζζ⟩ ∼ ⟨ζGζG⟩
power spectrum

bispectrum

trispectrum



Single-source weak NG

ML, Nelson, Shandera 2013

ζ = ζG + fNL (ζG2 - ⟨ζG2⟩) + gNL (ζG3 -3ζG⟨ζG2⟩) . . .

locally,
ζs = ζG,s(1 + 2fNLζG,L) + (fNL +  gNLζG,L)(ζG2 - ⟨ζG2⟩) + . . . 9

5

Nurmi, Byrnes, Tasinato 2013

globally,



Single-source weak NG

ML, Nelson, Shandera 2013

ζ = ζG + fNL (ζG2 - ⟨ζG2⟩) + gNL (ζG3 -3ζG⟨ζG2⟩) . . .

locally,
ζs = ζG,s(1 + 2fNLζG,L) + (fNL +  gNLζG,L)(ζG2 - ⟨ζG2⟩) + . . . 9

5

Nurmi, Byrnes, Tasinato 2013

globally,

ζ
non-Gaussian

Vs



Single-source weak NG

ML, Nelson, Shandera 2013

ζ = ζG + fNL (ζG2 - ⟨ζG2⟩) + gNL (ζG3 -3ζG⟨ζG2⟩) . . .

locally,
ζs = ζG,s(1 + 2fNLζG,L) + (fNL +  gNLζG,L)(ζG2 - ⟨ζG2⟩) + . . . 9

5

Nurmi, Byrnes, Tasinato 2013

globally,

ζζG

Gaussian non-Gaussian

Vs

non-linear map



Single-source weak NG

ML, Nelson, Shandera 2013

ζ = ζG + fNL (ζG2 - ⟨ζG2⟩) + gNL (ζG3 -3ζG⟨ζG2⟩) . . .

locally,
ζs = ζG,s(1 + 2fNLζG,L) + (fNL +  gNLζG,L)(ζG2 - ⟨ζG2⟩) + . . . 9

5

Nurmi, Byrnes, Tasinato 2013

globally,

ζζG ζG,L ∼
Gaussian non-Gaussian

Vs



Single-source weak NG

ML, Nelson, Shandera 2013

ζ = ζG + fNL (ζG2 - ⟨ζG2⟩) + gNL (ζG3 -3ζG⟨ζG2⟩) . . .

locally,
ζs = ζG,s(1 + 2fNLζG,L) + (fNL +  gNLζG,L)(ζG2 - ⟨ζG2⟩) + . . . 9

5

Pζ =  Pζ(1+ 2fNLζG,L) 
in Vs

fNL  = fNL -   fNL2ζG,L +   gNLζG,L+ . . .9
5

12
5

in Vs

Nurmi, Byrnes, Tasinato 2013

gNL  = gNL -   fNLgNLζG,L +   hNLζG,L12
5

18
5

in Vs

globally,



Single-source weak NG

ML, Nelson, Shandera 2013

ζ = ζG + fNL (ζG2 - ⟨ζG2⟩) + gNL (ζG3 -3ζG⟨ζG2⟩) . . .

locally,
ζs = ζG,s(1 + 2fNLζG,L) + (fNL +  gNLζG,L)(ζG2 - ⟨ζG2⟩) + . . . 9

5

Pζ =  Pζ(1+ 2fNLζG,L) 
in Vs

fNL  = fNL -   fNL2ζG,L +   gNLζG,L+ . . .9
5

12
5

in Vs

Nurmi, Byrnes, Tasinato 2013

gNL  = gNL -   fNLgNLζG,L +   hNLζG,L12
5

18
5

in Vs

gNLΔζ ≪ 12
fNL  Δζ ≪ 12√

globally,



Single-source weak NG
probabilistic relationship between observations in 

Vs ∼ H0-3 and VL

ML, Nelson, Shandera 2013see also Nurmi, Byrnes, Tasinato 2013



Single-source weak NG
probabilistic relationship between observations in 

Vs ∼ H0-3 and VL

shape of PDF depends on 
non-Gaussian parameters, 

super-horizon power 
spectrum 

ML, Nelson, Shandera 2013see also Nurmi, Byrnes, Tasinato 2013

Planck:  fNL = 2.7 ± 5.8! (planck collaboration 2013)



Single-source weak NG
probabilistic relationship between observations in 

Vs ∼ H0-3 and VL

ML, Nelson, Shandera 2013see also Nurmi, Byrnes, Tasinato 2013

gNL = 103 gNL = 105

Planck:  fNL = 2.7 ± 5.8! (planck collaboration 2013)



Single-source Strong NG

ML, Nelson, Shandera 2013



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p pglobally:



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p p

power spectrum ∼ ⟨ζG2⟩p

bispectrum ∼ ⟨ζG2⟩3p/2

trispectrum ∼ ⟨ζG2⟩2p

globally:



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p p

power spectrum ∼ ⟨ζG2⟩p

bispectrum ∼ ⟨ζG2⟩3p/2

trispectrum ∼ ⟨ζG2⟩2p

21 ∼fNL  Δζ ∼ gNLΔζ2√
strongly non-Gaussian

globally:



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p p

power spectrum ∼ ⟨ζG2⟩p

bispectrum ∼ ⟨ζG2⟩3p/2

trispectrum ∼ ⟨ζG2⟩2p

21 ∼fNL  Δζ ∼ gNLΔζ2√
strongly non-Gaussian

globally:

𝜁

P(𝜁)

p=1

p=3p=2

e.g.



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p pglobally:

Nelson & Shandera 2012;



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p pglobally:

locally:
ζs(x) = pζG,s(x)ζG,L +   ζG,s(x)ζG,L +     ζG,s(x)ζG,L  + . . .p

2( ) p
3( )p-1 p-2 p-32 3

-    ⟨ζG,s(x)⟩ζG,L + . . .
p
2() p-22

Nelson & Shandera 2012;



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p pglobally:

locally:

on average, all terms are equally important

ζs(x) = pζG,s(x)ζG,L +   ζG,s(x)ζG,L +     ζG,s(x)ζG,L  + . . .p
2( ) p

3( )p-1 p-2 p-32 3

-    ⟨ζG,s(x)⟩ζG,L + . . .
p
2() p-22

Nelson & Shandera 2012;



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p pglobally:

locally:

on average, all terms are equally important

BUT if: 

ζs(x) = pζG,s(x)ζG,L +   ζG,s(x)ζG,L +     ζG,s(x)ζG,L  + . . .p
2( ) p

3( )p-1 p-2 p-32 3

-    ⟨ζG,s(x)⟩ζG,L + . . .
p
2() p-22

ζG,L ≫ √ ζG,s
2

Nelson & Shandera 2012;



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p pglobally:

locally:

on average, all terms are equally important

BUT if: 

ζs(x) = pζG,s(x)ζG,L +   ζG,s(x)ζG,L +     ζG,s(x)ζG,L  + . . .p
2( ) p

3( )p-1 p-2 p-32 3

-    ⟨ζG,s(x)⟩ζG,L + . . .
p
2() p-22

ζG,L ≫ √ ζG,s
2

ζs = χG + fNL (χG2 - ⟨χG2⟩) + gNL (χG3 -3χG⟨χG2⟩) . . .

Nelson & Shandera 2012;



Single-source Strong NG

ML, Nelson, Shandera 2013

ζ(x) = ζG (x)- ⟨ζG⟩
p pglobally:

locally:

on average, all terms are equally important

BUT if: 

ζs(x) = pζG,s(x)ζG,L +   ζG,s(x)ζG,L +     ζG,s(x)ζG,L  + . . .p
2( ) p

3( )p-1 p-2 p-32 3

-    ⟨ζG,s(x)⟩ζG,L + . . .
p
2() p-22

ζG,L ≫ √ ζG,s
2

ζs = χG + fNL (χG2 - ⟨χG2⟩) + gNL (χG3 -3χG⟨χG2⟩) . . .
you recover statistics that are only weakly non-Gaussian!

Nelson & Shandera 2012;



Single-source Strong NG

ML, Nelson, Shandera 2013Nelson & Shandera 2012;

ζG,L ≫ √ ζG,s
2Can ?



Single-source Strong NG

ML, Nelson, Shandera 2013Nelson & Shandera 2012;

ζG,L ≫ √ ζG,s
2Can ?

ζG,L

√⟨ζG,L⟩
2

≫ Ns

N√
roughly:

for ns =1



Single-source Strong NG

ML, Nelson, Shandera 2013Nelson & Shandera 2012;

ζG,L ≫ √ ζG,s
2Can ?

ζG,L

√⟨ζG,L⟩
2

≫ Ns

N√
roughly:

for ns =1

(as before, number of super-horizon e-folds)

number of sub-
horizon e-folds 

∼60?



Single-source Strong NG

ML, Nelson, Shandera 2013Nelson & Shandera 2012;

ζG,L ≫ √ ζG,s
2Can ?

ζG,L

√⟨ζG,L⟩
2

≫ Ns

N√
roughly:

for ns =1

(N doesn’t have to be as large for ns < 1 )



Single-source Strong NG

ML, Nelson, Shandera 2013Nelson & Shandera 2012;

ζG,L ≫ √ ζG,s
2so, we can have 

giving our condition for weak non-
Gaussianity in a region with 

background modeζG,L

but our Hubble-patch appears to
be really, really Gaussian (fNL really 

small!) 
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But, for ζ(x)=ζG(x)-⟨ζG⟩ in VL, we can produce Δζ ∼ 10-9 

and weakly non-Gaussian, in agreement with observations
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Single-source Strong NG

ML, Nelson, Shandera 2013Nelson & Shandera 2012;

pp
But, for ζ(x)=ζG(x)-⟨ζG⟩ in VL, we can produce Δζ ∼ 10-9 

and weakly non-Gaussian, in agreement with observations

32% 0.3% 0.00006%

ζG,L /√ζG,L = 1 (solid), 3 (dot-dashed), 5 (dotted) 2

2
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Multi-source weak NG I
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ζ = φG+ σG + fNL (σG2 - ⟨σG2⟩)

Assume two uncorrelated fields generate ζ in VL

∼
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ζ = φG+ σG + fNL (σG2 - ⟨σG2⟩)

Assume two uncorrelated fields generate ζ in VL

⟨φGσG⟩ = 0
Pζ = Pφ + Pσ

∼

fNL = fNL /(1+Pφ/Pσ)
∼

τNL = 2 (1+Pφ/Pσ) fNL 2
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Multi-source weak NG I

ML, Nelson, Shandera 2013

ζ = φG+ σG + fNL (σG2 - ⟨σG2⟩)

Assume two uncorrelated fields generate ζ in VL

⟨φGσG⟩ = 0
Pζ = Pφ + Pσ

∼

fNL = fNL /(1+Pφ/Pσ)
∼

τNL = 2 (1+Pφ/Pσ) fNL 2
skewness suppressed/kurtosis 
boosted relative to skewness

2

Pφ=0 Pφ= Pσ



Multi-source weak NG I

ML, Nelson, Shandera 2013

ζ = φG+ σG + fNL (σG2 - ⟨σG2⟩)

Assume two uncorrelated fields generate ζ in VL

⟨φGσG⟩ = 0
Pζ = Pφ + Pσ

locally 

in Vs

Pζ = Pζ(1 +   fNL (1 + Pφ/Pσ)σG,L)12
5

fNL = fNL (1 +                     (1 + Pφ/Pσ)σG,L)τNL - 2 fNL
fNL )(

2
12
5

in Vs

∼
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ζ = φG+ σG + fNL (σG2 - ⟨σG2⟩)

Assume two uncorrelated fields generate ζ in VL

⟨φGσG⟩ = 0
Pζ = Pφ + Pσ

locally 

in Vs

Pζ = Pζ(1 +   fNL (1 + Pφ/Pσ)σG,L)12
5

fNL = fNL (1 +                     (1 + Pφ/Pσ)σG,L)τNL - 2 fNL
fNL )(

2
12
5

in Vs

only σG,L modulates local stats

∼



Multi-source weak NG I

ML, Nelson, Shandera 2013

ζ = φG+ σG + fNL (σG2 - ⟨σG2⟩)

Assume two uncorrelated fields generate ζ in VL

⟨φGσG⟩ = 0
Pζ = Pφ + Pσ

locally 

in Vs

Pζ = Pζ(1 +   fNL (1 + Pφ/Pσ)σG,L)12
5

fNL = fNL (1 +                     (1 + Pφ/Pσ)σG,L)τNL - 2 fNL
fNL )(

2
12
5

in Vs

only σG,L modulates local stats

for fixed fNL, Pζ typical modulation is larger

⟨(1 + Pφ/Pσ)σG,L⟩22
∼ (1 + Pφ/Pσ)⟨ζG,L⟩

∼

2



Multi-source weak NG I

ML, Nelson, Shandera 2013

for fixed fNL, Pζ typical modulation is larger
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Multi-source weak NG II

ML, Nelson, Shandera 2013

ζ = φG + fNL (σG2 - ⟨σG2⟩)∼

take fNLΔσ∼1, but Δφ ≫ Δσ so still only weakly non-Gaussian∼ 2 2

fNL, τNL ∼ scale-dependent

but, for  σG,L ≫ √σG,s 

can again recover weakly non-Gaussian statistics
with constant fNL, τNL  

2



Multi-source weak NG II

ML, Nelson, Shandera 2013

Local parameters are modulated by σG,L, instead of σG,L so 

probability distributions are highly skewed!

2



Multi-source weak NG II

ML, Nelson, Shandera 2013

Local parameters are modulated by σG,L, instead of σG,L so 

probability distributions are highly skewed!

2

average values in all VL



OK, so . . . ?



How does this change inferences about 
inflationary model?

What kind of model parameters does this 
actually change? Or how does this change 
inferences about models?

Also, we’ve assumed that Δ2, fNL, are free 

and independent parameters, may not be 
true in a real model



How does this change inferences 
about inflationary model?

(I) worked example: curvaton 

(II) your example? thoughts?



worked example: curvaton 

How does this change inferences ?

ML, Wayne Hu

curvaton only at curvaton decay, V(σ) = m2σ2

V(σ)

σ

σ*

Linde & Mukhanov 1997; Lyth and Wands 2002
Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011



worked example: curvaton, no perturbations from inflaton

How does this change inferences ?

ζ = δσσ*
2
3 - 5

4
δσ
σ*

2
3( )

2
25
12

δσ
σ*

2
3( )

3

+ +  . . .

curvaton only at curvaton decay, V(σ) = m2σ2

V(σ)

σ

σ*

ML, Wayne Hu
Linde & Mukhanov 1997; Lyth and Wands 2002
Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011



How does this change inferences ?

ζ = δσσ*
2
3 - 5

4
δσ
σ*

2
3( )

2
25
12

δσ
σ*

2
3( )

3

+ +  . . .

curvaton only at curvaton decay, V(σ) = m2σ2

V(σ)

σ

σ*

 Δζ2 → Δζ2 (1- 3ζL)

 fNL → fNL

worked example: curvaton, no perturbations from inflaton

ML, Wayne Hu
Linde & Mukhanov 1997; Lyth and Wands 2002
Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011



How does this change inferences ?

ζ = δσσ*
2
3 - 5

4
δσ
σ*

2
3( )

2
25
12

δσ
σ*

2
3( )

3

+ +  . . .

curvaton only at curvaton decay, V(σ) = m2σ2

V(σ)

σ

σ*

 Δζ2 → Δζ2 (1- 3ζL)

 fNL → fNL just looks like different 
value of σ*

worked example: curvaton, no perturbations from inflaton

ML, Wayne Hu
Linde & Mukhanov 1997; Lyth and Wands 2002
Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011



How does this change inferences ?

ζ = δσσ*
2r
3 + 5

4r ( )
2

+  . . .

curvaton and radiation at curvaton 
decay, V(σ) = m2σ2

V(σ)

σ

σ*

shift in σ* also shifts r 

δσ
σ*

2r
3( - 5

3
5
6- )

r ≣ 3Ωσ
3Ωσ+ 4 Ωr curv.

decay

worked example: curvaton, no perturbations from inflaton

ML, Wayne Hu
Linde & Mukhanov 1997; Lyth and Wands 2002
Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011



How does this change inferences ?

ζ = δσσ*
2r
3 + 5

4r ( )
2

+  . . .

curvaton and radiation at curvaton 
decay, V(σ) = m2σ2

V(σ)

σ

σ*

shift in σ* also shifts r 

δσ
σ*

2r
3( - 5

3
5
6- )

r ≣ 3Ωσ
3Ωσ+ 4 Ωr curv.

decay

worked example: curvaton, no perturbations from inflaton

ML, Wayne Hu
Linde & Mukhanov 1997; Lyth and Wands 2002
Linde & Mukhanov 2006; Demozzi, Linde, Mukhanov 2011

but see



Summary
If the curvature perturbation ζ has local 

non-Gaussianity (even at a relatively small 
level) the statistics observed in our Hubble 
volume may be a biased sample

We explicitly computed local/global 
relationship in three simple examples that 
each give local statistics consistent with 
observations, even if globally, the statistics 
are very different and inconsistent with 
observations


